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Abstract

In this paper we will investigate ways to optimize the placement and number of traffic counters used in multi-modal transportation
analysis studies for motorized vehicles, bicycles and pedestrians. The goal is to strike a balance between using as few as possible
traffic counters for economical efficiency and deploying more counters which could collect more data. By using shortest path
algorithms to determine the paths between the centroids of statistical divisions, we derive from origin-destination matrices which
traffic is flowing from where to where over which links in a multi-modal network. Using centrality measures such as betweenness,
we determine the links in the transportation networks that capture the most useful traffic in terms of as much unique traffic as
possible. Next we look at ways to implement additional criteria in the selection of locations: those that are permanently covered,
locations that were used for previous studies in prior years for which historical analyses can be made, and locations that capture
more than one modality for vehicles, bicycles and pedestrians. Finally we study groups of traffic counters organized in screen-lines.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

For the city of Amsterdam, we have been investigating methods how to optimize the planning of where to put
traffic counters that measure the traffic circulating within the jurisdiction of the city. In prior years, the planning for
the placement and number of traffic counters was determined manually based on intuition and operational experience;
the city was interested if a data-driven approach could lead to improved deployment of the counters.

An optimal planning for traffic measurement is a balance between deploying as few counters as possible while not
significantly decreasing the coverage of travel movements within the city. For example we might prefer to catch less
traffic with more measurement points because we prefer to organize the counters within screen-lines. With screen-
line analysis all movements with an origin of travel at one side of a screen line and the destination on the other side
are intercepted8. The benefits of screen-line analysis is that it enables a comparison between the results of traffic
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assignment and traffic count data along a screen-line; by comparing the sum of traffic volumes in the assignment with
the traffic counts, the ratio can be computed1. Other reasons to prefer certain locations could be policy reasons such as
a high number of traffic complaints in a certain area, future developments in a region or certain spots that are already
often permanently covered by counters such as tunnels, bridges and intercity highways.

To conduct the research we had access to multiple sources of data, such as origin-destination matrices sourced
from Google and the city council, the measurements of the traffic counters in previous years and speed measurements
sourced from Google and city traffic control cameras. To model the street network we used geographical material
from the national government (NWB), OpenStreetMaps and the GIS data used within the official traffic model of the
city of Amsterdam.

2. Related research

A number of studies have been done in this area. In 19987 Yang and Zhou derived four rules to locate traffic
counting points based on the theory of maximal possible relative error in origin-destination (O-D) matrix estimation:
1) the O-D covering rule, 2) the maximal flow fraction rule, 3) the maximal flow-intercepting rule, and 4) the link
independence rule. The theory of maximal possible relative error ”represents the maximum possible relative deviation
of the estimated O-D matrix from the true one or the upper bound of the real relative error for a particular fitted O-D
matrix”7. The O-D covering rule states that traffic counters should observe at least a certain portion of traffic between
O-D pairs at at least one counter. The maximal flow fraction rule states that for an O-D pair the traffic counters
should be placed on links where we find the largest flow fraction between that O-D pair and all flows on that link.
The maximum flow-intercepting rule states that under a minimum number of links to be observed, these links should
intercept the highest amount of traffic flow possible. The link independence rule states that the traffic counters should
be located on the network where the resultant traffic counts on the chosen links are not linearly dependent. Yang and
Zhou7 formulate the problem of locating traffic counters as a mathematical problem, where the O-D covering rule
and link independence rule are applied as constraints in the attempt to maximize the total traffic flow observed, solved
with a heuristic greedy algorithm.

In 2004 Chootinan, Chen, Yang4 published a distance-based genetic algorithm. They investigated two methods
to solve the problem: a weighed-sum method and a distance-based method. With the weighted-sum method they
combine two objectives, covering as much traffic as possible while having the lowest number of counting points, into
a single objective. By adjusting the weights different solutions will be found, switching between covering more traffic
or having more points. In the distance-based method their main idea is to evolve the genetic search to get closer to
Pareto optimal solutions. Their results indicate that the distance-based method is able to provide a better description
of the quality-cost trade-off than the weighted-sum method. Additionally it can generate non-dominant solutions in
the duality gap that can not be represented in a weighted-based search.

Ehlert, Bell and Grosso5 build a software application based on the heuristics published by Yang and Zhou7 and
applied it on the network in the district of Gateshead in Northeast England, with 1980 O-D pairs on a network of
240 kilometers of classified roads in 1414 directed links within an area of approximately 142 square kilometers.
Additionally5 Ehlert, Bell and Grosso proposed two extensions to take budget restrictions into account. Their first
extension takes into account locations of existing detectors by using the second-best formulation of the optimization
problem and then using these locations to define new link choice proportions. Their second extension prioritizes O-D
pairs based on the average information content of an O-D movement taken from previously collected O-D matrices.

Yang and Liu6 proposed an enhanced genetic algorithm to solve two traffic counting location problems. Firstly
they address the problem of determining the optimal number of locations of traffic counts that will cover all the O-D
pairs in the network. Secondly they determine the maximum number of covered O-D pairs with a defined number
of locations. The enhancement of the genetic algorithm is due to the selection, mutation and partial elitism policy
leading to better and faster results.

Chen and Pravinvongvuth3 developed strategies to select additional locations beyond an initial set of already exist-
ing traffic counters in order to improve origin-destination trip table estimation. Using these counts the O-D trip table
is estimated using a modified flow path estimator that is capable of internally consistent handling of the traffic count.
To solve this NP-hard combinatorial problem, they developed another genetic algorithm embedded within a shortest
path algorithm.
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Barcelo, Guillieron, Linares, Serch, Montero2 proposes a modified set that formulates the link detection layout
with side constraints. Additionally it presents a new meta-heuristic tabu search algorithm with a high computation
efficiency. Their solution focuses on sensors that can follow vehicles using the electronic signatures of phones with
bluetooth, allowing the placement of sensors at intersections. Specifically Barcelo et al. 2 proposed a new formulation
in terms of a node covering problem with side constraints that can be efficiently solved by solving software.

3. Network

The road network of Amsterdam within the boundary of the city contains 18,438 links. The VMA (’Verkeersmodel
Amsterdam’ / Amsterdam Traffic Model) has 4,418 traffic analysis zones that represent origin and destinations for
journeys between Amsterdam and any region up to neighboring countries. The city itself has a ring road A10 and a
radial secondary network in the form of S-roads that connect the neighbors to and from the ring-road. A water body
(the ’IJ’) separates North and South districts of the city, which are only connected via two tunnels on the A10 ring
road and two S-road tunnels.

To create a graph to represent the network, you would ideally use geographical material with only one edge between
each intersection as multiple edges would dilute the intensity of the traffic. Geographic material from OpenStreetMap
often uses 3 separate edges to represent one street with cycle-lanes, motorized vehicle lanes and a tramway in the
middle, making it a poor choice to use in our computation.

4. Calculating paths between areas

To gain insight which and how much traffic is flowing from and to where, we calculated the fastest paths between
each origin and destination (O-D) pair. To do that we used the open source routing library pgRouting to calculate all
the links that are on the fastest path using the A* algorithm. As the cost-function we used the travel-time for each
direction on the link.

For each link we store a tuple (IDorigin, IDdestination, IDedge, f orward, backward), denoting the identifiers of the
origin and destination, the link number and whether the path is following the direction of the ’LineString’ geometry
on the link.

The full collection of these tuples represents an all-or-nothing assignment than can be used to distribute O-D
matrices along the network. Using this collection and an O-D matrix it is possible to determine per link how much
traffic flows along both directions of the link. Additionally it is possible to calculate the traffic between a subset of the
origin-destination pairs along a link, for example to exclude traffic already captured along other links.

4.1. Sorting links by amount of traffic

Using the traffic assignment and an O-D matrix it is possible to sort links by the amount of traffic flowing over
them. This is a centrality measure called betweenness, the ratio of how often a vertex or link is part of a shortest path
between one of the other nodes in the graph. This is given by

∑
s�v�t

σst(v)
σst

, where σst references the number of shortest
paths from s to t , and σst(v) the number of shortest paths from s to t that pass through v.

To avoid catching the same traffic at the links more than once, only traffic between O-D pairs not covered yet is
counted. To do this it is necessary to keep a record of which O-D pairs are already covered.
By using the PostgreSQL database server, we keep the table with the route assignment and a table with the O-D
matrix. To query the link with the highest number of journeys, we join these two tables, and pick the link with the
highest aggregated count journeys per edge. To exclude traffic already captured in this query, we keep a third table
with origin-destination pairs already covered. The moment we pick a link, we insert all origin-destinations that travel
over that link. We continue this process until all origin-destination pairs are separated by at least one link.

The process can be customized, for any reason such as links that are permanently covered or areas that require
additional scrutiny. By initializing the process with pre-defined links, the algorithm will seek an optimal solution with
the remaining links.
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4.2. Sorting screen-lines by amount of traffic

An alternative strategy instead of placing traffic counters on links to capture the highest share of traffic might deliver
more useful data. For example it can also be worthwhile to organize the counters within screen-lines. Screen-lines are
groups of segments separating traffic between the origin and the destination. Screen-lines can help the validation of
Origin-Destination matrix estimations using traffic counts. In our experiment we used previously determined screen-
lines that were used in earlier transportation studies by the city. Using the same screen-lines allowed for a better
comparison with the data collected in previous years.

To sort screen-lines by the amount of unique traffic we can apply a similar process. For each screen-line, we sum
the weight for each O-D pair that covers more than one link that is part of the screen-line. To exclude traffic already
covered, we exclude origin-destination pairs separated by at least one link.

In order to weight screen-lines, we use two criteria: the amount of traffic covered and the number of counters within
a screen-lines. With a simple weighting function: intensity/npoints we observed a disproportionate avoidance of screen-
lines with more traffic-counters. As a screen line with more counters results in more useful data than a screen-line
with only two counters, we used instead the intensity per eighth-root of the number of counters: intensity/ 8

√npoints.
This weighting function was used to pick the best screen-line each time and then look at subsequent screen-lines based
on traffic not yet covered.

Table 1: Amsterdam screen-lines sorted by unique traffic coverage

screenline Journeys covered ncounters Coverage/npoint Coverage/ 8
√npoint

Zuidas 169247647 4 42311911 142319739.652
Zuidoost 158309305 6 26384884 126542828.021
Amstel 135445001 5 27089000 110762240.020
Riekerpolder 113804400 2 56902200 104359094.934
Schinkel 104172820 4 26043205 87598550.905
Noord-kanaal-oost 99599079 4 24899769 83752508.494
Amstelveen 86381721 5 17276344 70639985.560
Westpoort/Haarlemmerweg 76489739 4 19122434 64319947.329
West 72324022 4 18081005 60817010.837
Singel 82659889 13 6358453 59986275.630
Noord-vanaf ring noordwest 54713890 3 18237963 47693306.907
Vondelpark 31482064 3 10494021 27442460.049
Gooiseweg 27784370 2 13892185 25478379.628
West(noord/zuid) 21690791 2 10845395 19890543.047
Boerenwetering 23159533 5 4631906 18939065.554
Centrum 15916517 6 2652752 12722695.444
Stadhouderskade 4391555 5 878311 3591261.880

4.3. Cycling and walking modalities

Besides cars and other vehicle traffic, the city of Amsterdam also deploys sensors to count the number of cyclists
and pedestrians. Since the city itself has no complete O-D matrix for these modalities we had to use different sources.
For cyclists we had access to data collected by cyclists who volunteered to log their activities for a week with an
application that uses the GPS and sensors on smart-phones. Additionally we had access to an O-D matrix supplied
by Google, which contained the movements between areas of pedestrians, cyclists and vehicle-passengers in June
of 2016. As geographical material we used OpenStreetMap which has a complete coverage for the cycleways in
Amsterdam.

The difference between fast-traffic and slow traffic is that journeys are shorter on average and that there are much
more possible paths. This results in less prominent locations to place counters. Since there is an economical advantage
to also use the counting locations for bicycle where possible, we used the top-100 locations as the starting point for
this computation. Each segment allowing bicyclists parallel to the location covered by a car counting location was
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selected as a counting location for bicyclists. The remaining locations were then primarily segments that only allowed
slow traffic.

Fig. 1: Chart of unique traffic of cars covered. The first section includes coverage of all permanently covered locations and the second section is
grouped within screen-lines. Note the step-like behavior. Each counter within each screenline is included in the order of the most unique traffic per
counter per screenline. The third section contains the most remaining unique traffic.

Fig. 2: Chart of unique bicycle traffic covered. The first 200 points are based on the top 75 locations with the most unique car traffic. The difference
in points is due to the fact that for proper coverage we include all links parallel to the car locations.
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Fig. 3: Map with visualization of the top 100 traffic counting locations capturing the highest number of unique traffic. Each digit indicates the
priority, firstly we prioritize all locations that are permanently covered, then the locations within screen-lines and finally a free-selection. Each
point within a group is ordered by the number of unique traffic it captures.

Fig. 4: Map with the resulting counting locations for bicycles. The green points mark locations added for just bicycling; the blue points indicate
that they were chosen based on car traffic patterns.
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4.4. Results

In the first step to obtain the best locations, we calculated the coverage based on 22 links in the network at locations
such as tunnels that are permanently covered by loop counters; these 22 links are sorted based in descending order on
the most remaining unique traffic captured. The next 77 edges were organized in 6 screen-lines. Originally the city of
Amsterdam proposed 17 possible screen-lines, which were then sorted using the algorithm described; the results of
this process are described in table 1. From this list the city selected the ten screen-lines covering the most traffic. The
24th to 54th counting point are selected within these screen-lines in a descending order of most unique traffic. The
remaining counting points were selected using the unique traffic remaining.

The top 100 locations for cars were used in our calculations for bicyclists; this resulted in 197 ”locations” since
OpenStreetMap had many segments parallel to each selected link in the car network.

5. Conclusions

Our idea to assign traffic from O-D matrices to a network to determine locations that capture the most unique
traffic in descending order worked well. The flexibility we have in selecting locations allowed us to respond quickly
to additional requirements that came later on in this study. Requirements such as organization of counting locations
within screen-lines was solved by determining how much traffic each screen-line captures with taking into effect of
screen-lines close to each other. Since any point can be arbitrarily inserted into the process, allowed to take into
account the preference for historical locations for trend-lines and the preference to combine cycle with car locations
all came in the end phase of this project.

For future research it would be interesting to also find the optimal screen-lines, or a weighting function to take
other factors into account besides capturing more traffic. In this study we used the screen-lines that were used in
previous traffic studies since they came with the added benefit of providing new data on historical trends, but it should
be possible to find screen-lines that separate more traffic with fewer traffic counters, since we know for each segment
where each vehicle is coming from and is heading to.
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