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Abstract. A classical problem in appointment scheduling, with applications in health care,

concerns the determination of the patients’ arrival times that minimize a cost function that

is a weighted sum of mean waiting times and mean idle times. Part of this problem is the

sequencing problem, which focuses on ordering the patients. We assess the performance of the

smallest-variance-first (svf) rule, which sequences patients in order of increasing variance of

their service durations. While it was known that svf is not always optimal, many papers have

found that it performs well in practice and simulation. We give theoretical justification for

these observations by proving quantitative worst-case bounds on the ratio between the cost

incurred by the svf rule and the minimum attainable cost, in a number of settings. We also

show that under quite general conditions, this ratio approaches 1 as the number of patients

grows large, showing that the svf rule is asymptotically optimal. While this viewpoint in

terms of approximation ratio is a standard approach in many algorithmic settings, our results

appear to be the first of this type in the appointment scheduling literature.
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1. Introduction

Setting up appointment schedules plays an important role in health care and various

other domains. The main challenge lies in efficiently running the system, but at the same

time providing the customers an acceptable level of service. The service level can be expressed

in terms of the waiting times the customers are facing, and the system efficiency in terms of

the service provider’s idle time. The problem of generating an optimal schedule is generally

formulated as minimizing a cost function (or simply “cost”) that is a weighted average of the

expected idle time and the expected waiting times. As most literature on this topic focuses

on applications in health care, we refer throughout this paper to customers as patients, and

to the server as the doctor.

The problem of scheduling appointments can be split into two parts: one needs to

determine the amount of time scheduled for each appointment, and one needs to determine

in which order the patients should arrive. These problems are usually referred to as the

scheduling problem and sequencing problem, respectively. This paper will focus on the

sequencing problem (and later, the combined sequencing and scheduling problem), in a context

with a single doctor seeing a sequence of patients. We impose the common assumptions that

the service times of the patients form a sequence of independent random variables, while

they arrive punctually at the scheduled times (which we will refer to as epochs). In this

setting, a variety of techniques is available that determines for a given order the optimal

arrival epochs; see, e.g., [2, 24] and references therein. However, much less is known about

the efficient computation of “good” sequences. Already for a relatively modest number of

patients, the number of possible sequences is huge, thus seriously complicating the search

for an optimal order. An appointment scheduling review paper from 2017 [1] states that the

optimal sequencing problem is one of the main open problems in the area:

“[...] one of the biggest challenges for future research is to find optimal (or

near-optimal) solutions to more realistic appointment sequencing problems.”

A number of papers consider the sequencing (or combined sequencing and scheduling)

problem and develop various stochastic programming models for it [3, 9, 26, 28]. However,

the resulting optimization problems are very difficult to solve. Variants of the problem have

been shown to be NP-hard [23, 28], indicating that this difficulty is inherent.

A more popular approach has been to consider simple heuristics for the sequencing

problem. The most frequently used heuristic is to order the patients by the variance of their

service times, from smallest to largest. Throughout this paper we refer to this sequence as

the svf (smallest-variance-first) sequence. The intuition for using the svf sequence is that
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an unusually long service time in the beginning could cause many later patients to have to

wait, and the svf sequence aims to reduce the risk of this occurring. This is a very simple

and appealing rule, and only requires the evaluation of the variances of the service times.

It has been observed by simulation that the svf rule typically performs very well, often

even optimally. It was proven that it is optimal for two patients under some distributional

assumptions [13, 36]. Recently, however, Kong et al. [23] provided instances showing it

need not be optimal, even for simple cases with uniform or lognormal service times and a

substantial number of patients.

Despite the svf sequence appearing promising in simulations, little is known about

its theoretical performance, or of any other simple heuristic for that matter. In this paper,

we propose a new direction of research for the sequencing problem: finding sequences that

provably perform well. Instead of finding an optimal sequence, such research aims at finding

performance bounds on easily-computed sequences. Considering previous research, the svf

sequence is the obvious candidate for such an easily-computed and well-performing sequence,

and will therefore be our focus. The precise quantity of interest to us will be the ratio of the

cost of the schedule coming from the svf sequence, and the cost of the schedule coming from

the optimal sequence.

Our main goal in this paper is to prove upper bounds on this ratio – known as the

approximation ratio – in various settings. This direction of study is very standard in the

algorithmic community when considering intractable (NP-hard) problems, for example in

machine scheduling (see [15, 16, 34] and references therein). However, it has not been

studied in the appointment sequencing context. Note that for typical problem instances the

svf sequence could perform significantly better than suggested by an upper bound on the

approximation ratio, as the bound must also hold for worst-case instances.

1.1. Main contributions. We first concentrate exclusively on the effect of the sequence,

using the simplest choice of schedule: each patient is assigned a slot of length equal to its

mean service time. In other words, the arrival time of any patient is set equal to the sum of

the mean service times of all preceding patients. This is certainly not the optimal solution to

the scheduling problem, but it has the advantage of being very simple and easily applicable,

and also completely independent of the choice of tradeoff in the cost function between doctor

idle time and patient waiting time. As was stated in, e.g., the survey paper [1] and in [11],

this “mean-based” type of schedule is a commonly used approach in practice.

Under the mean-based scheduling rule, we prove a number of results. Under an as-

sumption (namely that the service-time distributions are comparable according to a certain
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ordering), we prove in Section 3 that the approximation ratio of svf is at most 2 for symmetric

service-time distributions, and at most 4 in general. In other words, we show that for all

instances (i.e., for all numbers of patients and all service-time distributions satisfying the

assumption imposed) the svf cost is at most four times the optimal cost. We also consider

two special cases:

• Service times are evidently nonnegative, but one could consider the situation that

normal distributions are used as an approximation of the actual distributions of

service times. In Section 3.2, we prove that then the approximation ratio is at most

4(
√

2− 1) ≈ 1.6569. While we do not believe that our result here is sharp, it indicates

that the performance of svf for well-behaved service-time distributions is most likely

substantially better than suggested by the bounds 2 and 4 mentioned above.

• In Section 3.3 we bridge the gap between the upper bound of 2 for symmetric

distributions and the general upper bound of 4, by developing a method that isolates

the effect of asymmetry. For the lognormal distributions fitted to real data in Çayırlı

et al. [6], this method results in an approximation ratio of at most 3.43.

In Section 4, we consider the combined sequencing and scheduling problem. Here, we

wish to compare a heuristic for this combined problem to the overall optimal schedule, over

all possible sequences and schedules. Observe that the simple mean-based scheduling rule

may lead to high cost, because waiting times could easily propagate. We therefore consider

a simple alternative scheduling rule, suggested by Charnetski [8]: the slot assigned to a

patient is equal to its mean service time, plus some multiple α of the standard deviation of

its service time (where this α is optimized). Again under some assumptions, we show that

this scheduling rule, combined with the svf sequencing rule, yields a cost that is (relative to

the optimal cost) off by at most a constant factor.

We also consider the special case of lognormally distributed service times, as these are

often seen in practice [6, 21]. Using a slightly different scheduling heuristic (the interarrival

time being a multiple of the mean service time), we find an upper bound on the approximation

ratio. Applying this result to the data in Çayırlı et al. [6], we find an upper bound of 2.90 in

the case that in the cost function the waiting and idle times are equally important.

In Section 5, we return to the mean-based setting of Section 3. We show that as the

number of patients grows large, the approximation ratio tends to 1. This result requires

only a very weak assumption on the service-time distributions. The important practical

implication of this result is that svf is close to optimal in settings where the number of

patients is substantial.
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Finally, in Section 6, we give an example that demonstrate that the assumptions made

in previous sections are necessary: without any restrictions on the service-time distributions,

no bound on the approximation ratio of svf is possible. This holds true also when optimal

rather than mean-based schedules are used. This example involves only two patients. Then

we give a (still relatively straightforward) example that shows that it is impossible to obtain

a better bound than 1.28 on the approximation ratio in the mean-based setting of Section 3

(i.e., the setting for which we found the upper bound of 4).

1.2. Further related work. Here we will mention some of the most relevant literature

for this paper. For more extensive reviews on the appointment scheduling and sequencing

literature, we refer the reader to, e.g., Ahmadi-Javid et al. [1], Çayırlı and Veral [5], and

Gupta and Denton [14].

As already noted, Kong et al. [23] showed that svf is not in general optimal. In some

very specific cases, optimality of svf has been demonstrated. For only two patients, the

svf sequence is optimal when the service times are both exponentially distributed or both

uniformly distributed [36], or more generally, when the two service times are comparable

according to a certain convex ordering [13]. For three patients, Kong et al. [23] find sufficient

conditions for the svf sequence to be optimal, when the time scheduled for each appointment

is equal to the mean service time. (We have verified that this result can be extended to four

patients using the same methods.)

Kemper et al. [18] analyze a sequential optimization approach, meaning that the arrival

time of a patient is optimized without taking into account its impact on later patients. They

show that under this rather different notion of optimality, and if the service times come from

the same scale-family, then svf does provide the best ordering.

One line of research focuses on comparing various sequencing heuristics (including svf)

through simulation. Denton, Viapiano and Vogl [10] consider a model similar to ours, and

discuss the effectiveness of a number of simple sequencing heuristics using simulation, based

on real surgery data. The svf heuristic performed best of all the heuristics they considered.

Mak, Rong and Zhang [26] consider a model where waiting time costs may be different for

different patients; by studying some more tractable approximations, they also find that svf

performs well.

Klassen and Rohleder [21] and Rohleder and Klassen [32] consider an appointment

scheduling model where not all patient information is known in advance; rather, patients

must be scheduled as they call in to make an appointment (and so without information about
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patients who call later). Once again, it was empirically found that it worked best to put

patients with low-variance service times early in the schedule.

A number of works model variants of the combined sequencing and scheduling problem as

stochastic integer or linear programming problems. Solving these programs is very challenging

however, and generally exact results were only obtained for small instances. Works along these

lines include Denton and Gupta [9], Mancilla and Storer [28] and Berg et al. [3]. For larger

instances, it was necessary to resort to heuristics such as svf for the sequencing problem.

We mention Vanden Bosch and Dietz [35] who propose instead a local search heuristic to

iteratively improve the sequence by finding pairs of patients who can be swapped to improve

the solution.

There are also a number of papers which take a robust optimization approach [22, 29, 27].

Here, instead of working with explicitly given service-time distributions, the goal is to find

a schedule minimizing the worst-case expected cost given only that the distributions meet

certain constraints (such as certain given moments). Most relevant to us, Mak et al. [27]

discuss one such robust model, and are able to prove that under mild assumptions svf is

optimal in this context. In their model, the joint distribution of the service times could be

any distribution matching known moments for individual service times (e.g., the means and

variances). However, the worst-case distributions corresponding to the optimal schedule are

typically highly correlated; these results do not carry over to a model where independence is

assumed. Mittal et al. [29] discuss another robust model, in which each service time can take

any value in a certain interval. They find a (2 + ε)-approximation algorithm for the combined

scheduling and sequencing problem.

Finally, we would like to point out the relation with machine scheduling (see the book

by Pinedo [30] for more background). The main difference between machine scheduling and

appointment scheduling is that in the former the arrival times of jobs/patients are given,

while in the latter these are decision variables. The machine scheduling problem most closely

related to our problem can be found in Guda et al. [12]. In this paper, the due dates and

sequence of jobs need to be minimized, in order to minimize a weighted average of expected

earliness and tardiness around the due dates. The svf rule is optimal in the model of Guda et

al., under some assumption on the service times of jobs. However, in their model all jobs are

present from the start and so that there is no idle time. Compared to our model, this greatly

simplifies the expression for the cost function, which facilitates finding an optimal solution.
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2. Model and preliminaries

Consider a problem instance with n patients, numbered 1 up to n. We denote the service

time of patient i in this problem instance by Bi, which has mean µi and variance σ2
i . As

pointed out in the introduction, one should distinguish between the scheduling problem and

the sequencing problem. The sequencing problem, on which we primarily focus, is to decide

which patient is assigned which appointment slot. The sequence is denoted by a permutation

τ ∈ Sn (where Sn denotes the set of all permutations on {1, . . . , n}). The value τ(i) will

denote the index of the patient that is assigned to appointment slot i. The scheduling problem

is to decide the interarrival times between patients, given the sequence in which they arrive.

We use xj to denote the interarrival time between patient j and the next patient, i.e., the

length of the appointment slot reserved for patient j. The vector x = (x1, x2, . . . , xn) will be

referred to as the schedule.

Let Wi denote the waiting time of the patient in appointment slot i. Let Ii be the idle

time before the start of appointment slot i after the previous patient has been served. Given

a sequence τ and interarrival times xi, the waiting times and idle times can be computed

using the Lindley recursions [25], which read

Wi+1 = (Wi +Bτ(i) − xτ(i))
+, Ii+1 = (Wi +Bτ(i) − xτ(i))

−, (1)

using the notation x+ := max{0, x} and x− := max{0,−x}.

We use a parameter ω ∈ (0, 1) to indicate the relative importance of idle time and

waiting time. As a cost function, we seek to minimize

Cω(τ,x) := ω
n∑
i=1

EIi + (1− ω)
n∑
i=1

EWi, (2)

a weighted average of the expected total idle time and expected total waiting time. Observe

that this cost function still depends on the sequence τ , on the schedule x, and on the patient

service-time distributions B = (B1, . . . , Bn). We generally suppress the dependence on B,

but we may write Cω(B, τ,x) if we wish to be explicit. As an aside, we mention that an

approach to estimate ω in a practical context can be found in [31].

Throughout this paper, we assume the patients are indexed such that σ2
1 6 σ

2
2 6 . . . 6 σ

2
n.

The svf sequence is then the sequence given by the identity permutation id given by id(i) = i.

The waiting times and idle times under this sequence are denoted as W svf
i and Isvfi respectively.

We compare this sequence with the sequence that minimizes (2). The waiting times and idle

times under this optimal sequence are denoted by Wopt
i and Iopti respectively.
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To compare these sequences, we study the ratio between the cost functions under the svf

sequence and the optimal sequence. If this ratio is small, then this is evidence that the svf

sequence performs well. We do so in two settings. In one setting, the schedule is restricted to

be the mean-based schedule given by x = µ. We then consider the approximation ratio

%ω(B) :=
Cω(B, id,µ)

min{Cω(B, τ,µ) : τ ∈ Sn}
=
ω
∑n

i=1 EIsvfi + (1− ω)
∑n

i=1 EW svf
i

ω
∑n

i=1 EIopti + (1− ω)
∑n

i=1 EWopt
i

.

We will write just %ω when the service-time distributions under consideration are unambiguous.

In the second setting, we compare the svf sequence along with a given schedule x with

the optimal combination of sequence and schedule. We then use the notation W svf
i and Isvfi

for the combination of the svf sequence and the given schedule x, and we use the notation

Wopt
i and Iopti for the combination of sequence and schedule that minimizes (2). We then

consider the approximation ratio

rω(B,x) :=
Cω(B, id,x)

min{Cω(B, τ,y) : τ ∈ Sn,y ∈ Rn+}
=
ω
∑n

i=1 EIsvfi + (1− ω)
∑n

i=1 EW svf
i

ω
∑n

i=1 EIopti + (1− ω)
∑n

i=1 EWopt
i

.

Once again, we will omit x and B when their choice is unambiguous.

In this paper, we prove, under some assumptions, upper bounds on %ω and rω. Such an

upper bound then guarantees that the svf sequence always has a cost function of at most

such an upper bound times the optimal cost function. We also show, under some condition,

that %ω(B) converges to 1 as the number of patients tends to infinity, thus proving that the

svf sequence is asymptotically optimal when mean-based schedules are used.

Remark 2.1. Service times are inherently nonnegative, but our framework (based on the

Lindley recursions (1)) carries over to situations where the Bi are allowed to take negative

values. This might be useful if the true distributions of service times can be approximated

using distributions that can take negative values (with some small probability), for example

normal distributions. If such distributions that can take negative values form a good fit to the

data in some application, the theoretical performance of the svf rule for these distributions

gives some indication for the performance of the svf rule in this application.

2.1. Preliminaries. We need the following well-known results concerning the waiting and

idle times. It follows by iterating the Lindley recursion (1) that Wk+1 is the maximum of a

random walk with steps Bτ(k) − xτ(k), Bτ(k−1) − xτ(k−1), . . . , Bτ(1) − xτ(1), that is,

Wk+1 = max

0,max


k∑
i=j

Bτ(i) − xτ(i) : j ∈ {1, . . . , k}


 . (3)
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In the setting of mean-based schedules x = µ, we introduce the notation Xi := Bi − µi, and

the random walk

Sj :=

j∑
i=1

Xτ(k−i+1).

We then find for the mean-based schedule that

Wk+1 = max{0, S1, . . . , Sk}. (4)

Computing the total time until all patients have been served in two separate ways, we

find the identity

n∑
i=1

Ii +
n∑
i=1

Bi =
n−1∑
i=1

xτ(i) +Wn +Bτ(n). (5)

For a given schedule, this relation can be used to express the expected total idle time in the

expected waiting time of the last patient. Therefore, we can focus on the waiting times, and

derive results for the idle time from (5).

We also need the concept of a convex ordering on random variables. More information

on the convex ordering and related concepts can be found in Shaked and Shanthikumar [33].

Definition 2.2. The random variable A is said to be smaller in the convex order than the

random variable B if Eφ(A) 6 Eφ(B) for all convex functions φ : R → R for which the

expectations exist. This will be denoted by A 6cx B. If A− EA 6cx B − EB, then A is said

to be smaller than B in the dilation order, denoted as A 6dil B.

Note that A 6cx B implies A 6dil B, and A 6dil B implies VarA 6 VarB. The following

lemma [33] is useful when checking whether given random variables satisfy a convex order.

Lemma 2.3. The random variables A and B satisfy A 6cx B if and only if there exists a

coupling Â
d
= A and B̂

d
= B such that E

[
B̂
∣∣Â ] = Â.

3. Bounds on performance under mean-based schedules

In this section, we provide bounds for %ω, the approximation ratio under the mean-based

schedule given by x = µ. This amounts to giving an upper bound on the cost function when

using the svf sequence, and a lower bound on the cost function that is valid for any sequence,

hence also for the optimal sequence.

This section is structured as follows. In Section 3.1 we prove the main results: Theo-

rem 3.3 and Theorem 3.4. These theorems give bounds on the approximation ratio %ω, when

we assume that the service times are symmetrically distributed and follow a dilation order
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(Theorem 3.3), and when we only assume that they follow a dilation order (Theorem 3.4). In

Section 3.2 we consider the special case of normally distributed service times. Theorem 3.8

gives an improved bound on %ω in this case. In Section 3.3 we discuss a method for improving

numerically upon the bound of Theorem 3.4; informally, the more symmetric the service-time

distributions, the closer the resulting bound is to the value stated in Theorem 3.3.

3.1. Main results. We impose the following assumption.

Assumption 3.1 (ordering). We have B1 6dil B2 6dil . . . 6dil Bn.

We remark that this is the condition under which Gupta [13] proves optimality of

svf for two patients. Note also that this assumption implies Var(B1) 6 . . . 6 Var(Bn).

Examples of instances satisfying this assumption include allBi having exponential distributions

(by Theorem 3.A.18 in [33]), and all Bi having lognormal distributions such that both

E[lnB1] 6 . . . 6 E[lnBn] and Var(lnB1) 6 . . . 6 Var(lnBn), as proved in Appendix D. In

Section 6 it will be shown that this assumption is necessary.

For one of the bounds we prove on %ω we also make the following assumption.

Assumption 3.2 (symmetry). The Bi have symmetric distributions around their mean.

Examples of instances satisfying both the ordering and symmetry assumption include all

Bi having normal distributions, all Bi having uniform distributions and all Bi having Laplace

distributions. For all three examples, the ordering assumption follows from Theorem 3.A.18

in [33].

In this section, we prove the following theorems.

Theorem 3.3. Under the ordering and symmetry assumptions, we have %ω 6 2.

Theorem 3.4. Under the ordering assumption, we have %ω 6 4.

A first key point is that to prove these theorems, it suffices to prove bounds on EWk+1

for given k when the first k slots are constrained to contain patients 1, . . . , k. This is made

explicit in the next lemma, proved in Appendix A.

Lemma 3.5. Let EWopt′
k+1 denote the expected waiting time of the patient in appointment slot

k + 1, under the sequence that minimizes this expected waiting time, subject to the constraint

that τ(i) 6 k for all i = 1, . . . , k, i.e. the first k patients are assigned to the first k slots.

Suppose EW svf
k+1/EWopt′

k+1 6 %
′ for all k. Then, under the ordering assumption, %ω 6 %′.

The following lemma is another key ingredient.
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Lemma 3.6. Under the symmetry assumption, the random variable Wk+1 is stochastically

dominated by |Sk|, and thus

EWk+1 6 E|Sk| = E|Xτ(1) +Xτ(2) + · · ·+Xτ(k)|.

Proof. Recall that we have Wk+1 = max{0, S1, . . . , Sk} from (4). Under the symmetry

assumption, the steps Xi of the random walk S have a symmetric distribution around zero,

and hence the same is true for the Si.

Let T (a) = inf{i : Si > a}, and note that P(Wk+1 > a) = P(T (a) 6 k). To bound this

probability, we look at the random walk reflected in a after T (a). This reflected process Ŝi is

defined by

Ŝi =

Si if i < T (a)

2a− Si if i > T (a).

(6)

We have ST (a) > a, so ŜT (a) = 2a − ST (a) 6 a 6 ST (a). As the Xi have symmetric

distributions, the increments of Si and Ŝi for i > T (a) have the same distribution. Therefore,

we see that Ŝi is stochastically dominated by Si, for every i. We conclude that P(Ŝk > a) 6

P(Sk > a) for all a.

Now note that Wk+1 > a implies that either Sk > a or Ŝk = 2a− Sk > a. As these are

disjoint events we now have

P(Wk+1 > a) = P(Sk > a) + P(Ŝk > a) 6 P(Sk > a) + P(Sk > a) 6 P(|Sk| > a).

This holds for any a > 0, so Wk+1 is stochastically dominated by |Sk|, as was claimed. �

Proof of Theorem 3.3. As Wk+1 = max{0, S1, . . . , Sk}, we have

Wk+1 > S
+
k = (Xτ(1) + · · ·+Xτ(k))

+.

Note that τ(i) 6 k for all i 6 k when we consider EWopt′
k+1 , so now

EWopt′
k+1 > E(X1 + · · ·+Xk)

+. (7)

On the other hand, by Lemma 3.6,

EW svf
k+1 6 E|X1 + · · ·+Xk| = 2E(X1 + · · ·+Xk)

+ 6 2EWopt′
k+1 .

As EW svf
k+1/EWopt′

k+1 is now bounded by 2, Theorem 3.3 follows from Lemma 3.5. �

Proof of Theorem 3.4. Note that Lemma 3.5 and the lower bound (7) are valid without the

symmetry assumption being needed. We therefore only need an upper bound on EW svf
k+1.
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Let X ′1, X
′
2, . . . , X

′
n have the same distributions as respectively X1, X2, . . . , Xn such that

all these random variables are independent. Let W ′k+1 be the maximum of the random walk

with steps Xk −X ′k, Xk−1 −X ′k−1, . . . , X1 −X ′1. As

E[Xi −X ′i|Xi] = Xi,

we see using Lemma 2.3 that Xi 6cx Xi − X ′i. Note that Wk+1 = max{0, S1, . . . , Sk} is a

convex function in Xi, as it is the maximum of functions linear in Xi. Therefore, each time

we replace a step Xi with a step Xi −X ′i the expected maximum of the random walk will

increase, so EW svf
k+1 6 EW ′k+1.

Now note that the steps Xi −X ′i all have a symmetric distribution, so we can apply

Lemma 3.6 to find

EW svf
k+1 6 EW ′k+1 6 E|X1 + · · ·+Xk − (X ′1 + · · ·+X ′k)|

6 2E|X1 + · · ·+Xk| = 4E(X1 + · · ·+Xk)
+ 6 4EWopt′

k+1 .

As EW svf
k+1/EWopt′

k+1 is now bounded by 4, the result follows from Lemma 3.5. �

Remark 3.7. In case the scheduled session end time equals the expected total service time,

the overtime reads

Wn+1 =
(
Wn +Xτ(n)

)+
,

which can also be included in the cost function. As such, overtime is handled similarly to

waiting time, and consequently the results of Theorems 3.3 and 3.4 remain valid when some

extra term cEWn+1 with c > 0 is added to the cost function.

3.2. Normally distributed service times. The results of Theorems 3.3 and 3.4 can be

strengthened for specific service-time distributions. One such result is the following.

Theorem 3.8. When the Bi are all normally distributed we have %ω 6 4(
√

2− 1).

In order to prove Theorem 3.8, we need the following two lemmas, giving stronger

bounds on EW svf
k+1 and EWopt′

k+1 . The proofs of these lemmas, that hold for any symmetrically

distributed service times, can be found in Appendix A.

Lemma 3.9. Under the symmetry assumption,

EWk+1 6 E
(
Xτ(1) + · · ·+Xτ(k)

)+
+ E

(
Xτ(1) + · · ·+Xτ(k−1)

)+
.
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Lemma 3.10. Under the symmetry assumption, for any `,

EWk+1 >
1

2

(
E
(
Xτ(1) + · · ·+Xτ(k)

)+
+ E

(
Xτ(1) + · · ·+Xτ(`)

)+
+ E

(
Xτ(`+1) + · · ·+Xτ(k)

)+)
.

Proof of Theorem 3.8. Note that normal distributions satisfy both the ordering and symmetry

assumption. Now the sum X1 + · · ·+Xi again has a normal distribution, with mean zero

and variance Σ2
i := σ2

1 + · · ·+ σ2
i . For the svf sequence we now have, using Lemma 3.9, that

EW svf
k+1 6

1√
2π

(Σk + Σk−1) . (8)

Now we still need an expression for a lower bound on EWopt′
k+1 . Let Σ̃2

i := σ2
τ(1)+· · ·+σ2

τ(i)

be the variance of Xτ(1) + · · ·+Xτ(i). From Lemma 3.10 it then follows that

EWk+1 >
1

2

(
Σ̃k + Σ̃` +

√
Σ̃2
k − Σ̃2

`

)
.

Recall that EWopt′
k+1 was the optimal expected waiting time when τ(i) 6 k whenever

i 6 k. Therefore, we have Σ̃k = Σk and σ2
k = max{σ2

τ(1), . . . , σ
2
τ(k)}. Now note that

Σk + Σ̃` +

√
Σ2
k − Σ̃2

`

is largest when Σ̃2
` is as close to 1

2Σ2
k as possible. As σ2

k is largest of the σ2
τ(i) with i 6 k, we

can always choose ` such that

1

2
Σ2
k−1 6 Σ̃2

` 6
1

2
Σ2
k−1 + σ2

k.

This choice of ` provides us with the lower bound

EWopt′
k+1 >

1

2

1√
2π

(
Σk +

√
1

2
Σ2
k−1 +

√
1

2
Σ2
k−1 + σ2

k

)
,

valid for any sequence. Comparing with (8), we obtain

EW svf
k+1

EWopt′
k+1

6 2(Σk + Σk−1)

/(
Σk +

√
1

2
Σ2
k−1 +

√
1

2
Σ2
k−1 + σ2

k

)
.

As Σ2
k = Σ2

k−1 + σ2
k, this fraction only depends on the relative size of Σ2

k−1 compared to σ2
k.

Suppose that Σ2
k−1 = cσ2

k, for some c > 0. Then Σ2
k = (c+ 1)σ2

k, and the fraction becomes

2(
√
c+ 1 +

√
c)

√
c+ 1 +

√
1
2c+

√
1
2c+ 1

=: f(c).

It can easily be seen that f is increasing, and that f(c)→ 4(
√

2− 1) as c→∞.

We now know that EW svf
k+1/EWopt′

k+1 6 4(
√

2− 1) ≈ 1.6569. By Lemma 3.5 the same is

then also true for the cost function. This proves Theorem 3.8. �
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3.3. Numerically improving the bound of Theorem 3.4. Under the ordering assump-

tion, we have proved that %ω 6 4, and we also proved that %ω 6 2 when the service times have

symmetric distributions. This suggests that an upper bound on %ω can be found between 2

and 4 for service time distributions that have some degree of symmetry, but are not completely

symmetric.

Here we introduce a method to split the service time distributions into a symmetric and

a nonsymmetric part, thus isolating the effect of the asymmetry on the upper bound. This

can be used to numerically compute an upper bound on %ω for given problem instances. We

do so for lognormal service time distributions that fit real data in Çayırlı et al. [6]. We still

impose the ordering assumption.

We introduce the method for continuously distributed service times to simplify the expo-

sition, noting that extending the method to non-continuous distributions is straightforward.

Suppose Xi has density fi. We set gi(x) := min{fi(x), fi(−x)}, hi(x) := fi(x) − gi(x) and

pi :=
∫
R hi(x)dx. Then we let Ui be a random variable with density gi(x)/(1− pi). We let

Ai be a random variable, independent of Ui, with density hi(x)/pi. Let Ji be a Bernoulli

variable taking the value one with probability pi, independent of Ai and Ui. We thus have

Xi
d
= Ui(1− Ji) +AiJi.

Now Ui has a symmetric distribution around zero, so Ui corresponds to the symmetric

part of Xi, and Ai to the nonsymmetric part. Note that EXi = 0 and EUi = 0, so we must

have EAi = 0. Let A′i have the same distribution as Ai, so that A′i is independent of all the

other random variables. Since E[A′iJi|Ji] = 0, we have

E
[
Ui(1− Ji) + (Ai −A′i)Ji

∣∣Ui(1− Ji) +AiJi
]

= Ui(1− Ji) +AiJi.

By Lemma 2.3 we conclude

Xi 6cx Ui(1− Ji) + (Ai −A′i)Ji.

As Wk+1 is a convex function in each of the Xi, we can then replace each Xi by this upper

bound in convex order to get an upper bound on EW svf
k+1. Using Lemma 3.6, we then find the

following upper bound:

EW svf
k+1 6 E|X1 + · · ·+Xk|+ E|A1J1 + · · ·+AkJk|.
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Group Mean Standard deviation

Return 15.50 5.038

New 19.09 6.85

Table 1. Parameters of the lognormal distributions fitted by Çayırlı et al. [6].

The upper bound in this proposition can now be compared numerically to the lower

bound EWopt′
k+1 > E(X1 + · · · + Xk)

+, for each k, valid under the ordering assumption.

Combining the above with Lemma 3.5, this leads to the bound given in the next theorem.

Theorem 3.11. Under the ordering assumption, we have

%ω 6 2 + 2 max
{
E|A1J1 + · · ·+AkJk|/E|X1 + · · ·+Xk| : k = 1, . . . , n

}
. (9)

The more symmetric the service times and thus the random variables Xi, the smaller the

pi and hence also the upper bound in (9). When the service times are completely symmetric,

the asymmetric parts Ai will be zero, and we recover the upper bound of 2 of Theorem 3.3.

Note that the upper bound in Theorem 3.11 is much easier to numerically compute or

simulate than %ω itself, as for the latter one needs to go over all n! possible sequences to

find the optimal one. Also, this method can be used to find an upper bound on %ω for any

problem instance where the service times come from a finite set of distributions and an upper

bound on n is given, as illustrated in the next example.

In Çayırlı et al. [6] patients were divided in two groups: new and return patients. For

both groups, lognormal distributions were found as a good fit to the data used in the paper,

with parameters as shown in Table 1. We checked that problem instances coming from these

two distributions satisfy both E[lnB1] 6 . . . 6 E[lnBn] and Var(lnB1) 6 . . . 6 Var(lnBn),

and so satisfy the ordering assumption. It was also mentioned that the doctor that provided

the data sees 10 patients per session.

We now consider 11 problem instances: each problem instance consists of 10 patients,

with 0 up to 10 of them being a new patient. Computing the upper bound in (9) for each of

these instances through simulation, we find that %ω 6 3.43 for any problem instance consisting

of at most 10 patients, with service times that follow one of the two lognormal distributions.

Thus, %ω 6 3.43 for any problem instance the doctor in [6] might face.

4. Bounds on performance for optimal interarrival times

In the previous section we assumed mean-based schedules. We relax this assumption

here, in that we consider the performance of the svf sequence compared to the optimal
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combination of sequence and schedule. We will again drop the extra subscript n in the

notation that we introduced in Section 2.

The goal of this section is to prove bounds on the approximation ratio rω. In Section 4.1,

we will do so when the service-time distributions are from the same location-scale family,

leading to Theorem 4.2. Then, in Section 4.2, we give some examples in which the upper bound

of Theorem 4.2 can be explicitly computed. In Section 4.3, we consider the special case of

lognormally distributed service times, that are often seen in practice [6, 21]. These lognormal

distributions do not come from one location-scale family. A bound on the approximation

ratio rω is then given in Theorem 4.5.

4.1. Location-scale family of service times. We impose the following assumption.

Assumption 4.1. The Bi are from the same location-scale family. In other words, there

exists a random variable B having mean zero and variance one such that Bi
d
= µi + σiB.

Note that this assumption implies Assumption 3.1 (by Theorem 3.A.18 in [33]). In

Section 6 it is shown that, without any assumption on the service time distributions, no

bound on the approximation ratio can be found.

To obtain an upper bound on the cost function under the svf sequence, we also need

to specify the schedule we are using. For the upper bound under Assumption 4.1, we use a

schedule of the form x = µ+ ασ for some α > 0. This means that we plan an amount of

time for each appointment equal to the expected time the appointment will take, plus an

extra amount of time proportional to its standard deviation, so as to be able to absorb delays.

The α will be set to

α =

√
1− ω

2ω
+

σn−1

2
∑n−1

i=1 σi
, (10)

in order to minimize the upper bound. Let QB denote the quantile function of B, i.e.

QB(y) = inf{x : y 6 P(B 6 x)}. Define B(ω) := B −QB(1− ω), and

K(B,ω) :=
√

2ω/
[
ωEB(ω)− + (1− ω)EB(ω)+

]
.

The main result of this section is the following.

Theorem 4.2. Suppose that, for the svf sequence, we use the schedule x = µ+ ασ, with α

given by (10). Under Assumption 4.1, we have rω 6 K(B,ω).

This result follows immediately from the bounds on the cost function Cω(τ,x) given in

the following two propositions, that are proved in Appendix B.
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Proposition 4.3. Suppose α is given by (10). Under Assumption 4.1,

Cω(id,µ+ ασ) 6
√

2ω

n−1∑
i=1

σi.

Proposition 4.4. Under Assumption 4.1, for any sequence and schedule,

Cω(τ,x) >
[
ωEB(ω)− + (1− ω)EB(ω)+

] n−1∑
i=1

σi.

The idea behind proving Proposition 4.3 is as follows. We use that the waiting time

can be expressed as the maximum of a random walk, as per equation (3). An upper bound

for this maximum can now be found by comparing to another random walk that has i.i.d.

steps, each distributed as the step of the original random walk with the largest variance. This

upper bound is found by noting that if (i) one splits the steps in two parts, (ii) multiplies

the last part by some constant larger than one (leaving the first part unchanged), then the

maximum increases. For the maximum of the new i.i.d. random walk, the classical Kingman’s

bound can be applied. After thus finding an upper bound on the expected waiting time, the

expected idle time can then also be bounded using (5).

The idea behind the proof of Proposition 4.4 is to write

ωEIk+1 + (1− ω)EWk+1 = ωE(Wk +Bτ(k) − xτ(k))
− + (1− ω)E(Wk +Bτ(k) − xτ(k))

+,

and minimize this over Wk − xτ(k). This minimization problem is the classical newsvendor

problem, which has a known solution. This results in a lower bound on the cost function that

is independent of schedule. This lower bound can also be easily minimized over the sequences,

resulting in Proposition 4.4.

When ω = 1
2 , i.e. when waiting time and idle time are equally important, we know that

QB(1
2) is equal to the median of B. In this case, we have K

(
B, 1

2

)
= 2/E|B −m|, where m

is the median of B.

4.2. Examples. Now we present examples of location-scale families for which we can compute

K(B,ω) or K
(
B, 1

2

)
from Theorem 4.2. This way we can obtain some insight into the

magnitude of the constant K(B,ω). For the location-scale families of normal, uniform,

shifted exponential and Laplace distributions, the results are shown in Table 2. For normal

distributions K(B,ω) is not shown, as the expression does not simplify (with respect to the

one presented in Theorem 4.2).
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Location-scale family K(B,ω) K
(
B, 1

2

)
Normal -

√
2π ≈ 2.51

Uniform
1

1− ω

√
2

3ω
4
3

√
3 ≈ 2.31

Shifted exponential −
√

2√
ω ln(ω)

2/ln(2) ≈ 2.89

Laplace
2
√
ω

min{ω, 1− ω}(1− ln(2 min{ω, 1− ω}))
2
√

2 ≈ 2.83

Table 2. The values of K(B,ω) and K
(
B, 1

2

)
for some location-scale families.

Now consider the case of Pareto (of type II, that is) distributions. A random variable X

has such a distribution if

P(X > x) =

(
1 +

x− µ
σ

)−β
for x > µ,

for certain parameters µ, σ > 0, β. The Pareto distributions with fixed parameter β form a

location-scale family. Suppose that the Bi have Pareto distributions with fixed parameter

β > 2. Then

K(B,ω) =

√
2ωβ

β − 2

/[
−2ω−β(β−1)+1 + ω−β(β−1) − (β − 1)ωβ+1 + βω

]
.

In addition,

K
(
B, 1

2

)
= 2

√
β

β − 2

/[
β −

(
1
2

)β
(β − 1)

]
.

For most typical location-scale families, the value of K
(
B, 1

2

)
is between 2 and 3.

However, in the Pareto case the value becomes much larger when β approaches two. Also, for

ω close to either one of the extremes 0 or 1, the constant K(B,ω) blows up.

4.3. Lognormally distributed service times. In this subsection we use the notation

mi := E[lnBi] and s2
i := Var(lnBi). We have the following result.

Theorem 4.5. Suppose the Bi are lognormally distributed with m1 6 . . . 6 mn and s2
1 6

. . . 6 s2
n. When we use the schedule x = (1 + α)µ for the svf sequence, with

α =
1√
2ω

√
(exp(s2

n−1)− 1),

then

rω 6 2ωα ·
[
(1− ω)P(Z > QZ(1− ω)− s1)− ω P(Z 6 QZ(1− ω)− s1)

]−1
.
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The proof of this theorem can be found in Appendix B. The ideas behind the proof

are similar to those of Theorem 4.2. The main difference is in the upper bound, where it

needs to be proved that the i.i.d. random walk used for comparison indeed has a bigger

expected maximum. For lognormal distributions, we use a convex ordering among the stepsize

distributions to prove this, noting that the maximum of a random walk is a convex function

in the stepsizes.

As an example, we apply Theorem 4.5 to the data found in Çayırlı et al. [6]. Recall

that the patients were divided into “new” and “return” patients, with service times fitted by

lognormal distributions with parameters given in Table 1. It can be checked that any problem

instance containing a mix of these patient groups satisfies the assumptions of Theorem 4.5.

For any such problem instance, the largest possible sn−1 corresponds to a new patient, and

the smallest possible s1 corresponds to a return patient. When setting ω = 1
2 , calculating the

upper bound in Theorem 4.5, we find for the doctor studied in Çayırlı et al. that r 1
2
6 2.90.

5. Asymptotic optimality of svf

In this section we assess the performance of the svf sequence as the number of patients

grows large. Throughout this section we assume that the schedule is mean-based: the time

planned for each appointment is equal to the corresponding mean service time. The goal in

this section is to prove that the svf sequence is asymptotically optimal as the number of

patients tends to infinity, under certain conditions.

5.1. Main result. We consider the setting in which we are given, for each value of n, a

vector Bn = (Bn,1, Bn,2, . . . , Bn,n) of service-time distributions. For i 6 n, let µn,i and σ2
n,i

denote the mean and variance of Bn,i, and let Xn,i := Bn,i − µn,i for all i 6 n. Similarly, Sn,i,

Wn,i, and In,i are all with respect to the service-time distributions Bn.

We require the following assumption, similar to the Lyapunov condition of the Lyapunov-

version of the central limit theorem (CLT). The difference between our assumption and the

conventional Lyapunov condition is the supremum over all n > k and all sequences τ .

Assumption 5.1. We assume that there exists a δ > 0 such that, as k →∞,

qk := sup
n>k,τ∈Sn

1√∑k
i=1 σ

2
n,τ(i)

2+δ

k∑
i=1

E|Xn,τ(i)|2+δ → 0.

In Section 6 it is shown that it is necessary to make this assumption. The main result of

this section is the following.

Theorem 5.2. Under Assumption 5.1, %ω(Bn)→ 1 as n→∞.
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To prove Theorem 5.2, we derive an upper and a lower bound on the expected waiting

time, which we then combine. We again view the waiting time as the maximum of the random

walk Sn,i. For both bounds we use the reflected process Ŝn,i in level a, that is also defined

in (6), to obtain bounds on the distribution of the waiting time. For the upper bound we

can ignore the difference between Sn,i and Ŝn,i right after crossing level a for the first time,

resulting in the process S̃n,i. The processes Sn,i, Ŝn,i and S̃n,i are illustrated in Figure 1. For

the lower bound we truncate all steps at some value c. The difference between Ŝn,i and S̃n,i is

then bounded by 2c. We then choose c small enough that this difference becomes negligible in

the limit, but also big enough that the difference between the original random walk and the

random walk with truncated steps becomes negligible as well. Using a Berry-Esseen bound

for martingales established in [17], we can then estimate the distributions of Sn,k and S̃n,k,

and thus the distribution of Wn,k+1, for large k.

a

S̃n,k(a)

Sn,k

Ŝn,k(a)

Figure 1. The process Sn,j in black, Ŝn,j(a) in blue and S̃n,j(a) in green. The red line
indicates level a.

Define Σ2
n,k :=

∑k
i=1 σ

2
n,τ(i). To prove Theorem 5.2, we need the following two propo-

sitions, that are proved in Section 5.2 and Section 5.3 respectively. These propositions are

then combined in Proposition 5.5, after which we can establish Theorem 5.2.

Proposition 5.3. For any k and n > k we have

EWn,k+1

Σn,k
6 E|Z|+ 2(Cδ + 1)

√
qk

1/(3+δ),

where Z is a standard normal random variable, and Cδ is a constant that only depends on δ.

Proposition 5.4. Under Assumption 5.1, for each ε > 0 there exists a K depending on ε

only, such that for all k > K and all n > k,

EWn,k+1

Σn,k
> (1− ε)E|Z|.
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Proposition 5.5. Under Assumption 5.1, for any ε > 0 there exists a K depending on ε

only, such that for all k > K and for all n > k − 1,

EW svf
n,k 6 (1 + ε)EWopt

n,k .

Proof. By Proposition 5.4, for any ε > 0, we can choose k sufficiently large such that

EWn,k+1 > (1− ε)

√√√√ k∑
i=1

σ2
n,τ(i) · E|Z| > (1− ε)

√√√√ k∑
i=1

σ2
n,i · E|Z|

for any sequence τ , in particular for the optimal sequence. Here we also used that σ2
n,1, . . . , σ

2
n,k

are the k smallest variances. For the svf sequence, Proposition 5.3 gives us that for sufficiently

large k we have

EW svf
n,k+1 6 (1 + ε)

√√√√ k∑
i=1

σ2
n,i · E|Z|.

Combining these two bounds completes the proof. �

Proof of Theorem 5.2. By the Lindley recursion we have

EWn,k+1 = E(Wn,k +Xn,τ(k))
+ > E(Wn,k +Xn,τ(k)) = EWn,k,

so, for any n and τ , EWn,k is increasing in k. With K as in Proposition 5.5, we consequently

have

n∑
k=1

EW svf
n,k 6 KEW svf

n,K +
n∑

k=K+1

EW svf
n,k 6 (1 + ε)

(
KEWopt

n,K +
n∑

k=K+1

EWopt
n,k

)
.

Again using that EWn,k is increasing in k, we also have

K EWopt
n,K

/ n∑
k=K+1

EWopt
n,k 6

K

n−K
,

which is smaller than ε for sufficiently large n. Then we have

n∑
k=1

EW svf
n,k 6 (1 + ε)

(
KEWopt

n,K +
n∑

k=K+1

EWopt
n,k

)
6 (1 + ε)2

n∑
k=K+1

EWopt
n,k 6 (1 + ε)2

n∑
k=1

EWopt
n,k .

Now note that taking expectations in (5), and using that xn,i = µn,i, leads to

n∑
i=1

EIn,i = EWn,n,
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so the total expected idle time in the cost function can be replaced by EWn,n. Since also

EW svf
n,n 6 (1 + ε)Wopt

n,n for n > K,

ωEW svf
n,n + (1− ω)

n∑
k=1

EW svf
n,k 6 (1 + ε)2

(
ωEWopt

n,n + (1− ω)
n∑
k=1

EWopt
n,k

)

for n sufficiently large (independent of ω). As this holds for any ε > 0, we find %ω(Bn)→ 1

as n→∞, and Theorem 5.2 is proved. �

Remark 5.6. As in Remark 3.7, when the scheduled session end time is equal to the expected

total service time, the expected overtime EWn,n+1 can be handled similarly to waiting time,

and the result of Theorem 5.2 is also valid when some extra term cEWn,n+1 (with c > 0) is

added to the cost function.

Remark 5.7. Note that the mean-based schedule we consider here leads to an unstable

queue, implying that waiting times explode when n becomes large. Therefore, one might

wonder what happens in the limit when we use a schedule with larger interarrival times

(implying that the queue is stable). Insight into such a system can be gained by considering

the setting with m groups consisting of patients with i.i.d. service times. Suppose that each

group has to be served consecutively, and within each group the interarrival times are constant

and larger than the mean service time. Letting the number of patients in each group (say

n1, . . . , nm) grow large, then within each group the corresponding queue effectively behaves as

in stationarity. As the stationary behavior does not depend on the groups that came before,

the effect of sequencing the groups will vanish in the limit as n1, . . . , nm →∞.

Remark 5.8. Suppose that infn,i{σ2
n,i} > 0 and supn,i{E|Xn,i|2+δ} < ∞. Then qk =

O(k−δ/2) indeed converges to zero. Following the steps of the proof of Theorem 5.2 we then

find

%ω(Bn) = 1 +O

(
K

n

)
+O

(√
qK

1/(3+δ)
)

= 1 +O

(
K

n

)
+O

(
K−δ/(12+4δ)

)
.

To obtain some insight into the convergence rate, observe that by choosing K in a way that

these terms are balanced, it follows that

%ω(Bn) = 1 +O(n−δ/(12+5δ)).

5.2. Proof of Proposition 5.3. For ease of notation, we assume that τ is the permutation

τ(i) = i. Recall that Wn,k+1 = max{0, Sn,1, . . . , Sn,k}. Let T (a) = inf{j : Sn,j > a}, and
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define

Ŝn,j(a) =

Sn,j if k < T (a)

2a− Sn,j if k > T (a);

cf. (6). Now in order for Wn,k+1 to be above a, T (a) must be at most k, and then either Sn,k

is at least a or 2a− Sn,k = Ŝn,k(a) is above a. As these are disjoint events, we have

P(Wn,k+1 > a) = P(Sn,k > a) + P(Ŝn,k(a) > a),

which was also found in the proof of Lemma 3.6. Now define S̃n,j(a) recursively as follows.

Let S̃n,0(a) = 0, and put

S̃n,j+1(a) =

S̃n,j(a) +Xn,k−j if j < T (a)

S̃n,j(a)−Xn,k−j if j > T (a).

The three processes Sn,j , Ŝn,j(a) and S̃n,j(a) are illustrated in Figure 1.

Note that S̃n,j(a) is a martingale, with ES̃n,k(a) = 0 and Var S̃n,k(a) =
∑k

i=1 σ
2
n,i. Also,

note that the processes Ŝn,j(a) and S̃n,j(a) have the same increments, except when the process

Sn,j crosses level a for the first time. In this step the increments differ by 2(Sn,T (a)−a), twice

the amount by which the random walks “overshoots” level a. As this overshoot is nonnegative

and bounded by max16i6k{Xn,i}, we find that

S̃n,k(a) > Ŝn,k(a) > S̃n,k(a)− 2 max
16i6k

{Xn,i}.

This leads to the estimates

P(Sn,k > a) + P(S̃n,k(a) > a) > P(Wn,k+1 > a)

> P(Sn,k > a) + P
(
S̃n,k(a) > a+ 2 max

16i6k
{Xn,i}

)
. (11)

As a consequence, we also have

EWn,k+1 6
∫ ∞

0

(
P(Sn,k > a) + P(S̃n,k(a) > a)

)
da

=

∫ ∞
0

(
P(Sn,k > a) + P(S̃n,k(a) > a)

)
da. (12)

The idea is now to estimate the probabilities P(Sn,k > a) and P(S̃n,k(a) > a) using a

CLT-type result for martingales. Our approach relies on the following result, established in

[17].

Theorem 5.9 (Heyde and Brown). Let (ξi,Fi) be a sequence of martingale differences, and

let Yj = ξ1 + · · ·+ ξj be the corresponding martingale. Suppose that the conditional variance,
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given by

k∑
i=1

E[ξ2
i |Fi−1],

is equal to one for some k. Then for any δ > 0 there exists a constant Cδ that depends on δ

only, such that, with Z denoting a standard normal random variable,

sup
x∈R
|P(Yk > x)− P(Z > x)| 6 Cδ

(
k∑
i=1

E|ξi|2+δ

)1/(3+δ)

.

Proof of Proposition 5.3. Note that Σ2
n,k :=

∑k
i=1 σ

2
n,i is the variance of both Sn,k and S̃n,k(a).

In order to apply Theorem 5.9 we scale all steps, and hence Sn,k and S̃n,k(a), by a factor

1/Σn,k. For both martingales the squared increments (Xn,k−i+1)2 are independent of the

previous increments, hence after rescaling the conditional variance after k steps equals one

for both martingales. Note that we can recognize the qk from Assumption 5.1 in the upper

bound, so we find for any x that∣∣∣∣∣P
(
Sn,k
Σn,k

> x

)
− P(Z > x)

∣∣∣∣∣ 6 Cδq1/(3+δ)
k , (13)∣∣∣∣∣P

(
S̃n,k(a)

Σn,k
> x

)
− P(Z > x)

∣∣∣∣∣ 6 Cδq1/(3+δ)
k . (14)

Using inequality (13) and Chebyshev’s inequality, we find

1

Σn,k

∫ ∞
0

P(Sn,k > a)da =

∫ ∞
0

P
(
Sn,k
Σn,k

> x

)
dx

6
∫ 1/

√
qk

1/(3+δ)

0

(
P(Z > x) + Cδq

1/(3+δ)
k

)
dx+

∫ ∞
1/
√
qk

1/(3+δ)

1

x2
dx

6 EZ+ + (Cδ + 1)
√
qk

1/(3+δ).

A similar reasoning using (14) finds the same upper bound for

1

Σn,k

∫ ∞
0

P(S̃n,k(a) > a)da.

Now adding these bounds together and using the bound in (12) proves Proposition 5.3. �

5.3. Proof of Proposition 5.4. Again we assume τ(i) = i for ease of notation, which, in

this section, does not necessarily correspond to the svf sequence.

Recall that

Ŝn,k(a) > S̃n,k(a)− 2 max
16i6k

{Xn,i}.
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An upper bound on max16i6k{Xn,i} could be used to find a lower bound on Ŝn,k(a). If we

would change the steps in such a way that all steps are at most cn,k, for some cn,k depending

on n and k but not on i, then this cn,k would give an upper bound on max16i6k{Xn,i}, and

we would have

Ŝn,k(a) > S̃n,k(a)− 2cn,k.

We will now consider the random walk with steps Xn,i1Xn,i6cn,k instead of Xn,i (where

1E denotes the indicator of an event E). Let W ′n,k+1 be the maximum of the new random

walk. When cn,k > 0, we now have

EWn,k+1 > EW ′n,k+1

as we are lowering all the steps. The cn,k are picked later in a way that balances the need to

sufficiently bound the overshoot and the need to not affect the steps too much.

Now let S′n,k, Ŝ′n,k(a), S̃′n,k(a) be the random variables defined for this new random walk

in the same way as Sn,k, Ŝn,k(a) and S̃n,k(a) were defined for the old random walk. We thus

have

P(W ′n,k+1 > a) > P(S′n,k > a) + P(Ŝ′n,k(a) > a) > P(S′n,k > a) + P(S̃′n,k(a) > a+ 2cn,k).

Note that the steps no longer have mean zero, and so S̃′n,j(a) is no longer a martingale.

To repair this issue, we must know how much the change in steps due to the indicator affects

the mean and variance of all the steps. For this we have the following lemma, that is proved

in Appendix C. Define (Σ′n,k)
2 := VarS′n,k and

γn,k :=

(
Σn,k

cn,k

)δ
.

Lemma 5.10. For any k and n > k,

(1)

∑k
i=1 E

[
(Xn,i)1Xn,i>cn,k

]
Σn,k

6 qkγ
(1+δ)/δ
n,k ; and

(2)
(Σ′n,k)

2

Σ2
n,k

> 1− 2qkγn,k.

Now we have the following result. Define, with Z is a standard normal random variable,

and Cδ the constant featuring in Theorem 5.9,

Dk :=

∫ 1/
√
qk

1/(3+δ)

0
P(Z > x)dx− Cδ

√
qk

1/(3+δ).
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Lemma 5.11. When cn,k > 0,

EWn,k+1

Σn,k
> 2Dk

√
1− 2qkγn,k −

2cn,k
Σn,k

− 2qkγ
(1+δ)/δ
n,k .

Proof. Again we want to apply Theorem 5.9. This time we not only need to divide by the

standard deviation Σ′n,k of S′n,k, but also subtract the (negative) mean. We then find

1

Σ′n,k

∫ ∞
0

P(S′n,k > a)da =

∫ ∞
−ES′

n,k/Σ
′
n,k

P

(
S′n,k − ES′n,k

Σ′n,k
> x

)
dx

>
∫ 1/

√
qk

1/(3+δ)

0

(
P(Z > x)− Cδq

1/(3+δ)
k

)
dx

−
∫ −ES′

n,k/Σ
′
n,k

0
P

(
S′n,k − ES′n,k

Σ′n,k
> x

)
dx

> Dk +
ES′n,k
Σ′n,k

,

where we used in the last step that probabilities are bounded by one.

Next, we need a bound for

1

Σ′n,k

∫ ∞
0

P(S̃′n,k(a) > a+ 2cn,k)da. (15)

Note that S̃′n,j(a) is no longer a martingale, as the mean step size is no longer zero. However,

we can remedy this by noting that S̃′n,k(a) is bounded below by

S̃n,k(a)−
k∑
i=1

(Xn,i)1Xn,i>cn,k = S̃n,k(a)− Sn,k + S′n,k,

and S̃n,j(a)−Sn,j +S′n,j−ES′n,j is again a martingale with mean zero. Applying Theorem 5.9

to this martingale and taking into account the shift ES′n,k and overshoot 2cn,k, we find that

(15) is bounded below by

Dk +
ES′n,k
Σ′n,k

−
2cn,k
Σ′n,k

.

Now adding up these two lower bounds, we find

EW ′n,k+1

Σ′n,k
> 2Dk +

2ES′n,k
Σ′n,k

−
2cn,k
Σ′n,k

.

Now note that, due to Lemma 5.10.(2), Σ′n,k/Σn,k >
√

1− 2qkγn,k. In addition, EWn,k+1 >

EW ′n,k+1. Consequently,

EWn,k+1

Σn,k
> 2Dk

√
1− 2qkγn,k +

2ES′n,k
Σn,k

−
2cn,k
Σn,k

.



THE SMALLEST-VARIANCE-FIRST RULE IN APPOINTMENT SEQUENCING 27

Applying Lemma 5.10.(1),

EWn,k+1

Σn,k
> 2Dk

√
1− 2qkγn,k − 2qkγ

(1+δ)/δ
n,k −

2cn,k
Σn,k

,

which is the bound we wanted to prove. �

Proof of Proposition 5.4. We can still choose cn,k > 0, as each choice gives a lower bound on

EWn,k+1. We would like to have cn,k/Σn,k → 0, qkγ
(1+δ)/δ
n,k → 0 and qkγn,k → 0 as k →∞. A

choice that achieves this goal is

cn,k :=
√
qk

1/(δ+1)Σn,k,

so that γn,k = q
−δ/(2δ+2)
k . We thus obtain, with q̄k :=

√
qk

1/(δ+1) +
√
qk,

EWn,k+1

Σn,k
> 2

(∫ 1/
√
qk

1/(3+δ)

0
P(Z > x)dx− Cδ

√
qk

1/(3+δ)

)√
1− 2

√
qk

2−δ/(δ+1) − 2q̄k.

Note that this converges to E|Z| as qk → 0, so this completes the proof of Proposition 5.4. �

6. Two examples with lower bounds on performance

In this section we present two insightful examples that give lower bounds on %ω and rω

for particular problem instances. The first example shows the necessity of certain assumptions

in being able to give any upper bound on the approximation ratio. The second example gives

a lower bound on %ω for problem instances that satisfy Assumption 3.1, thus complementing

Theorem 3.4.

Example 6.1. Suppose we have two patients, and the service time of patient i is given by

Bi =


µi + 1

ai
with probability a2

i

µi − 1
ai

with probability a2
i

µi with probability 1− 2a2
i ,

(16)

for some values µi > 0 and ai 6 1/
√

2. Then EBi = µi, and VarBi = 1, and so either of the

two possible sequences could be considered the svf sequence. We take the svf sequence to

be given by τ(i) = i (one could of course perturb the distributions so that this is the unique

svf ordering).

Now assume that we use the mean-based schedule given by x = µ. The cost function

for the svf sequence τ(i) = i is then

ωEI2 + (1− ω)EW2 = ωE(B1 − µ1)− + (1− ω)E(B1 − µ1)+ = ωa1 + (1− ω)a1 = a1.
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In the same way, the cost function for the other sequence is equal to a2. If we take a1 to be

bigger than a2, we conclude %ω = a1/a2, which can be arbitrarily large. This shows that it is

necessary in Section 3 to impose Assumption 3.1, even under Assumption 3.2.

The construction can easily be extended to one with any larger number of patients, by

introducing additional patients with deterministic service times. Therefore, this example also

shows that Assumption 5.1 is necessary in Section 5.

The example applies also when an optimal, rather than mean-based, scheduling rule is

used. Fixing ω = 1
2 , for two patients with service times as in (16), the cost function is

1
2E
(
Bτ(1) − xτ(1)

)−
+ 1

2E
(
Bτ(1) − xτ(1)

)+
.

By Lemma B.4, the xτ(1) that minimizes this cost function is given by xτ(1) = µτ(1), which is

the mean of Bτ(1). So the situation is unchanged, and also for the optimal scheduling rule no

bound on the approximation ratio can be found without imposing further assumptions. This

justifies why we use Assumption 4.1 in Section 4.

Example 6.2. This example serves to give a lower bound on supω,B %ω(B), where the

supremum is taken over all problem instances (including n and ω) that satisfy Assumption 3.1.

We consider the situation where ω = 1, that is, where the cost function is given by the total

idle time. The conclusion which can be drawn from the example is that it is not possible

to prove a better constant bound on %ω than 1.28, if we only make Assumption 3.1, thus

complementing Theorem 3.4.

To prove this bound of 1.28, we again consider a sequence of problem instances Bn and

use the same notation as has been used in Section 5. Suppose we have n := n′ + 1 patients,

and the service time of patient i for i 6 n′ is given by

Bn,i =

µn,i + bn,i with probability 1− C
n′

µn,i − bn,i
(
n′

C − 1
)

with probability C
n′ ,

for some values µn,i > 0, C ∈ (0, 1). Let bn,i := C/(n′ − C) for i = 1, . . . , n′ − 1 and

bn,n′ := 1−C(n′− 1)/(n′−C). We assume that n′ is large enough to have bn,n′ > bn,1. Then

these service times satisfy Assumption 3.1, as each Bn,n′ − µn,n′ is in distribution equal to

c(Bn,1 − µn,1) for some c > 1, and the Bn,i − µn,i are identically distributed for i 6 n′ − 1.

The service time of patient n is assumed to have the largest variance among all patients,

and be such that Assumption 3.1 is still satisfied. We assume that we use the mean-based

schedule, so the interarrival times are given by the mean service times.
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Now suppose that the sequence τ is such that τ(n) = n. Recall that Xn,i = Bn,i − µn,i.

By equations (3) and (5) we then have that

n∑
i=1

EIn,i = EWn,n′+1

is the expected maximum of the random walk with steps Xn,τ(n′), Xn,τ(n′−1), . . . , Xn,τ(1). For

sufficiently large n, any downward jump in the random walk will be at least as large as all

possible upward jumps together, as
∑n′

i=1 bn,i = 1 and

bn,i

(
n′

C
− 1

)
>

C

n′ − C

(
n′

C
− 1

)
= 1.

Therefore, we can compute the maximum of the random walk by conditioning on the first

downward jump, so

n∑
i=1

In,i =

(
1− C

n′

)n
+

n′∑
k=1

(
1− C

n′

)k−1 C

n′

k−1∑
i=1

bn,τ(n′+1−i).

We will use this to compare the svf sequence, given by τ(i) = i, with the reverse sequence

given by τ(i) = n′ + 1− i for i 6 n′ (and τ(n) = n), where we let n tend to infinity.

First consider the reverse sequence. Then the total expected idle time is equal to the

expected maximum of the random walk with steps Xn,1, Xn,2, . . . , Xn,n′ . Letting Irevn,i denote

the idle times under the reverse sequence, we now have

lim
n→∞

n∑
i=1

EIrevn,i = lim
n′→∞

(
1− C

n′

)n′

+

n′∑
k=1

(
1− C

n′

)k−1 C

n′
(k − 1)

C

n′ − C

= e−C + lim
n′→∞

C2

n′2

n′∑
k=1

(k − 1)

(
1− C

n′

)k−1

= e−C − lim
n′→∞

n′
C

n′

(
1− C

n′

)n′

− C

n′

(
1− C

n′

)n′

+

(
1− C

n′

)n′

+
C

n′
− 1

= 1− Ce−C .

Now consider the svf sequence, for which the total idle time equals the maximum of

the random walk with steps Xn,n′ , . . . , Xn,1. We then have

lim
n→∞

n∑
i=1

EIsvfn,i = lim
n′→∞

(
1− C

n′

)n′

+
n′∑
k=1

(
1− C

n′

)k−1 C

n′

[
(k − 1)

C

n′ − C
+ bn,n′ − bn,1

]

= 1− Ce−C + lim
n′→∞

(
1−

(
1− C

n′

)n′)
(bn,n′ − bn,1)

= 1− Ce−C + (1− e−C)(1− C) = 2− C − e−C .
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For this sequence of problem instances we now have

lim
n→∞

%1(Bn) >
2− C − e−C

1− Ce−C
.

Minimizing over C then gives supω,B %ω(B) > 1.28, as desired.

7. Discussion and directions for further research

We have shown that under quite general conditions, the svf sequence yields a constant-

factor approximation. Furthermore, we have seen that additional information about the

instance, such as knowing that the service-time distributions fall within a certain class, or

that the number of patients is large, can lead to substantial improvements in our worst-case

bounds.

For mean-based schedules, Theorem 3.4 and Example 6.2 show that the worst-case

approximation ratio lies between 1.28 and 4. It would be interesting to reduce this gap;

we suspect neither bound is tight. In particular, the upper bound on the cost of the svf

sequence appears to be a strong bound only in the regime of many patients, with service

times of similar variances; the lower bound on the cost of arbitrary sequences, on the other

hand, appear strong in situations where only a few service times with large variance have a

significant impact on the cost function. This suggests that more refined arguments, possibly

considering multiple regimes, could lead to an improved upper bound. Improving our bounds

for special cases (such as normal and lognormal distributions), or considering other practically

relevant service-time distributions, would also be of interest.

When optimizing over both the sequence and the schedule, we obtained bounds for

location-scale families and for lognormally-distributed service times. These bounds are,

however, not uniform: in the former case, the bounds depend on ω and the location-scale

family, and in the latter case, on the parameters of the lognormal distributions. A constant-

factor approximation that does not depend on these quantities, or that holds in greater

generality (e.g., to all distributions satisfying the ordering assumption), remains an open

question. The svf sequencing rule remains a promising candidate, but a more sophisticated

choice of scheduling rule will certainly be needed.

To the best of our knowledge, this is the first paper that assesses whether an easily

computed sequence performs provably well, rather than trying to find the optimal sequence

for a special (typically low-dimensional) instance, or comparing heuristics through simulation.

Finding the optimal sequence is an important (but inherently difficult) problem, and we hope

our approach triggers more research in this direction.
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Appendix A. Proofs corresponding to Section 3

Here we prove Lemma 3.5, Lemma 3.9 and Lemma 3.10, that are used in Section 3.

Lemma 3.5. Let EWopt′
k+1 denote the expected waiting time of the patient in appointment slot

k + 1, under the sequence that minimizes this expected waiting time, subject to the constraint

that τ(i) 6 k for i = 1, . . . , k, i.e. the first k patients are assigned to the first k slots. Suppose

EW svf
k+1/EWopt′

k+1 6 %
′ for all k. Then, under Assumption 3.1, %ω 6 %′.

Proof. Taking expectations in (5) and using that xi = µi, we find that
∑n

i=1 EIi = EWn.

Hence, the cost function (2) equals ωEWn + (1− ω)
∑n

i=1 EWi. Our goal is thus to bound

the ratio

%ω =
ωEW svf

n + (1− ω)
∑n

i=1 EW svf
i

ωEWopt
n + (1− ω)

∑n
i=1 EWopt

i

. (17)

Now note that Wk+1 = max{0, S1, . . . , Sk} is a convex function in each of the Xi,

as it is the maximum of linear functions in Xi. Under Assumption 3.1 this implies that

EWopt
k+1 > EWopt′

k+1 , as each step Xi with i > k can be replaced by some Xj with j 6 k and as

Xj 6cx Xi this lowers the expected waiting time. Now

EW svf
k+1/EWopt

k+1 6 EW svf
k+1/EWopt′

k+1 6 %
′,

and so also the ratio in (17) is bounded by %′, which completes the proof. �

Lemma 3.9. Under Assumption 3.2,

EWk+1 6 E
(
Xτ(1) + · · ·+Xτ(k)

)+
+ E

(
Xτ(1) + · · ·+Xτ(k−1)

)+
.

Proof. By Lemma 3.6, Wk is stochastically dominated by |Xτ(1) + · · · + Xτ(k−1)|. As a

consequence,

EWk+1 = E
(
Wk +Xτ(k)

)+
6 E

(
|Xτ(1) + · · ·+Xτ(k−1)|+Xτ(k)

)+
. (18)

If Y and Z are independent and both have symmetric distributions, then

E(|Y |+ Z)+ = E(Y + Z)+ + EY +.

This is easily checked by conditioning on |Y | = a and |Z| = b, as then Y is either a or −a

with probability 1
2 , and similarly for Z. Applying this result to the upper bound in (18), we

find the upper bound in the lemma. �

Lemma 3.10. Under Assumption 3.2, for any `,

EWk+1 >
1
2

(
E
(
Xτ(1) + · · ·+Xτ(k)

)+
+ E

(
Xτ(1) + · · ·+Xτ(`)

)+
+ E

(
Xτ(`+1) + · · ·+Xτ(k)

)+ )
.
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Proof. Let S′` = Xτ(1)+Xτ(2)+· · ·+Xτ(`), so that S′` = Sk−Sk−`. AsWk+1 = max{0, S1, . . . , Sk},

we then have

Wk+1 > max{0, Sk−`, Sk} = max{0, Sk−`, Sk−` + S′`} = (Sk−` + (S′`)
+)+. (19)

If Y and Z are independent and both have symmetric distributions, then

E(Y + Z+)+ = 1
2

(
E(Y + Z)+ + EY + + EZ+

)
.

Again, this is easily checked by conditioning on |Y | = a and |Z| = b, as then Y is either a or

−a with probability 1
2 , and similarly for Z. Applying this result to the lower bound in (19),

we find the lower bound in the lemma. �

Appendix B. Proofs corresponding to Section 4

Here we prove Proposition 4.3, Proposition 4.4, and Theorem 4.5 from Section 4. In

order to prove Proposition 4.3, we need a number of lemmas.

Lemma B.1. Let M be the maximum of a random walk with steps Y1, . . . , Yk. Now let

i ∈ {1, . . . , k}, and let c > 1. Let M ′ be defined as the maximum of a random walk with steps

Y1, . . . , Yi, c Yi+1, . . . , c Yk. Then M 6M ′.

Proof. Suppose that the maximum of the first random walk is attained at time j, that is,

M = Y1 + · · ·+Yj . If j 6 i, then the second random walk also attains the value Y1 + · · ·+Yj , so

M 6M ′. If j > i, then the second random walk attains the value Y1+· · ·+Yi+cYi+1+· · ·+cYj .

Now Yi+1 + · · ·+ Yj > 0, as otherwise Y1 + · · ·+ Yi > Y1 + · · ·+ Yj , in contradiction with M

being the maximum. From this and c > 1 it follows that

Y1 + · · ·+ Yi + c Yi+1 + · · ·+ c Yj > Y1 + · · ·+ Yj ,

so M 6M ′. �

Lemma B.2. Suppose Assumption 4.1 holds, and we use the schedule x = µ+ ασ. Let Mk

be the all-time maximum of a random walk with i.i.d. steps distributed as σk(B − α). Then

W svf
k+1 is stochastically dominated by Mk, for all k.

Proof. By (3), we know that W svf
k+1 is the maximum of a random walk with steps Bk −

xk, Bk−1 − xk−1, . . . , B1 − x1. Now note that Bi
d
= µi + σiB and xi = µi + ασi, hence

Bi − xi
d
= σi(B − α). So W svf

k+1 can be represented as the maximum of a random walk with

steps distributed as σk(B − α), . . . , σ1(B − α).
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We first multiply the last step of this random walk σ2/σ1. By Lemma B.1, we then

see that Wk+1 is stochastically dominated by the maximum of a random walk with steps

distributed as σk(B −α), . . . , σ2(B −α), σ2(B −α). The next step is to multiply the last two

steps with σ3/σ2. Again by Lemma B.1, W svf
k+1 is stochastically dominated by the maximum

of a random walk with steps σk(B − α), . . . , σ3(B − α), σ3(B − α), σ3(B − α). Continuing in

this way, we find that W svf
k+1 is stochastically dominated by the maximum of a random walk

with k steps distributed as σk(B − α).

Now note that adding extra steps to a random walk can only increase the maximum.

Therefore, we now find that W svf
k+1 is stochastically dominated by Mk. �

Lemma B.3. Under Assumption 4.1, when using the schedule x = µ+ ασ, we have for all

k that

EW svf
k+1 6

σk
2α
.

Proof. We need the following bound by Kingman [20]. Let M be the all-time maximum of a

random walk with i.i.d. steps distributed as Y , with EY < 0. Then

EM 6
Var(Y )

2|EY |
.

Let Mk be as in Lemma B.2. Then, by Lemma B.3 and Kingman’s bound, we have

EW svf
k+1 6 EMk 6

Var(σk(B − α))

2|E(σk(B − α))|
=

σ2
k

2σkα
=
σk
2α
,

as claimed. �

Now we are ready to prove Proposition 4.3.

Proposition 4.3. Suppose α is given by (10). Under Assumption 4.1,

Cω(id,µ+ ασ) 6
√

2ω
n−1∑
i=1

σi.

Proof. We already have a bound on the mean waiting time in Lemma B.3, so we proceed

by considering the mean idle time. Taking expectations in (5) and using the fact that

xi = µi + ασi,

n∑
i=1

EIsvfi +

n∑
i=1

µi =

n∑
i=1

µi + α

n−1∑
i=1

σi + EW svf
n .

Hence, by virtue of Lemma B.3,

n∑
i=1

EIsvfi = α
n−1∑
i=1

σi + EW svf
n 6 α

n−1∑
i=1

σi +
σn−1

2α
.
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Upon combining the bounds for the mean waiting times and the total mean idle time, we

find that

Cω(id,µ+ ασ) 6 αω
n−1∑
i=1

σi +
ω

2α
σn−1 +

1− ω
2α

n−1∑
i=1

σi.

Through standard calculus we find that this upper bound is minimized for the α given in

(10). The corresponding upper bound for this α is

√
2ω(1− ω)

√√√√n−1∑
i=1

σi

(
n−1∑
i=1

σi +
ω

1− ω
σn−1

)
.

Using the fact that σn−1 6
∑n−1

i=1 σi, we find the upper bound in Proposition 4.3. �

In order to prove Proposition 4.4, we need the following lemma, which is known from

the classical newsvendor problem (see e.g. [19]).

Lemma B.4. Let X be a random variable, with QX its quantile function. Then for ω ∈ (0, 1),

ωE(X − c)− + (1− ω)E(X − c)+

is minimal for c = QX(1− ω) = inf{x : 1− ω 6 P(X 6 x)}.

Proposition 4.4. Under Assumption 4.1, for any sequence and schedule,

Cω(τ,x) >
[
ωEB(ω)− + (1− ω)EB(ω)+

] n−1∑
i=1

σi.

Proof. Consider some arbitrary sequence τ and schedule x. Recall that the idle and waiting

times satisfy the recursions in (1). We consider

ωEIk+1 + (1− ω)EWk+1 = ωE
(
Wk +Bτ(k) − xτ(k)

)−
+ (1− ω)E

(
Wk +Bτ(k) − xτ(k)

)+
.

(20)

Now note that Wk + Bτ(k) − xτ(k) = Bτ(k) − (xτ(k) −Wk), so by minimizing (20) over all

possible values of xτ(k) −Wk, we find by Lemma B.4 that

ωEIk+1 + (1− ω)EWk+1 > ωE(Bτ(k) −QBτ(k)(1− ω))− + (1− ω)E(Bτ(k) −QBτ(k)(1− ω))+.

Because Bτ(k)
d
= µτ(k) + στ(k)B, it follows that QBτ(k)(1− ω) = µτ(k) + στ(k)QB(1− ω).

Then

Bτ(k) −QBτ(k)(1− ω)
d
= µτ(k) + στ(k)B − (µτ(k) + στ(k)QB(1− ω)) = στ(k)(B −QB(1− ω)),
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which, recalling that B(ω) = B −QB(1− ω), leads to

ωEIk+1 + (1− ω)EWk+1 > στ(k)

[
ωEB(ω)− + (1− ω)EB(ω)+

]
.

Note that
∑n−1

i=1 στ(i) >
∑n−1

i=1 σi, as the σi were put in increasing order. Now summing

over k we find the lower bound of Proposition 4.4. �

To prove Theorem 4.5 we need the following lemma, which fulfills the same role for

lognormally distributed service times as Lemma B.2 does for location-scale families. We then

prove the upper and lower bounds needed for Theorem 4.5 in two propositions.

Lemma B.5. Suppose the Bi are lognormally distributed with m1 6 . . . 6 mn and s2
1 6

. . . 6 s2
n, and that we use the schedule x = (1 + α)µ. Let Mk be the all-time maximum of a

random walk with i.i.d. steps distributed as Bk − xk. Then EW svf
k+1 6 EMk.

Proof. Let M
(i)
k be the maximum of a random walk with steps distributed as Bk−xk, Bk−1−

xk−1, . . . , Bi+1 − xi+1 followed by i steps distributed as Bi − xi. We will prove that EM (i)
k 6

EM (i+1)
k for i = 1, . . . , k − 1. As EW svf

k+1 = EM (1)
k and EM (k)

k 6 EMk (adding extra steps

increases the maximum), it then follows that EW svf
k+1 6 EMk.

Consider the random walk with steps distributed as Bk−xk, Bk−1−xk−1, . . . , Bi+1−xi+1,

followed by i steps distributed as Bi−xi. Let Z be a standard normal random variable. Note

that

Bi − xi = Bi − (1 + α)µi
d
= exp(mi + siZ)− (1 + α) exp(mi + s2

i /2)

= exp(mi)
[
exp(siZ)− (1 + α) exp(s2

i /2)
]
.

Use Lemma B.1 to show we get an upper bound on M
(i)
k by replacing all steps distributed as

Bi − xi by steps distributed as

X ′i := exp(mi+1 + (s2
i+1 − s2

i )/2)
[
exp(siZ)− (1 + α) exp(s2

i /2)
]
.

Let Z ′ be another standard normal random variable independent of Z. Then

Bi+1 − xi+1
d
= exp(mi+1 + siZ + εZ ′)− (1 + α) exp(mi+1 + (s2

i + ε2)/2)

with ε :=
√
s2
i+1 − s2

i , and

E[exp(mi+1 + siZ + εZ ′)− (1 + α) exp(mi+1 + (s2
i + ε2)/2)|X ′i]

= E[exp(mi+1 + siZ + εZ ′)− (1 + α) exp(mi+1 + (s2
i + ε2)/2)|Z]

= exp(mi + ε2/2)
[
exp(siZ)− (1 + α) exp(s2

i /2)
]

= X ′i.
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It follows by Lemma 2.3 that X ′i 6cx Bi+1 − xi+1. As the maximum of a random walk is

a convex function in each of the individual stepsizes, we can replace each step distributed

as X ′i by one distributed as Bi+1 − xi+1. Therefore, EM (i)
k 6 EM (i+1)

k , which completes the

proof. �

Proposition B.6. Suppose the Bi are lognormally distributed with m1 6 . . . 6 mn and

s2
1 6 . . . 6 s

2
n. Suppose α is given by

α =
1√
2ω

√
(exp(s2

n−1)− 1).

Then

Cω(id, (1 + α)µ) 6 2ωα

n−1∑
i=1

exp(mi + s2
i /2).

Proof. With Mk as in Lemma B.5, we can now apply Kingman’s bound to find

EW svf
k+1 6 EMk 6

Var(Bk)

2|EBk − (1 + α)EBk|
=

1

2α
(exp(s2

k)− 1) exp(mk + s2
k/2)

6
1

2α
(exp(s2

n−1)− 1) exp(mk + s2
k/2).

By equation (5) we also have

n∑
i=1

EIsvfi = α
n−1∑
i=1

EBi + EW svf
n

6 α
n−1∑
i=1

exp(mi + s2
i /2) +

1

2α
(exp(s2

n−1)− 1) exp(mn−1 + s2
n−1/2)

6 α
n−1∑
i=1

exp(mi + s2
i /2) +

1

2α
(exp(s2

n−1)− 1)
n−1∑
i=1

exp(mi + s2
i /2).

In total, we then find

Cω(id, (1 + α)x) 6 ωα
n−1∑
i=1

exp(mi + s2
i /2) +

1

2α
(exp(s2

n−1)− 1)

n−1∑
i=1

exp(mi + s2
i /2).

Minimizing this upper bound over α, we obtain the result. �

Proposition B.7. Suppose the Bi are lognormally distributed with m1 6 . . . 6 mn and

s2
1 6 . . . 6 s

2
n. Then, for any sequence and schedule,

Cω(τ,x) > [(1− ω)P(Z > QZ(1− ω)− s1)− ωP(Z 6 QZ(1− ω)− s1)]

n−1∑
i=1

exp(mi + s2
i /2).

Proof. Similar as in the location-scale family case, we can use Lemma B.4 to find

ωEIk+1 + (1− ω)EWk+1 = ωE(Bτ(k) − (xτ(k) −Wk))
− + (1− ω)E(Bτ(k) − (xτ(k) −Wk))

+
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> ωE(Bτ(k) −QBτ(k)(1− ω))− + (1− ω)E(Bτ(k) −QBτ(k)(1− ω))+.

Computing this lower bound, we find with Z being a standard normal random variable that

ωEIk+1 + (1− ω)EWk+1

> exp(mτ(k) + s2
τ(k)/2)

[
(1− ω)P(Z > QZ(1− ω)− sτ(k))− ωP(Z 6 QZ(1− ω)− sτ(k))

]
.

It can be easily seen that

(1− ω)P(Z > QZ(1− ω)− sτ(k))− ωP(Z 6 QZ(1− ω)− sτ(k))

is an increasing function in sτ(k), and so is minimal for sτ(k) = s1. Using this and summing

over k, we find the lower bound of the proposition. �

Proof of Theorem 4.5. This follows directly from Proposition B.6 and Proposition B.7. �

Appendix C. Proofs corresponding to Section 5

Here we prove Lemma 5.10, that is used in Section 5.

Lemma 5.10. For any k and n > k:

(1)

∑k
i=1 E

[
(Xn,i)1Xn,i>cn,k

]
Σn,k

6 qkγ
(1+δ)/δ
n,k ; and

(2)
(Σ′n,k)

2

Σ2
n,k

> 1− 2qkγn,k .

Proof. (1) Using that Xn,i > cn,k implies |Xn,i|1+δ/c1+δ
n,k > 1, we find

E
[
(Xn,i)1Xn,i>cn,k

]
6 E

[(
|Xn,i|2+δ/c1+δ

n,k

)
1Xn,i>cn,k

]
6 E|Xn,i|2+δ/c1+δ

n,k .

Summing over i and dividing both sides by Σn,k we find∑k
i=1 E

[
(Xn,i)1Xn,i>cn,k

]
Σn,k

6

∑n
i=1 E|Xn,i|2+δ

Σn,kc
1+δ
n,k

=

∑n
i=1 E|Xn,i|2+δ

Σ2+δ
n,k

(
Σn,k

cn,k

)1+δ

6 qkγ
(1+δ)/δ
n,k ,

as was claimed.

(2) Analogous to the proof of part (1), we can also deduce that∑k
i=1 E

[
X2
n,i1Xn,i>cn,k

]
Σ2
n,k

6 qkγn,k. (21)

Using that EXn,i = 0, we find

(Σ′n,k)
2

Σ2
n,k

=

∑n
i=1 E

[
X2
n,i1Xn,i6cn,k

]
Σ2
n,k

−
∑n

i=1

(
E
[
Xn,i1Xn,i6cn,k

])2
Σ2
n,k
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=
Σ2
n,k −

∑n
i=1 E

[
X2
n,i1Xn,i>cn,k

]
Σ2
n,k

−
∑n

i=1

(
E
[
Xn,i1Xn,i>cn,k

])2
Σ2
n,k

.

Now applying Jensen’s inequality to the last term and (21),

(Σ′n,k)
2

Σ2
n,k

>
Σ2
n,k − 2

∑n
i=1 E

[
X2
n,i1Xn,i>cn,k

]
Σ2
n,k

> 1− 2qkγn,k,

which is what we wanted to prove. �

Appendix D. Lognormal distributions that satisfy the dilation order

Proposition D.1. Suppose that A and B are lognormally distributed random variables, such

that E[lnA] 6 E[lnB] and Var(lnA) 6 Var(lnB). Then A 6dil B.

Proof. Let m1 = E[lnA], m2 = E[lnB], s2
1 = Var(lnA) and s2

2 = Var(lnB). Let Z and Z ′ be

two independent standard normal random variables, and let ε =
√
s2

2 − s2
1. Then

A− EA d
= X̂ := exp(m1 + s1Z)− exp(m1 + s2

1/2),

B − EB d
= Ŷ := exp(m2 + s1Z + εZ ′)− exp(m2 + (s2

1 + ε2)/2).

Now note that

E[Ŷ |X̂] = E[Ŷ |Z] = E
[
exp(m2 + s1Z + εZ ′)− exp(m2 + (s2

1 + ε2)/2)|Z
]

= exp(m2 + ε2/2)
(
exp(s1Z)− exp(s2

1/2)
)

= exp(m2 −m1 + ε2/2)X̂.

Thus by Lemma 2.3,

exp(m2 −m1 + ε2/2)(A− EA) 6cx B − EB.

(This is similar to the argument that X ′i 6cx Bi+1 − xi+1 in the proof of Lemma B.5.) Now

we can apply Theorem 3.A.18 from Shaked and Shanthikumar [33], that says that X 6dil aX

for a > 1, to see that

A− EA 6cx exp(m2 −m1 + ε2/2)(A− EA) 6cx B − EB.

This proves that A 6dil B. �
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