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ON THE EXISTENCE OF IDENTIFIABLE REPARAMETRIZATIONS
FOR LINEAR COMPARTMENT MODELS∗
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Abstract. The parameters of a linear compartment model are usually estimated from exper-
imental input-output data. A problem arises when infinitely many parameter values can yield the
same result; such a model is called unidentifiable. In this case, one can search for an identifiable
reparametrization of the model—a map which reduces the number of parameters such that the re-
duced model is identifiable. We study a specific class of models which are known to be unidentifiable.
Using algebraic geometry and graph theory, we translate a criterion given by Meshkat and Sullivant
for the existence of an identifiable scaling reparametrization to a new criterion based on the rank
of a weighted adjacency matrix of a certain bipartite graph. This allows us to derive several new
constructions to obtain graphs with an identifiable scaling reparametrization. Using these construc-
tions, a large subclass of such graphs is obtained. Finally, we present a procedure for subdividing or
deleting edges to ensure that a model has an identifiable scaling reparametrization.
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1. Introduction. Linear compartment models are used to describe the trans-
port of material between different compartments of a system and appear widely in
the fields of systems biology and pharmacokinetics. These models can be given by
a directed graph, where the edges represent the transport of material from one com-
partment to another. The rate of flow from i to j is assumed to be time-invariant
and linear in the amount of material in compartment i. We will study identifiability
of a particular class of models and conditions for the existence of identifiable scaling
reparametrizations, following and extending the ideas of Meshkat and Sullivant [14].

1.1. Problem description. The parameters corresponding to a linear compart-
ment model are often unknown and are therefore estimated from experimental data.
An important step in the modeling process is to check before experimenting whether
several or even infinitely many parameter sets could yield the same data. If this is the
case, it is impossible to tell which parameter values are correct; hence the parameter
estimates could lead to wrong predictions.

We assume that the experimental data consists of input-output values: the input
corresponds to the amount of material that was added to the system in certain input
compartments, and the output corresponds to the amount or concentration of material
measured in the output compartments. Roughly, a model is called identifiable if
we can recover the parameter values from the (noiseless) input-output data of this
experiment; we refer the reader to section 2 for the precise notion in our context. If
there is a finite number of possible parameter values corresponding to given input-
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1578 JASMIJN A. BAAIJENS AND JAN DRAISMA

output data, then we can indeed recover the parameter values—at least locally.
A compartment model can be described by a directed simple graph G = (V,E),

i.e., a directed graph without loops or multiple edges. Throughout this paper, a
graph G is assumed to be directed unless stated otherwise, with n = |V | the number
of vertices in G and m = |E| the number of edges in G. Let [k] denote the set
{1, . . . , k} for given k ∈ N. We associate to G the n × n parameter matrix A(G)
defined by

(1) A(G)ij =

⎧⎪⎨⎪⎩
aii if i = j,

aij if j → i ∈ E,

0 otherwise,

where the aij (i, j ∈ [n], i �= j) are independent real parameters representing the rate
of transfer from compartment j to compartment i. Possible outflow of material to
the exterior is taken into account: each compartment is allowed to have a leak, given
by a0i, which represents the rate of transfer of material from compartment i to some
compartment outside the system (the environment). The diagonal entries of A(G)
are defined as aii = −a0i −

∑
j �=i aji, the negative total flow out of compartment i.

Observe that the parameter matrix A(G) uniquely determines G and vice versa.
The parameter space of a compartment model given by G consists of all matrices

of the form A(G). This space will be denoted by ΘG ⊆ Rn×n to emphasize that the
parameter space depends on the graph G. The elements of ΘG are n × n matrices
which have zeros on positions (i, j) with i �= j such that j → i is not an edge in G.
In particular, the elements of ΘG have n+m nonzero positions which we can choose
freely.

Remark 1.1. Almost every statement in this paper involves a matrix A corre-
sponding to the given graph G: either A = A(G) or A ∈ ΘG. When we write
A = A(G), we mean the symbolic matrix defined in (1). On the other hand, by
A ∈ ΘG we mean a matrix with the zero pattern of A(G) and parameter values
substituted for the symbolic entries aij , i.e., an element of Rn×n.

A linear compartment model described by a graphG gives rise to a system of linear
differential equations. Let x ∈ Rn be the state variable representing the concentration
of material in each compartment, let u ∈ Rn be the input vector corresponding to the
input data of the experiment, and let y ∈ Rn be the output vector representing the
measurement data. Furthermore, let A = A(G) be the parameter matrix correspond-
ing to G, and let B ∈ Rn×n be a matrix that indicates from which compartments the
output is obtained. Then the transport of material through the compartments can be
described by a parametrized system:

(2)
ẋ(t) = Ax(t) + u(t),

y(t) = Bx(t).

Note that the matrices A and B do not depend on the time t, since we assume the
model to be time-invariant.

As in [14], we only consider a specific class of linear compartment models—namely,
the models that satisfy the following three assumptions.

Assumption 1.2. The input and output take place only in compartment 1.

This implies that the input vector is of the form u = (u1, 0, . . . , 0)
T ∈ Rn and

that the output vector y is of the form (x1, 0, . . . , 0)
T . Therefore, system (2) can be
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1 2

Input

Output

a01 a02

a21

a12

(a) Linear compartment model

1 2

(b) Graph representation

Fig. 1. General 2-compartment model.

simplified to system (3):

(3)
ẋ(t) = Ax(t) + u(t),

y(t) = x1(t).

The output y is no longer a vector in Rn but just a value in R. Because of this assump-
tion, we do not need to indicate the input and output in the graph representation of
a given model.

Assumption 1.3. The graph G is strongly connected.

In other words, there is a directed path from any vertex in G to any other vertex
in G. A path will be denoted by a sequence of vertices: the sequence (v0, v1, . . . , vk)
represents the path from v0 to vk using the edges v0 → v1, v1 → v2, . . . , vk−1 → vk.

Assumption 1.4. Every compartment has a leak: the leak parameters a0l, l ∈ [n],
are independent from each other and from the edge parameters aij (i, j ∈ [n], i �= j).

This assumption ensures that all parameters aij for i, j ∈ [n], including the diag-
onal ones defined as above, are independent. As a consequence, the dimension of the
parameter space ΘG equals m+ n. A leak at compartment i would correspond to an
edge from i to the environment, but these edges are not included in G.

Remark 1.5. In a biological setting, the parameters aij with i �= j must be non-
negative, or they would correspond to a negative flow. Combining this with the
assumption that every compartment has a leak, it follows that the parameters aii,
defined as −a0i −

∑
j �=i aji, must be strictly negative. These constraints are not ac-

counted for in our identifiability analysis, but they may help to recover the correct
parameters when a model is only locally identifiable or even unidentifiable.

Example 1.6. Consider the general 2-compartment model and its graph represen-
tation in Figure 1. This model can be described by the following ODE system:

ẋ1(t) = −(a01 + a21)x1(t) + a12x2(t) + u(t),

ẋ2(t) = a21x1(t) +−(a12 + a02)x2(t),

y(t) = x1(t).

Define a11 = −a01 − a21 and a22 = −a12 − a02; then the equations for ẋ1, ẋ2 can be
written as [

ẋ1(t)
ẋ2(t)

]
=

[
a11 a12
a21 a22

] [
x1(t)
x2(t)

]
+

[
u1(t)
0

]
,

which brings the system of equations into the form of system (3).

When considering model identifiability, a problem that arises is what to do with
unidentifiable systems. As we shall see in section 2, a model satisfying Assump-
tions 1.2–1.4 cannot be identifiable unless n = 1. We follow the approach of [14] by

D
ow

nl
oa

de
d 

03
/3

0/
17

 to
 1

92
.1

6.
19

1.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1580 JASMIJN A. BAAIJENS AND JAN DRAISMA

searching for identifiable combinations of parameters and using these to find identi-
fiable scaling reparametrizations of the original model. An identifiable reparametri-
zation is a map which transforms the model into a model whose parameter space is
lower dimensional, such that it is identifiable. We restrict ourselves to rational scal-
ing reparametrizations; these correspond to a rational scaling of the state variables,
as described in section 2. The advantage of a scaling reparametrization is that it
has a relatively simple connection to the original model. Although the parameters of
the reparametrized model do not allow us to estimate the original parameter values,
they correspond to certain combinations of the original parameters, and hence we
can predict relative size changes of these parameters. Our primary goal is to classify
models for which there exists an identifiable scaling reparametrization. As we will see,
under the restrictive assumptions above, this task already requires new combinations
of mathematical techniques.

A related question is how to construct, from a model which has an identifiable
scaling reparametrization, larger models that also admit such a reparametrization;
or, alternatively, how to transform a model that does not admit an identifiable scal-
ing reparametrization into one that does. To answer these questions, it is crucial to
understand the structures in a graph that allow the corresponding model to have an
identifiable scaling reparametrization. In section 4 several combinatorial constructions
and necessary or sufficient conditions are presented for the existence of an identifi-
able scaling reparametrization. And while our model assumptions are indeed quite
restrictive, we will show that some of our results extend to a more general setting.

1.2. Previous work. The concept of identifiability of dynamical systems was
introduced by Bellman and Åström [3] in 1970 and has been studied extensively since.
Godfrey [8] gives a thorough description of compartment models and applications,
also treating the concept of identifiability. There have been different approaches to
determining whether a system is identifiable or not, where one has to distinguish
between local and global identifiability, as defined in [3]. These methods include a
Taylor series expansion approach [16], a Laplace transform approach [3], a similarity
transformation approach [5, 19] also known as exhaustive modeling, and a differential
algebra approach [10, 13]. A graph theoretical approach to parameter identifiability
is described in [4]. A practical comparison of different algorithms for parameter
identifiability analysis of biological systems is given in [17].

We consider the question of what to do with unidentifiable systems. In this case
there are too many parameters (unknowns) compared to the amount of information
obtained from the experiment, so the parameter space has to be constrained somehow.
This can be done using a reparametrization of the original system, which reduces it to
a model having a parameter space of lower dimension. A procedure for finding such a
reparametrization has been discussed for the differential algebra approach [10, 13, 12],
for the Taylor series approach [7], and for the similarity transformation approach
[6, 11]. In [11, 19] it is observed that nonidentifiability of a system of ODEs is often
due to Lie point symmetries. We would like to point out that this is not the entire
story in our setting; see Remark 3.3. As we only consider a specific class of models,
the problem of finding identifiable reparametrizations becomes easier compared to the
general setting discussed in these references.

The motivation for this restrictive setting is that our goal is different from the
results described above. We are interested in certain structures of graphs that cause
the lack or allow the existence of an identifiable scaling reparametrization for the
corresponding model. After all, it would be very useful to learn not just whether a
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IDENTIFIABILITY OF LINEAR COMPARTMENT MODELS 1581

given model has an identifiable scaling reparametrization, but also why it does or
does not, and how the model can be adapted to obtain one that does admit such a
reparameterization. Our aim, in a restricted setting, is therefore more ambitious than
existing results for more general settings. We build upon [14], where the same class of
models is analyzed and several results for the existence of identifiable reparametriza-
tions are derived. Meshkat and Sullivant also present an algorithm to find such a
reparametrization if one exists. We will discuss their main results before extending
these ideas.

1.3. Organization of this paper. Our main goal is to obtain a classification
of graphs (satisfying our assumptions) for which there exists an identifiable scaling
reparametrization. Section 2 summarizes the definitions and results from [14], which
we will need for our analysis. This involves the concepts of identifiability and identi-
fiable (scaling) reparametrizations and a criterion for the existence of an identifiable
scaling reparametrization for a given model. This criterion will be referred to as the
dimension criterion.

In section 3 we derive a reformulation of the dimension criterion, which is the
main result of this paper.

Theorem 1.7. Let G = (V,E) be a graph satisfying Assumptions 1.2–1.4. Then
G has an identifiable scaling reparametrization if and only if the matrix B(G) defined
by

B(G)(k,l),(i,j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ajl if i = k, j �= l, and l → j ∈ E,

aki if i �= k, j = l, and i→ k ∈ E,

akk − all if i = k and j = l,

0 otherwise

has full column rank.

Next, in section 4 we search for constructions that can be applied to a given graph,
such that the resulting graph has an identifiable scaling reparametrization. We briefly
discuss some results of [14], followed by several new constructions. The concept of an
ear decomposition of a graph is discussed, and we prove the following theorem.

Theorem 1.8. Let G be a graph that has a nontrivial ear decomposition, i.e., an
ear decomposition without trivial ears whose initial cycle contains vertex 1; then G
has an identifiable scaling reparametrization.

Interestingly, this result also holds for models with multiple inputs or outputs
besides compartment 1, thus relaxing Assumption 1.2, and Assumption 1.4 can even
be completely removed. In the remainder of section 4 we present some computational
results (obtained using Mathematica) on the size of certain classes of graphs for which
an identifiable scaling reparametrization exists.

Finally, in section 5 we summarize our results and present some directions for
future research.

2. Identifiable scaling reparametrizations. In this section we give a brief
overview of definitions and results from [14]. In order to relate the observed data to
the unknown model parameters, one constructs an input-output equation [2]:

ψ(y, u,A) = 0.

This equation depends only on the parameter matrix A, input u, and output y, but
it may also contain derivatives ẏ, ÿ, . . . , u̇, ü, . . . .
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1582 JASMIJN A. BAAIJENS AND JAN DRAISMA

Given a matrix M , let M1 denote the submatrix obtained by deleting the first
row and column of M . Recall that, according to Assumption 1.2, compartment 1 is
the input-output compartment. For linear ODE models satisfying our assumptions,
we obtain the following input-output equation.

Theorem 2.1 (see [14, Thm. 2.2]). Let G be a graph satisfying Assumptions
1.2–1.4, and let A = A(G). Then the input-output equation corresponding to (3)
becomes

(4) y(n) + c1y
(n−1) + · · ·+ cny = u

(n−1)
1 + d1u

(n−1)
1 + · · ·+ dn−1u1,

where c1, . . . , cn and d1, . . . , dn−1 are the coefficients of the characteristic polynomial
of A and A1, respectively.

The input-output equation gives rise to a coefficient map c that maps a parameter
matrix A ∈ ΘG to the coefficient vector of the input-output equation. This vector
contains the coefficients of y, ẏ, ÿ, . . . , u, u̇, ü, . . . in terms of the parameter values aij .
From the above equation we obtain the coefficient map c : ΘG → R2n−1 given by

c(A) := (c1, . . . , cn, d1, . . . , dn−1),

where c1, . . . , cn, d1, . . . , dn−1 are the coefficients of (4). This map is called the double
characteristic polynomial map. Because of Theorem 2.1 the matrices A and A1 and
the double characteristic polynomial map c will play a major role in the rest of this
paper.

Using c, we can define identifiability in mathematical terms. Suppose two distinct
parameter matrices A,A′ yield the input-output data, i.e., c(A) = c(A′). Then it is
impossible to tell from only observing the relations among input and output whether
the parameter values corresponding to the model should be those of A or of A′. The
model is called globally identifiable if this does not happen, i.e., if c is injective on the
parameter space. This is typically too strong a condition; as in [14], we will reserve the
predicate identifiable for the following notion, which is also called generically locally
identifiable: if a map f from a parameter space Θ captures the observable quantities
of a model, then the model is called identifiable if there is a dense subset U of Θ such
that each A ∈ U has a neighborhood on which f is injective.

However, taking Θ = ΘG and f = c, Meshkat and Sullivant show that the re-
sulting model is not identifiable unless n = 1. One approach when dealing with
unidentifiable models is to restrict the parameter space to a lower-dimensional space.
Another approach, taken here and in [14], is to look for combinations of parameters
that are identifiable. Motivated by the origin of the model corresponding to G, they
restrict to combinations that take the form

bij = aijfi(A)/fj(A),

where fi : ΘG → R, i = 1, . . . , n, are functions. Then the bij have a natural interpre-
tation as the rates of the dynamical system with scaled variables

Xi = fi(A)xi.

To achieve that X1 equals the quantity in the input-output compartment 1, we further
impose that f1(A) = 1 for all A. Together, the functions fi, i ∈ [n], are called a scaling
reparametrization. Since the matrix B = (bij)ij is obtained from A by conjugating
with a diagonal matrix, we have c(B) = c(A) and bii = aii for all i ∈ [n]. Thus c
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induces an R2n−1-valued function c on the image Θ′ of the map that sends A to B. If
c : Θ′ → R2n−1 is identifiable, then the scaling reparametrization is called identifiable.
If an identifiable scaling reparametrization exists, then it can always be chosen such
that the fi are in fact monomials in the entries of A [14].

Lemma 2.2 (see [14, Cor. 2.13]). If G has an identifiable scaling reparametriza-
tion, then G has at most 2n− 2 edges.

We focus on determining whether or not an identifiable scaling reparametrization
exists for models satisfying our assumptions. Because of Lemma 2.2 we only need
to consider graphs which have at most 2n − 2 edges, so from now on we assume
m ≤ 2n− 2. The main result of Meshkat and Sullivant gives a criterion to decide if
an identifiable scaling reparametrization exists.

Theorem 2.3 (see [14, Thm. 1.2]). A graph G has an identifiable scaling repa-
rametrization if and only if the dimension of the image of the double characteristic
polynomial map is m+ 1.

We will refer to Theorem 2.3 as the dimension criterion. This criterion reduces
the problem of deciding whether or not an identifiable scaling reparametrization exists
to calculating the dimension of the image of the double characteristic polynomial
map. We observe that the dimension criterion allows us to check whether G has an
identifiable scaling reparametrization by calculating the rank of the differential (or
Jacobian) dAc of the map c at a sufficiently general point A ∈ ΘG. This follows
from the fact that c is a polynomial map, surjective on im c, and hence for A in an
open dense subset of ΘG the rank of dAc equals the dimension of the image of c [9,
Prop. 14.4].

Definition 2.4. We say that G has the expected dimension if the dimension of
the image of the double characteristic polynomial map equals m+ 1.

In other words, an identifiable scaling reparametrization exists if and only if G
has the expected dimension. If this is the case, the scaling reparametrization can be
found using the algorithm presented in [14].

3. Reformulating the dimension criterion. So far, we have discussed all
relevant definitions and earlier results. From now on we take a new approach, start-
ing with a reformulation of the dimension criterion that was given in Theorem 2.3.
This leads to our main result: an alternative criterion to test whether a given graph
has the expected dimension. In other words, we determine if an identifiable scaling
reparametrization exists. This criterion can be verified in probabilistic polynomial
time.

So far we have been working over the real numbers, since all parameters are
assumed to be real. However, R lies Zariski dense in C, and the dimension of the
image of the double characteristic polynomial map c is determined by the rank of its
Jacobian at a sufficiently general point. Therefore, we might as well work over the
complex numbers to determine the dimension of the image of c. From now on let
ΘG ⊆ Cn×n, and let c : ΘG → C2n−1. Working over the complex numbers simplifies
issues concerning diagonalizability, which we shall use later.

We consider the matrix group GLn(C), the general linear group, consisting of all
invertible n × n matrices over C. For simplicity GLn is written instead of GLn(C).
The tangent space of GLn at the identity is its Lie algebra gln. This space consists of
all n×n complex matrices, with the commutator serving as the Lie bracket: [X,A] :=
XA− AX . We write gln instead of Cn×n to emphasize that it arises as the tangent
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1584 JASMIJN A. BAAIJENS AND JAN DRAISMA

space of GLn.
Furthermore, given a matrix A ∈ Cn×n, the centralizer of A in gln is denoted

Zgln(A). It contains all X ∈ gln that commute with A, i.e., [X,A] = 0.

3.1. The kernel of the differential map. For sufficiently general A ∈ ΘG we
have the following chain of equalities:

dim im c = rk(dAc) = m+ n− dimker(dAc),

where dAc denotes the differential (or Jacobian) of c at the point A. The first equality
was already mentioned in the previous section, and the second equality follows directly
from the rank-nullity theorem. Thus we have shown the following lemma.

Lemma 3.1. The dimension of the image of the double characteristic polynomial
map c equals m+ 1 if and only if the dimension of the kernel of the differential dAc
equals n− 1 for sufficiently general A ∈ ΘG.

Using this result, we can determine whether a given model has the expected
dimension by calculating the rank of the differential dAc. In order to classify which
models have the expected dimension, we need to know what the kernel of dAc looks
like. By definition of the double characteristic polynomial map c, the kernel of dAc
is equal to the intersection of the two kernels corresponding to the differentials of the
characteristic polynomials of A and A1. Using this observation, we will derive the
form of ker(dAc).

Proposition 3.2. For sufficiently general A ∈ Θ, the kernel of the differential
map dAc : ΘG → C2n−1 is given by{

C ∈ ΘG

∣∣∣ ∃X ∈ gln : [X,A] = C
∃Y ∈ gln−1 : [Y,A1] = C1

}
,

where A1, C1 denote the matrices obtained by removing the first row and the first
column from A,C, respectively.

Remark 3.3. Suppose that X is an n × n matrix with zeros in the first row and
column except on position (1, 1) and that the linear map A �→ [X,A] maps ΘG into
itself. Then, taking Y = X1, we find that [X,A] lies in the set in the proposition
for each A ∈ ΘG. The set of such X forms a Lie algebra containing the diagonal
matrices and hence spanned by some subset of the elementary matrices Eij , and this
Lie algebra can be easily determined from the graph G. This Lie algebra captures Lie
point symmetries of the ODE, as in [11]. But the set in the proposition is often larger
than (the image of) this algebra and indeed does not correspond to any Lie algebra
acting on the parameter space.

Proof. We begin by writing c(A) = [c0(A)|c1(A)], where c0, c1 are the coeffi-
cient maps corresponding to the characteristic polynomials of A,A1, respectively. Let
dAc0 ∈ Cn×(n+m) and dAc1 ∈ C(n−1)×(n+m) be the differential maps of c0, c1, respec-
tively, containing the partial derivatives with respect to the model parameters. The
differential of c can be written as

dAc =

[
(dAc0)

T

(dAc1)
T

]
,

which shows that X lies in the kernel of dAc if and only if X lies in both the kernel
of dAc0 and that of dAc1.
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Consider the map c0 : Cn×n → Cn, and define the map ψ : GLn → Cn×n that
sends g to gAg−1 for some fixed A ∈ Cn×n. Define the composition φ := c0 ◦ψ, which
is of the form

GLn
ψ−−−−→ Cn×n c0−−−−−→ Cn

g �−→ gAg−1 �−→ (a1, . . . , an),

where a1, . . . , an are the coefficients of the characteristic polynomial of gAg−1. The
characteristic polynomial of A is invariant under conjugation by an element of GLn;
hence a1, . . . , an are equal to the coefficients of the characteristic polynomial of A.
This implies that the composition c0◦ψ is in fact a constant map sending each g ∈ GLn
to the fixed point (a1, . . . , an) ∈ Cn. Therefore, the differential dφ is identically zero;
in particular, dIφ = 0 for the n× n identity matrix I.

By the chain rule, dIφ = (dAc0)(dIψ), so dIφ = 0 implies that the image of dIψ
is contained in the kernel of dAc0. For X ∈ gln we have (dIψ)(X) = [X,A]; hence the
image of dIψ equals [gln, A]. We conclude that [gln, A] ⊆ ker(dAc0).

On the other hand, since c0 is a surjective polynomial map from Cn×n to Cn, the
dimension of the kernel of dAc0 is generically equal to n2 − n. The kernel of the Lie
bracket [·, A] is precisely the centralizer of A in gln, which has dimension n according
to Lemma 3.4 below. This shows that the dimension of [gln, A] equals n

2 − n, and
because the kernel is a linear subspace of ΘG, we conclude that ker(dAc0) = [gln, A].

The same argument applies to the map c1 : Cn×n → Cn−1, showing that ker(dAc1)
= {C | C1 ∈ [gln−1, B]} for any A ∈ ΘG. Combining these results, we see that C lies
in the kernel of dAc if and only if C lies in [gln, A] and C1 lies in [gln−1, A1]. In other
words, there exist X ∈ gln and Y ∈ gln−1 such that [X,A] = C and [Y,A1] = C1.

Lemma 3.4. For sufficiently general A ∈ Cn×n, the centralizer of A in gln, de-
noted by Zgln(A), has dimension n.

Proof. Let A ∈ Cn×n be such that it has n distinct, nonzero eigenvalues. The
elements of Zgln(A) must be diagonalized by the same basis that diagonalizes A, and
such elements are determined by their eigenvalues on this basis. This leaves us n
degrees of freedom, so the centralizer has dimension n.

3.2. The preimage of the kernel. In the previous section we saw that G
has the expected dimension if and only if the kernel of the differential of the double
characteristic polynomial map has dimension n− 1. So far, we have determined this
kernel, but what can we say about its dimension?

For given A ∈ ΘG, the kernel of dAc equals the image of the commutator map
X �→ [X,A] restricted to the linear subspace VA ⊆ gln defined by

VA := {X ∈ gln | [X,A] ∈ ker(dAc)},
which is the preimage of ker(dAc) under the commutator map. From the fact that
[·, A] is a linear map it follows that VA is a linear subspace of gln. Furthermore, any X
that commutes with A is contained in VA, since [X,A] = 0 and [X,A]1 = 0 = [Y,A1]
for any Y ∈ Zgln−1

(A1). From Lemma 3.4 we know that the kernel of the commutator
map has dimension n, which implies that

(5) dimker(dAc) = n− 1 ⇔ dimVA = 2n− 1.

In words, G has the expected dimension if and only if the dimension of VA is 2n− 1.
Therefore, we will examine the structure of VA for a given graph G. In addition to the
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1586 JASMIJN A. BAAIJENS AND JAN DRAISMA

centralizer of A, VA will always contain the space Dn of all n × n diagonal matrices
with entries in C. Indeed, by computing DA−AD for D ∈ Dn, we find

(6) (DA−AD)ij = (dii − djj)aij for i, j = 1, . . . , n.

If position (i, j) of A is zero, it follows that position (i, j) of [D,A] is zero as well.
This shows that [D,A] has the correct zero pattern, i.e., [D,A] ∈ ΘG. Moreover, one
can check that

[D1, A1] = [D,A]1,

so the second constraint for being in the kernel of dAc is also satisfied. The space
of n × n diagonal matrices Dn is again n-dimensional; hence we already have two
n-dimensional subspaces of VA. However, these two subspaces have a nontrivial in-
tersection, as the next lemma shows.

Lemma 3.5. Zgln(A) ∩ Dn = CIn for sufficiently general A ∈ ΘG and G strongly
connected.

Proof. Suppose that X = diag(λ1, . . . , λn) ∈ Zgln(A) ∩ Dn; then by definition
of Zgln(A), X satisfies XA = AX . Combining this equality with (6) shows that
for aij �= 0 this equality implies that λiaij = λjaij and hence λi = λj . Since G is
strongly connected, starting from vertex 1, we can get to any other vertex j along
some path (1, i1, . . . , ik, j). The corresponding entries ai11, ai2i1 , . . . , ajik are nonzero
for sufficiently general A, and by the previous observation it follows that λ1 = λi1 =
· · · = λj . But we can find such a path for any vertex j ∈ [n], so we conclude that
λ1 = · · · = λn and therefore X must be of the form cIn, c ∈ C.

What we have seen so far is that Zgln(A) + Dn ⊆ VA for any G. According to
Lemma 3.5, this is a subspace of dimension 2n− 1, so the dimension of VA is at least
2n− 1. Combining this with (5), we obtain the following corollary.

Corollary 3.6. G has the expected dimension if and only if

VA
/
(Zgln(A) +Dn) = {0}.

We shall now derive several restrictions on the form of elements of the quotient
space in the above corollary. An important tool will be the following lemma.

Lemma 3.7. Let G be a graph, not necessarily strongly connected, and let A ∈ ΘG
be sufficiently general. Suppose v = (v1, . . . , vn) is an eigenvector of A. If vi �= 0 and
there exists a path from i to j in G, then also vj �= 0.

Proof. Let v = (v1, . . . , vn) ∈ Cn such thatAv = λv. Partition the indices 1, . . . , n
into two sets, [n] = I � J , such that vi = 0 for all i ∈ I and vj �= 0 for all j ∈ J .
Construct the |J | × |J | matrix A′ by removing the rows and columns of A indexed
by elements of I. Similarly, let v′ be the vector obtained from v by removing its
zero entries. Then we have A′v′ = λv′, and for sufficiently general A′ this determines
the vector v′ ∈ C|J| up to multiplication by a scalar (recall that the diagonal of A′

consists of free parameters independent of the other parameters). Since v is obtained
from v′ by adding zero entries at positions indexed by I, also v has been determined
up to scalar multiplication. However, for Av = λv to hold, v must satisfy a system of
n linear equations of the form∑

j∈J
aijvj = λvi, i ∈ [n].
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We know that v must be a solution of the subset of these equations corresponding to
i ∈ J since Av′ = λv′. The equations that remain to be satisfied are of the form

(7)
∑
j∈J

aijvj = 0, i ∈ I.

The entries vj with j ∈ J are already fixed and only depend on the matrix A′, so for
sufficiently general A the vj are completely independent of the entries aij with i ∈ I.
Therefore, if vj �= 0 and aij �= 0, the nonzero term aijvj cannot be canceled from (7).
So for v to satisfy Av = λv, one must have vi �= 0 whenever there exists j ∈ [n] such
that j → i is an edge in G and vj �= 0.

Now suppose vi �= 0 and there exists a path {i, s1, . . . , st, j} in G. Then, by our
previous observation, we have

vi �= 0 ⇒ vs1 �= 0 ⇒ · · · ⇒ vst �= 0 ⇒ vj �= 0.

This lemma implies that the support of v is the union of vertex sets of strongly
connected components of G. In particular, if G is strongly connected, then v does not
have any zero entries.

Proposition 3.8. Let G be strongly connected and A ∈ ΘG sufficiently general.
Then any class [X ] ∈ VA /

(
Zgln(A) +Dn

)
has a representative x = (xij) ∈ VA whose

first row, first column, and diagonal are all zero; i.e., xi1 = x1i = xii = 0 for all
i ∈ [n].

Proof. Let [X ] ∈ VA /
(
Zgln(A) + Dn

)
. First we show that there exists a repre-

sentative x of [X ] whose first row and the diagonal are zero; then we use these facts
to show that the first column must also be zero.

We claim that projectingM ∈ Zgln(A) onto its first row yields a bijection between
Zgln(A) and Cn. Note that, indeed, both spaces are n-dimensional. The set of diago-
nalizable matrices is dense in Cn×n, so a sufficiently general A ∈ ΘG is diagonalizable.
Let A = PDP−1 be the eigendecomposition of A, the columns of P forming a basis
of eigenvectors. If A is diagonalizable, then MA = AM if and only if M = PD′P−1

for some diagonal matrix D′. Since G is strongly connected, Lemma 3.7 implies that
P contains no zeros. Hence, if M is nonzero, then MP = PD′ implies that the first
row of M has at least one nonzero position. Therefore, the projection Zgln(A) → Rn

to the first row is injective, and as both spaces have dimension n, it is also surjective.
Now choose M ∈ Zgln(A) such that its first row equals the first row of X , and

choose a diagonal matrix D ∈ Dn whose diagonal equals the diagonal of X − M .
ThenM +D ∈ Zgln(A)+Dn and [X ] = [X− (M +D)] ∈ VA /

(
Zgln(A) +Dn

)
; hence

x = X − (M +D) is a representative of [X ] satisfying x1i = xii = 0 for all i ∈ [n].
What remains to be shown is that for X ∈ VA which has its first row and diagonal

all zero, the first column of X must also be zero; in fact, in the proof we will use only
that the first row is zero. Write both X and A as block matrices:

X =

[
0 0T

x1 X1

]
and A =

[
a11 aT1

a2 A1

]
,

where x1, a1, and a2 are vectors in Cn−1 and X1, A1 are matrices in C(n−1)×(n−1).
Multiplying these matrices to obtain XA−AX , we see that

[X,A]1 = X1A1 −A1X1 + x1a
T
1 .

D
ow

nl
oa

de
d 

03
/3

0/
17

 to
 1

92
.1

6.
19

1.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1588 JASMIJN A. BAAIJENS AND JAN DRAISMA

For X to lie in VA there must exist Y ∈ gln−1 such that [X,A]1 = [Y,A1], so we
obtain

x1a
T
1 = (Y −X1)A1 −A1(Y −X1) = [Y −X1, A1].

We need to show that for sufficiently general A this implies x1 = 0, i.e.,{
x1a

T
1 | x1 ∈ Cn−1

} ∩ [gln−1, A1] = {0}.

Observe that the first space has dimension n− 1, while the dimension of the second
space equals dim gln−1−dimZgln−1

(A1) = (n−1)2− (n−1). This suggests that their
intersection might indeed be trivial.

Let B = x1a
T
1 ∈ [gln−1, A1], and let vT1 , . . . , v

T
n−1 be the row eigenvectors of A1,

where v1, . . . , vn−1 ∈ Cn−1 form a basis (since A1 is sufficiently general). We claim
that

(8) vTi B ∈
⊕
j �=i

CvTj for i = 1, . . . , n− 1.

Indeed, we can write B = [C,A1] for some C ∈ gln−1, so that, for a fixed i,

vTi B = vTi CA1 − λiv
T
i C = vTi (CA1 − λiC) = vTi C(A1 − λiI).

Now vTi C =
∑n−1
j=1 αjv

T
j for some α1, . . . , αn−1 ∈ C. As vTi (A1 − λiI) = 0, we find

vTi B =

n−1∑
j=1

αjv
T
j (A1 − λiI) =

∑
j �=i

αj(λj − λi)v
T
j ∈

⊕
j �=i

CvTj ,

as claimed. Now decompose aT1 =
∑n−1
j=1 cjv

T
j = cTP where the rows of P are the vTj ,

and let J := {j ∈ [n] | cj �= 0} be the support of a1 on this basis. Since G has an
arrow to 1, a1 is not identically zero, and hence J �= ∅. Now (8) and B = x1a

T
1 imply

that vTj x1 = 0 for j ∈ J . We claim that J = [n], so that x1 = 0, as desired.

To see this, write cT = aT1 P
−1, and note that P−1 is the matrix whose columns

are the column eigenvectors of A1. If the graph G1 corresponding to A1 is strongly
connected, then we know from Lemma 3.7 that P−1 contains no zeros, and since a1
is independent of A1 and not identically zero, we find that c has no zeros.

In the general case, let C1, . . . , Cl be the strongly connected components of G1,
and let u be a column of P−1. By Lemma 3.7, for each component Ci, the entries of u
corresponding to the vertices of Ci are either all zero or all nonzero. The eigenvector
u must be nonzero on at least one component Ci, and if this component has an edge
to vertex 1 in the original graph G, then aT1 u �= 0. If Ci does not have an edge to
vertex 1 in G, there must be a path in G1 from Ci to some component Cj which
does have an edge to 1 in G, as G is strongly connected. Then Lemma 3.7 implies
that for every vertex k on this path we have uk �= 0. In particular, all entries of u
corresponding to vertices of Cj are nonzero, and since Cj has an edge to 1 in G, again
we obtain aT1 u �= 0. Hence cT = aT1 P

−1 has no zero entries.

This proposition implies that when looking for X ∈ VA /
(
Zgln(A) +Dn

)
, it suf-

fices to search for X whose first row, first column, and diagonal are all zero. By
definition, VA contains all X ∈ gln for which [X,A] lies in the kernel of the differen-
tial dAc. From Proposition 3.2 we know that this implies that [X,A] ∈ ΘG and there
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1

2 3

4

Fig. 2. Example 3.11.

must exist Y ∈ gln−1 such that [Y,A1] = [X,A]1. For X ∈ gln whose first row, first
column, and diagonal are all zero, we can just take Y = X1, since[

0 0T

0 X1

][
a11 aT1

a2 A1

]
−
[
a11 aT1

a2 A1

] [
0 0T

0 X1

]
=

[
0 aT1X1

X1a2 [X1, A1]

]
.

Hence for X of this form we have

X ∈ VA ⇔ [X,A] ∈ ΘG.

Combining this observation with Corollary 3.6 and Proposition 3.8, we obtain the
following corollary.

Corollary 3.9. G has the expected dimension if and only if, for sufficiently
general A ∈ ΘG, there does not exist X ∈ gln of the form X1i = Xi1 = Xii = 0 for
all i ∈ [n], X �= 0, such that the commutator [X,A] lies in the parameter space ΘG.

Thus, to determine whether a graph has the expected dimension, we need to check
whether there exists X ∈ gln satisfying the properties of Corollary 3.9. Consider the
following condition on the parameter matrix A = A(G).

Condition 3.10. There exists an ordered pair (i, j) with i, j ∈ {2, . . . , n}, i �= j,
such that the support of the jth row is contained in the support of the ith row of A
and the support of the ith column is contained in the support of the jth column of A.

For a strongly connected graph G, the matrix A = A(G) satisfies the above
condition whenever there exist vertices i, j �= 1 such that for all k ∈ [n] the following
holds: for any edge k → j there is also an edge k → i, and for any edge i → k there
is also an edge j → k. Also, the nonzero entries aii and ajj of A should be taken into
account, which implies that both aij and aji are nonzero; i.e., i and j form a 2-cycle
in G.

Example 3.11. Consider the graph G in Figure 2 and its parameter matrix

A(G) =

⎡⎢⎢⎣
a11 0 0 a14
a21 a22 a23 0
0 a32 a33 0
0 0 a43 a44

⎤⎥⎥⎦ .
Observe that the pair (2, 3) satisfies Condition 3.10. Let X = E23 be the matrix with
a 1 at position (2, 3) and zeros elsewhere; then [X,A] has the correct zero pattern:

[X,A] =

⎡⎢⎢⎣
0 0 0 0
0 a32 a33 − a22 0
0 0 −a32 0
0 0 0 0

⎤⎥⎥⎦ .D
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This shows that E23 represents a nontrivial element of VA /
(
Zgln(A) +Dn

)
, and hence

G does not have the expected dimension.

It turns out that Condition 3.10 is a sufficient condition for VA /
(
Zgln(A) +Dn

)
to be nontrivial, as we show in the next lemma. Let Eij be the matrix with a 1 at
position (i, j) and zeros elsewhere.

Lemma 3.12. Let G be a strongly connected graph such that the pair (i, j) satisfies
Condition 3.10 with A ∈ ΘG. Then the matrix X = Eij ∈ gln yields a nontrivial class
[X ] ∈ VA /

(
Zgln(A) +Dn

)
.

Proof. From i, j ∈ {2, . . . , n} and i �= j, it follows that X is of the correct form:
it has its first row, first column, and diagonal all zero. According to Corollary 3.9 we
only need to show that [X,A] ∈ ΘG. Consider the two terms of the Lie bracket: XA
has its ith row equal to the jth row of A and zeros elsewhere, while AX has its jth
column equal to the ith column of A and zeros elsewhere. Clearly A itself must have
the correct zero pattern, so from Condition 3.10 we immediately see that XA−AX
must be in ΘG.

When a graph G satisfies Condition 3.10, this lemma allows us to conclude that
G does not have the expected dimension by only inspecting A(G). However, Condi-
tion 3.10 is not a necessary condition for G not to have the expected dimension. In
the next section we will derive a criterion to decide for a given graph whether or not
there exists X ∈ gln satisfying Corollary 3.9.

3.3. A new criterion based on matrix rank. Let X ∈ gln have its first row,
first column, and diagonal all zero, and write

X =
∑

(i,j)∈L
xijEij .

Define two sets L,R as follows:

L = {(i, j) | i, j ∈ {2, . . . , n} and i �= j} ,
R = {(k, l) | k, l ∈ [n], k �= l, and l → k is not an edge of G} .

Note that L corresponds to all positions of X that are outside the first row, first
column, and the diagonal. Also note that R corresponds to all zero positions of A(G).

The constraint [X,A] ∈ ΘG from Corollary 3.9 gives rise to a system of linear
equations in the entries of X with coefficients that are linear A. To see what this
expression looks like, consider the two terms of the Lie bracket [Eij , A]. The product
EijA has its ith row equal to the jth row of A and zeros elsewhere, while AEij has
its jth column equal to the ith column of A and zeros elsewhere. Hence Eij adds a
nonzero term to position (k, l) of [X,A] only in the following three cases:

i = k, j �= l, and l → j ∈ G � −ajl,
i �= k, j = l, and i→ k ∈ G � aki,

i = k and j = l � akk − all.

Define the matrix B(G) ∈ C|R|×|L| as

B(G)(k,l),(i,j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ajl if i = k, j �= l, and l → j ∈ E,

aki if i �= k, j = l, and i→ k ∈ E,

akk − all if i = k and j = l,

0 otherwise.

(9)
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From our previous observations, it follows that B(G) is the coefficient matrix corre-
sponding to the system of equations obtained from [X,A] ∈ ΘG.

Let x ∈ C|L| be the vector of coefficients xij , (i, j) ∈ L; then the linear system
corresponding to [X,A] ∈ ΘG is given by

B(G)x = 0.

It follows that each solution x ∈ C|L| gives rise to a class [X ] ∈ VA /(Zgln(A)+Dn) and
vice versa. Furthermore, x = 0 if and only if X = 0. Combining these observations
with the fact that B(G) has a nontrivial kernel if and only if its rank is less than |L|,
we obtain the following theorem.

Theorem 1.7. Let G = (V,E) be a graph satisfying Assumptions 1.2–1.4. Then
G has an identifiable scaling reparametrization if and only if the matrix B(G) as
defined in (9) has full column rank.

If |R| < |L|, then B(G) certainly has rank smaller than |L|. However, this implies
that the number of zero positions of A is less than (n− 1)(n− 2). Since the number
of zero positions in A equals n2 − (n+m), we obtain

n2 − (n+m) < (n− 1)(n− 2)

and hence m > 2(n − 1). This is equivalent to Lemma 2.2, which stated that if
m > 2n− 2, then G does not have the expected dimension.

Remark 3.13. This condition is related to the existence of a perfect matching in
the bipartite (undirected) graph H(G) = (L ∪R,E) whose edges are defined by

E = {((i, j), (k, l)) | [Eij , A] is nonzero on position (k, l)} .

If we define edge weights for the edges in the bipartite graph H(G) by

w((i, j), (k, l)) = [Eij , A]kl

with (i, j) ∈ L and (k, l) ∈ R, then B(G) is the weighted bi-adjacency matrix corre-
sponding to H(G). So if G has an identifiable scaling reparametrization, then B(G)
has full rank, and therefore there exists an L-saturating matching in H [18]. In other
words, an L-saturating matching in H(G) is a necessary condition for G to have the
expected dimension. However, this is not a sufficient condition: Example 3.14 shows
that although an L-saturating matching in H exists, the matrix B(H) does not have
rank |L|.

Example 3.14. Let G be the graph given in Figure 3a with its corresponding
bipartite graph H(G) in Figure 3b, where the thick edges represent an L-saturating
matching M . Note that |L| = |R|, so this is actually a perfect matching. The matrix
B(G) is of the form given in Figure 3c. One can check that the last six columns of
this matrix are linearly dependent; hence B(G) has rank 11, while |L| = 12. In other
words, G does not have the expected dimension.

Remark 3.15. The dimension criterion given by Meshkat and Sullivant allows us
to check whether a given graph has the expected dimension or not by computing the
double characteristic polynomial map c and determining the rank of dAc in sufficiently
general A ∈ ΘG. This can be done by substituting random parameter values from
some large (but finite) set S and evaluating the rank of dAc in this point. The
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1 23

45

(a) G

(2, 3) (2, 4) (2, 5) (3, 2) (3, 4) (3, 5) (4, 2) (4, 3) (4, 5) (5, 2) (5, 3) (5, 4)

(1, 2) (1, 3) (2, 3) (2, 4) (2, 5) (3, 2) (3, 4) (3, 5) (4, 1) (4, 3) (5, 1) (5, 2)

L

R

(b) H(G)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2,3) (2,4) (2,5) (3,2) (3,4) (3,5) (4,2) (4,3) (4,5) (5,2) (5,3) (5,4)

(1,2) 0 0 0 0 0 0 a14 0 0 a15 0 0
(1,3) 0 0 0 0 0 0 0 a14 0 0 a15 0
(2,3) a22 − a33 0 −a53 0 0 0 0 0 0 0 0 0
(2,4) 0 a22 − a44 −a54 0 0 0 0 0 0 0 0 0
(2,5) 0 −a45 a22 − a55 0 0 0 0 0 0 0 0 0
(3,2) 0 0 0 a33 − a22 −a42 0 0 0 0 0 0 0
(3,4) 0 0 0 0 a33 − a44 −a54 0 0 0 0 0 0
(3,5) 0 0 0 0 −a45 a33 − a55 0 0 0 0 0 0
(4,1) 0 0 0 0 0 0 −a21 −a31 0 0 0 0
(4,3) a42 0 0 0 0 0 0 a44 − a33 a53 0 a45 0
(5,1) 0 0 0 0 0 0 0 0 0 −a21 −a31 0
(5,2) 0 0 0 a53 0 0 a54 0 0 a55 − a22 0 −a42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c) B(G)

Fig. 3. Example 3.14: A graph G with an L-saturating matching, yet B(G) does not have full
rank.

Schwarz–Zippel lemma ensures that by taking S large enough, the probability of a
false negative can be made arbitrarily small.

Our new criterion suggests a different randomized algorithm: we construct the
matrix B(G) as defined in (9) and compute its generic rank. Again, this can be
done by substituting random parameter values from a sufficiently large set S. Using
this algorithm, we avoid calculating the double characteristic polynomial map and its
differential map.

4. Properties and constructions. In the previous section we saw a new crite-
rion to decide whether a given graph has the expected dimension, i.e., whether there
exists an identifiable scaling reparametrization. We shall now consider the question
of how we can extend a given graph with the expected dimension by adding ver-
tices and edges, such that the resulting graph has the expected dimension as well.
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2 3

41

G = G′ =

3

41

Fig. 4. Left: Exchange (dashed) and line segment (thick) in G. Right: The graph G′ obtained
by collapsing the exchange.

Some constructions satisfying this property were already presented in [14], but us-
ing Theorem 1.7 we can derive stronger results. This section concludes with some
computational results for graphs on four and five vertices.

4.1. Definitions and earlier results.

Definition 4.1. A graph G is said to have an exchange with i ∈ {2, . . . , n} if
both 1 → i and i → 1 are edges in G. More generally, a graph has an exchange if
there exists i ∈ V such that G has an exchange with i.

If a graph has an exchange, one of the operations that we can apply is the collapse
of two vertices.

Definition 4.2. Given a graph G = (V,E) that has an exchange with i, the col-
lapsed graph G′ = (V ′, E′) is the graph in which vertices 1 and i have been identified,
with V ′ = V \ {i}. An edge u → v appears in G′ if u → v appears in G, or if v = 1
and u→ i is an edge in G, or if u = 1 and i→ v is an edge in G.

Figure 4 illustrates an exchange with vertex 2 in G and the collapsed graph
G′. When collapsing two arbitrary vertices, it is hard to tell whether the resulting
graph will have the expected dimension or not. In some special cases where G has
an exchange with i and G′ is obtained by collapsing the exchange, i.e., vertices 1
and i are identified, we can predict whether or not the collapsed graph will have the
expected dimension.

Identifying two vertices reduces the number of vertices by one. Conversely, we
can also increase the number of vertices, for example, by subdividing an edge.

Definition 4.3. Let G = (V,E) be a graph on n − 1 vertices, and let i → j be
an edge in G. The graph G′ = (V ′, E′) obtained by subdividing the edge i → j has
vertex set V ′ = V ∪ {n} and edges E′ = (E \ {i→ j}) ∪ {i→ n, n→ j}.

Another way to increase the number of vertices is by adding a line segment to G:
choose two vertices k, l of G, add new vertices n1, . . . , ns, and add the edges of the
path (k, n1, n2, . . . , ns, l). This is called a line segment, as defined below.

Definition 4.4. A line segment of length k ≥ 2 in G is a path (v0, v1, . . . , vk)
such that v0 → v1, . . . , vk−1 → vk are edges in G and these are the only edges incident
to v1, . . . , vk−1.

Note that given an edge i→ j in G, subdividing this edge creates a line segment
of length two, since the new vertex n is incident to i and j but no other vertices.
Figure 4 illustrates a line segment of length two in the graph G.

Definition 4.5. A graph G = (V,E) is minimally strongly connected if it is
strongly connected and for each edge e ∈ E the graph (V,E \{e}) is no longer strongly
connected. G is said to be inductively strongly connected if there exists some ordering
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of vertices of the n vertices, say ,1, . . . , n, such that for each i ∈ [n] the induced
subgraph G{1,...,i} containing vertices 1, . . . , i is strongly connected.

Because of Lemma 2.2 we assume that the number of edges is at most 2n−2. We
say that a graph is maximal if it contains exactly 2n− 2 edges.

Observe that if G is inductively strongly connected, then it must have at least
2n−2 edges. Hence any inductively strongly connected graph that satisfies the bound
on the number of edges (m ≤ 2n− 2) is maximal.

Meshkat and Sullivant have already proven some constructions to obtain graphs
with the expected dimension and derived some properties of such graphs. The proofs
of these results can be found in [14], and some can also be derived from our results in
subsections 4.2 and 4.3.

Proposition 4.6 (see [14, Prop. 5.3]). Let G be a strongly connected maximal
graph that has the expected dimension. Then G has an exchange.

If a graph is not maximal, then an exchange is not a necessary condition for
a graph to have the expected dimension. For example, any directed cycle has the
expected dimension. This follows immediately from Corollary 4.19 and the fact that
a cycle is minimally strongly connected.

The first construction that we consider is to add an exchange to a given graph.
The proof in [14] considers the characteristic polynomials of the corresponding pa-
rameter matrices, but this proposition is also an immediate consequence of the fact
that a cycle has the expected dimension and Proposition 4.12 in subsection 4.2.

Proposition 4.7 (see [14, Prop. 5.5]). Let G be a graph on n vertices, and
construct G′ from G by adding a new vertex 1′ and an exchange 1 → 1′, 1′ → 1. Then
the resulting graph G′ with input-output node 1′ has the expected dimension if and
only if G has the expected dimension.

The next proposition shows that adding a line segment of length two to a graph
with the expected dimension again yields a graph with the expected dimension, under
the condition that G has a chain of cycles containing both vertex 1 and the line
segment. We do not go into detail about this concept because we will remove this
restriction and extend the result to longer line segments in Proposition 4.14.

Proposition 4.8 (see [14, Thm. 5.7]). Let G′ be a graph that has the expected
dimension with n − 1 vertices. Let G be a new graph obtained from G′ by adding a
new vertex n and two edges k → n and n → l and such that G has a chain of cycles
containing both 1 and n. Then G has the expected dimension.

Recall that an inductively strongly connected graph can be constructed by adding
the vertices one by one, while in each step the corresponding subgraph is strongly
connected. Combining this fact with Proposition 4.8, one can derive the following
corollary by induction on the number of vertices.

Corollary 4.9 (see [14, Thm. 5.13]). If G is inductively strongly connected
with at most 2n− 2 edges, then G has the expected dimension.

Meshkat and Sullivant have also formulated a conjecture.

Conjecture 4.10 (see [14, Conj. 6.6]). Let G be a graph with n vertices, 2n− 2
edges, and an exchange with i. Let the collapsed graph G′ be the graph where 1 and i
have been identified. If G′ has 2n−4 edges with an exchange, then G has the expected
dimension if and only if G′ has the expected dimension.

We have constructed a counterexample, showing that this conjecture certainly
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1 2 3

4
6

5

(a) Graph G

1 3

4
6

5

(b) Collapsed graph G′

Fig. 5. Counterexample to Conjecture 4.10.

does not hold in both directions. Consider the graph G in Figure 5a, which is strongly
connected, has an exchange, and satisfies m = 2n− 2. Its parameter matrix is given
by

A(G) =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 0 a14 0 0
a21 a22 a23 0 0 a26
0 a32 a33 0 0 0
0 0 0 a44 a45 0
0 0 a53 0 a55 0
0 0 0 a64 a65 a66

⎤⎥⎥⎥⎥⎥⎥⎦ .

One can check that G has the expected dimension using Mathematica and the algo-
rithm based on Theorem 1.7. After collapsing the exchange with 2, we obtain the
graph G′ given in Figure 5b. This graph has parameter matrix

A(G′) =

⎡⎢⎢⎢⎢⎣
a11 a13 a14 0 a16
a31 a33 0 0 0
0 0 a44 a45 0
0 a53 0 a55 0
0 0 a64 a65 a66

⎤⎥⎥⎥⎥⎦ .
We see that G′ is again strongly connected, has an exchange, and satisfiesm = 2n−4.
However, G′ does not have the expected dimension. This follows from the fact that
A(G′) satisfies Condition 3.10: the support of the column corresponding to vertex 6
is contained in the column corresponding to vertex 4, and for the rows the reverse
holds. So the fact that G has the expected dimension does not imply that G′ has the
expected dimension as well.

The other direction remains a conjecture, although a partial result follows from
Proposition 4.20.

4.2. New constructions. In this section we present two new constructions of
graphs with the expected dimension. These proofs rely on Theorem 1.7, so the matrix
B = B(G) plays an important role in this section. Recall that the rows of B are
indexed by pairs (i, j) corresponding to the zero positions of A(G), and the columns
are indexed by pairs (k, l) with k, l ∈ [n], k �= l, and k, l �= 1. These column indices
correspond to the entries of X ∈ gln outside the first row, the first column, and the
diagonal. The entries of B are given in (9).

We will refer to the entry B(G)(k,l),(i,j) as the entry (or position) indexed by
(k, l), (i, j), where (k, l) is the row index and (i, j) is the column index. We start
with some basic observations on the structure of B = B(G). For an entry to be
nonzero, the two pairs representing the row and column indices must have at least
one coordinate in common. Entries indexed by (i, ·), (·, i) or (·, i), (i, ·) are zero, since
neither the rows nor the columns of B have indices (i, i). Furthermore, the column
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indices have no coordinate equal to 1; hence a nonzero entry in the row indexed by
(i, 1) must be of the form aj1. Similarly, a nonzero entry in the row indexed by (1, i)
must be of the form a1j . Also note that every entry in a given row or column of B
contains a different parameter.

Both proofs have the same structure: to show that the matrix B has full rank,
we group the rows and columns such that we obtain a block matrix. Then we argue
that each of the diagonal blocks has full rank, and that the nondiagonal blocks cannot
cancel this term from the determinant of B. When constructing a graph G′ from G,
we choose the blocks such that one of the diagonal blocks is of the form B(G′). The
other diagonal blocks will be similar to the parameter matrix A, except that some
rows and columns may be missing. Therefore, the following lemma will be very useful.

Lemma 4.11. Let G be a strongly connected graph on n vertices, and let A ∈ ΘG.
For k, l ∈ [n] and α ∈ C define Ak,l,α to be the submatrix of A obtained by replacing
the diagonal entries aii by aii − α for all i ∈ [n] and removing row k and column l.
Then for sufficiently general A the determinant of Ak,l,α is nonzero.

Proof. Since G is strongly connected, there exists a path p from k to l, say,

p = (k = v1, v2, . . . , vr−1, vr = l).

Let vr+1, . . . , vn be the vertices of G that do not appear in p. Rearrange the rows and
columns of Ak,l,α such that the row indices are ordered as

v2, v3, . . . , vr, vr+1, . . . , vn

and the column indices are ordered as

v1, v2 . . . , vr−1, vr+1, . . . , vn.

Then Ak,l,α has diagonal

(av2v1 , av3v2 , . . . , avrvr−1 , avr+1vr+1 − α, . . . , avnvn − α)

whose entries are nonzero for sufficiently general A. All entries of Ak,l,α correspond
to different parameters, so taking the diagonal entries large enough will make the
determinant of Ak,l,α nonzero. Having full rank is a Zariski open condition on the
parameters, so it follows that Ak,l,α has full rank for sufficiently general A.

Now we will derive our first new construction, taking the union of two graphs
which have exactly one vertex in common. This vertex has to be the input-output
compartment of at least one of the two graphs. The resulting graph inherits only one
input-output compartment, such that it still satisfies Assumption 1.2.

Proposition 4.12. Let G be of the form (V ′ ∪ V ′′, E′ ∪ E′′) for some graphs
G′ = (V ′, E′), G′′ = (V ′′, E′′), such that V ′∩V ′′ = {v}, E′∩E′′ = ∅, and 1 ∈ V ′. Let
1 be the input-output compartment of G′, while G′′ has input-output compartment v,
and let G inherit 1 as its unique input-output compartment. Then G has the expected
dimension if both G′ and G′′ have the expected dimension. Conversely, if G′′ does not
have the expected dimension, then neither does G.

Proof. Let A = A(G), A′ = A(G′), and A′′ = A(G′′). The input-output compart-
ment of G′′ is vertex v, so if we order the vertices of G′ such that the last row and
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column of A′ correspond to vertex v, then A is of the following form:

A′

A′′
0

0

A =

The matrices A′, A′′ intersect at only one position, which is the entry containing
avv. Let B = B(G), B′ = B(G′), and B′′ = B(G′′). First, we will derive that B
has full rank whenever both B′, B′′ have full rank, thus proving the first part of the
proposition. To do so, we partition the matrix B into blocks, such that some of these
blocks are equal to B′, B′′. Recall that the rows of B are indexed by the zero entries
of A, and the columns of B are indexed by the pairs (i, j) with i, j �= 1 and i �= j.
We find a block partition of B by partitioning both A and X , since this gives us a
partition of the row and column indices. Let A′, A′′, A3, A4 be blocks of A and let
X ′, X ′′, X3, X4 be blocks of X of the form

A = X =

A′

A′′

A3

A4

X ′

X ′′

X3

X4

V ′′ \ {v}

V ′ \ {v}

V ′′ \ {v}

v

V ′′ \ {v}

v v

v

V ′ \ {v}

V ′′ \ {v}

V ′ \ {v}

V ′ \ {v}

The solid lines indicate the partitioning and the dotted lines indicate the position
of the row and column indexed by vertex v. We obtain a partition of the rows and
columns of B by distinguishing between the four blocks of A and X , respectively.
Note that the blocks of A do not form a partition of the matrix A, because A′ and
A′′ intersect. However, they intersect at a nonzero position, so this position does not
appear as a row index of B. Therefore, the blocks of A induce a well-defined partition
of the row indices of B. We obtain the following block matrix:

X ′ X ′′ X3 X4

A′

A′′

A3

A4

0

0 0 0

0

0

B′

B′′

D1

D20

0

C1 C2

C3

C4

B =

The zero positions of the matrices A′, A′′ are exactly the row indices of B′, B′′, re-
spectively. Furthermore, the positions of X ′, X ′′ which are outside the first row, first
column, and diagonal of X yield exactly the column indices of B′, B′′, respectively.
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Each edge of G′ also appears in G, so by definition of B′ (9) the block indexed by A′

and X ′ is indeed the matrix B′ corresponding to G′, and similarly, the block indexed
by A′′ and X ′′ is exactly the matrix B′′ corresponding to G′′. Now consider the block
indexed by A′ and X ′′; if (k, l) is a zero position of A′ and (i, j) is a nonzero position
of X ′′, then these two pairs only have a coordinate in common when j = l = v or
i = k = v. Then the corresponding entry of B is of the form aki or −ajl, respectively,
with i, j ∈ V ′′ \ {v} and k, l ∈ V ′. However, there are no such edges j → l or k → i
in G, because these would correspond to edges between G′ and G′′ not incident to v.
Hence the corresponding entry of B is zero, and therefore the entire block indexed by
A′, X ′′ is zero. A similar analysis shows that each of the blocks of B denoted with a
zero indeed is a zero matrix.

Next, we analyze the blocks C1, C2, C3, and C4. For C1 to have a nonzero entry,
we need a position (k, l) of A′ and a position (i, j) of X3 to have a coordinate in
common. From the way that A and X have been partitioned, we see that the only
option is k = i. This gives the entry −ajl, where j ∈ V ′′ \ {v} and l ∈ V . The only
parameters of this form are ajv, with v → j an edge in G′′. Therefore, the nonzero
entries of C1 are indexed by (i, v), (i, j) such that v → j is an edge in G, and the
corresponding entry is of the form −ajv. Similarly, the nonzero entries of C2 are
indexed by (v, j), (i, j) such that i→ v is an edge in G′′, and the corresponding entry
is of the form avi. For the block C3 the same analysis shows that all nonzero entries
are of the form −avi, while the nonzero entries of C4 are of the form aiv, i ∈ V ′′ \{v}.
The exact form of these blocks is not important for our further analysis; all we need
is that the only nonzero entries are either ±avi or ±aiv with i ∈ V ′′ \ {v}.

Finally, consider the block D1, which is indexed by A3, X3. The block A3 has
size (|V ′| − 1)(|V ′′| − 1) and consists entirely of zeros, so the number of rows of D1

equals (|V ′| − 1)(|V ′′| − 1). The columns of D1 are indexed by the block X3 of size
|V ′|(|V ′′|−1). Since the first row of X must be zero, X3 gives only (|V ′|−1)(|V ′′|−1)
column indices. We conclude thatD1 is square; hence we can calculate its determinant
to see whether it has full rank.

Observe that A3 yields pairs (i, j) with i ∈ V ′ \ {v} and j ∈ V ′′ \ {v}, while the
pairs corresponding to X3 are of the form (i, j) with i ∈ V ′ \ {1} and j ∈ V ′′ \ {v}.
Order both the row and column indices by their second coordinate; then we obtain
diagonal blocks of D1 of the form A′

v,1,α for all α ∈ V ′′ \{v}, with A′
v,1,α as defined in

Lemma 4.11. It follows that
∏
α∈V ′′\{v} det(A

′
v,1,α) is a nonzero term appearing in the

determinant ofD1. The nonzero entries ofD1 outside the blocks A
′
v,1,α are parameters

from A′′ because the corresponding indices can only have their first coordinate in
common. These parameters are therefore determined by the second coordinates of
their indices, which are from V ′′ \ {v}. Since the determinants of A′

v,1,α contain only
parameters from A′, the product of those determinants cannot be canceled out when
calculating the determinant of D1.

A very similar argument (ordering rows and columns by their first coordinate)
holds for the determinant of D2, so we conclude that the determinants of D1 and D2

are generically nonzero.
Now suppose that both B′ and B′′ have full rank. These matrices do not need

to be square, since the number of rows may be larger than the number of columns.
However, being full rank means that there exists a subset of the rows such that the
corresponding matrix is square and invertible. Let B̂′, B̂′′ be such square submatrices
with nonzero determinant, and let B̂ be the corresponding square submatrix of B.D
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1
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Fig. 6. G′ ∪G′′, where the edges of G′′ are dashed.

Then, from the structure of B, we see that the determinant det(B̂) contains a term

det(B̂′) det(B̂′′) det(D1) det(D2).

Moreover, the determinant of B̂ contains a factor det(B̂′′), because all other entries in
the corresponding rows and columns are zero. The nonzero off-diagonal blocks only
contain entries of the form ±avj and ±ajv with j ∈ V ′′ \ {v}, but these entries do
not appear in D1, D2, or B

′. Therefore, the term above can never vanish; i.e., B̂ has
nonzero determinant.

The second part of the proposition follows directly from the fact that the deter-
minant of B̂ contains a factor det(B̂′′): if det(B̂) is nonzero, then det(B̂′′) must also
be nonzero.

Note that the proof does not rely on any assumption on the shared vertex v, so
it may also be that G′ and G′′ have their input-output compartment in common.

Remark 4.13. Let G,G′, G′′ be as in Proposition 4.12. We have just seen that
if both G′, G′′ have the expected dimension, then so does G. Conversely, if G′ does
not have the expected dimension, this does not necessarily imply that G does not
have the expected dimension. For example, the graph in Figure 6 has the expected
dimension, while its subgraph G′ does not. However, if V ′ ∩ V ′′ = {1}, then applying
the proposition twice shows that G has the expected dimension if and only if both G′

and G′′ have the expected dimension.

For our next result, recall Proposition 4.8 of the previous section; it states that
if G′ is a graph on n− 1 vertices which has the expected dimension and we construct
G from G′ by adding a new vertex n and two edges k → n and n → l such that G
has a chain of cycles containing both 1 and n, then G has the expected dimension as
well. Using Theorem 1.7, we present a stronger version of this theorem.

Proposition 4.14. Let G = (V,E) on n− 1 vertices be a graph with the expected
dimension. Construct G′ from G by adding new vertices n1, . . . , ns and edges k → n1,
ns → l, and ni → ni+1 for i = 1, . . . , s− 1, where k, l ∈ V are vertices of G. Then G′

has the expected dimension.

Proof. The proof can be found in the supplementary materials (M103801 01.pdf
[local/web 227KB]).

The proof of Proposition 4.14 does not need any restrictions on k, l ∈ V , so we
can add a cycle by choosing k = l.

The converse of Proposition 4.14 does not hold; if G does not have the expected
dimension, then G′ might still have the expected dimension. For example, consider
the graph G′ in Figure 7 which is obtained from the graph G by adding vertex 5 and

D
ow

nl
oa

de
d 

03
/3

0/
17

 to
 1

92
.1

6.
19

1.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://epubs.siam.org/doi/suppl/10.1137/15M1038013/suppl_file/M103801_01.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1600 JASMIJN A. BAAIJENS AND JAN DRAISMA

1

2 3

4

5

Fig. 7. Graph G′; obtained from G by adding a line segment (dashed).

edges 3 → 5 and 5 → 2. The graphsG,G′ have parameter matrices A,A′, respectively:

A =

⎡⎢⎢⎣
a11 a12 0 a14
a21 a22 0 0
0 a32 a33 a34
0 0 a43 a44

⎤⎥⎥⎦ , A′ =

⎡⎢⎢⎢⎢⎣
a11 a12 0 a14 0
a21 a22 0 0 a25
0 a32 a33 a34 0
0 0 a43 a44 0
0 0 a53 0 a55

⎤⎥⎥⎥⎥⎦ .
From the structure of A we see that G does not have the expected dimension, since
the pair (3, 4) satisfies Condition 3.10. On the other hand, one can check that G′ does
have the expected dimension using Theorem 1.7.

We conclude this subsection with a conjecture.

Conjecture 4.15. Let G be a graph on n− 1 vertices, and let k → l be an edge
in G. Construct the graph G′ on n vertices subdividing the edge k → l, i.e., by adding
vertex n to G and replacing the edge k → l by two edges k → n, n → l. Then if G
has the expected dimension, G′ has the expected dimension as well.

This conjecture has been verified for all graphs G on four and five vertices using
Mathematica, as well as for larger random graphs. Unfortunately, the techniques we
used to prove the previous propositions cannot be applied here so easily, because the
matrix A(G) is not a submatrix of A(G′).

4.3. Ear decompositions. This section describes how to construct graphs with
the expected dimension using Proposition 4.14. Starting from a cycle, which has the
expected dimension, we can add line segments to obtain new graphs—for example, all
minimally strongly connected graphs. This gives rise to a procedure to obtain a graph
which has the expected dimension from a graph which does not have the expected
dimension. An important concept that we shall be using is the ear decomposition of
a directed graph, as defined in [1].

Definition 4.16. Given a directed graph G = (V,E), let E = {P0, P1, . . . , Pt} be
a sequence of cycles and paths in G, t ≥ 0, and define Gi = (Vi, Ei) := P0∪P1∪· · ·∪Pi.
Then E is an ear decomposition of G if P0 is a cycle, Gt = G, and each Pi is a path
(v0, v1, . . . , vk), k ≥ 1, satisfying

1. v0, vk ∈ Vi−1 (not necessarily distinct),
2. for all 0 < i < j < k: vi ∈ V \ Vi−1 and vi �= vj ,
3. for all 0 ≤ i < j ≤ k: vi → vj ∈ E \ Ei−1.

The Pi are called the ears of E, and if k = 1, the ear Pi = (v0, v1) is called a trivial
ear.

Note that the graphs G0, . . . , Gt are strongly connected; hence if G has an ear
decomposition, then it must be strongly connected. The converse also holds: if a
graph is strongly connected, then it must have an ear decomposition [1, Thm. 5.3.2].
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1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

G E1 E2 E3
Fig. 8. A graph G with three different ear decompositions E1, E2, E3.

This can be seen from the fact that in a strongly connected graph every node lies on
a cycle.

A graph may have many different ear decompositions, as shown in Figure 8. Each
of these decompositions has the same number of ears, namely m−n+1 [1, Cor. 5.3.3].

Our purpose is to construct graphs with the expected dimension, using the results
of the previous section. Therefore, we define a specific kind of ear decomposition.

Definition 4.17. We say that a graph G has a nontrivial ear decomposition if
it has an ear decomposition without trivial ears, and such that the initial cycle P0

contains vertex 1.

Consider the graphG given in Figure 8 and the three ear decompositions E1, E2, E3.
In each Ei, let P0, P1, and P2 be the normal, dashed, and dotted ears, respectively.
Then the initial cycle P0 contains vertex 1 in each of the three decompositions. How-
ever, E1 is the only ear decomposition without trivial ears. In other words, E1 is a
nontrivial ear decomposition of G, but E2 and E3 are not.

Theorem 1.8. Let G be a graph that has a nontrivial ear decomposition; then G
has the expected dimension.

Proof. Let G have a nontrivial ear decomposition E = {P0, . . . , Pt}. A nontrivial
ear decomposition consists of nontrivial ears, and a nontrivial ear corresponds to a
line segment (see subsection 4.1) of length at least two. Since a cycle is known to have
the expected dimension, it follows that G0 has the expected dimension, and we can
apply Proposition 4.14 t times to conclude that G1, G2, . . . , Gt all have the expected
dimension. In other words, if a graph has a nontrivial ear decomposition, then it
certainly has the expected dimension.

Conversely, if a graph has the expected dimension, it does not need to have a
nontrivial ear decomposition. For example, the graph in Figure 6 has no nontrivial
ear decomposition, yet it does have the expected dimension.

Proposition 4.18. A graph G is minimally strongly connected if and only if all
its ear decompositions have no trivial ears.

Proof. Suppose that G has an ear decomposition with a trivial ear. Then the
graph obtained from G by deleting the edge of this trivial ear is strongly connected,
because it has an ear decomposition. Hence G is not minimally strongly connected.

Conversely, suppose that G is not minimally strongly connected; then it has
an edge e that can be removed, such that the resulting graph G′ remains strongly
connected. Then G′ has an ear decomposition, and adding the trivial ear that contains
the edge e results in an ear decomposition of G that has a trivial ear.

Because of the above proposition and the fact that a strongly connected graph
has at least one ear decomposition, we can find for any minimally strongly connected
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graph a nontrivial ear decomposition. Combining this with Theorem 1.8 leads us to
the following corollary.

Corollary 4.19. If G is minimally strongly connected, then it has the expected
dimension.

The converse does not hold, because for G to have the expected dimension it is
enough to have only one nontrivial ear decomposition. For example, the graph G in
Figure 8 has a nontrivial ear decomposition and hence the expected dimension, but
it is not minimally strongly connected.

Proposition 4.20. Let G be a graph that contains a 2-cycle {i→ j, j → i}, and
let G′ be the graph where the vertices i and j have been identified. If G has a nontrivial
ear decomposition, then so does G′.

Proof. Let E be a nontrivial ear decomposition of G. Any 2-cycle C in G must
appear as an ear in E , because if there is an ear that contains only one of the two edges
in C, then the other edge can only appear as a trivial ear. After identifying vertices
i and j to obtain G′, the 2-cycle no longer exists. A nontrivial ear decomposition of
G′ is obtained from E by removing the ear that is equal to the 2-cycle and replacing
vertex j by vertex i in the remaining ears. Note that the number of edges in these
ears does not change, so they remain nontrivial.

A special case of this theorem occurs when G has an exchange, and G′ is obtained
by collapsing the exchange. This shows that Conjecture 4.10 holds when G has a
nontrivial ear decomposition.

Theorem 1.8 gives rise to two options to turn a graph that does not have the
expected dimension into a graph that does have the expected dimension. If G does not
have the expected dimension, then every ear decomposition of G contains a trivial ear.
In order to transform the graph into one that has a nontrivial ear decomposition, start
with an arbitrary ear decomposition, and either remove the trivial ears, or subdivide
the corresponding edges, such that the ears are no longer trivial. To keep the number
of changes as small as possible, one should start with an ear decomposition with the
smallest possible number of trivial ears.

4.4. Relaxing model constraints. In the introduction, we set several assump-
tions on the models to be considered, thus reducing our research to a rather small
class of models. However, the results for ear decompositions, presented in the previous
section, still hold when relaxing Assumptions 1.2 and 1.4. If a model has multiple
inputs or outputs, in addition to compartment 1, this will only give more information
and hence may even make the model identifiable. Furthermore, if not all compart-
ments have a leak, this means that there are fewer parameters to be recovered; the
remaining parameters might even be identifiable. So, when relaxing our assumptions
as described, Theorem 1.8 still holds.

Moreover, the procedure described to turn a graph that does not have the ex-
pected dimension into a graph that does have the expected dimension remains valid
when relaxing our assumptions. It is important to realize, though, that with more
information available (due to multiple inputs or outputs) or less information required
(due to absent leaks), following this procedure could alter the graph much more than
necessary.

4.5. Computational results. In the previous section, we saw two classes of
graphs with the expected dimension: the graphs which have a nontrivial ear de-
composition, and those which are minimally strongly connected. Moreover, from
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Table 1

Computational results.

n |G(n)| |G∗(n)| |Gc(n)| |GISC(n)| |GMSC(n)|
3 6 5 5 4 3

4 71 43 39 26 12

5 1472 628 450 267 57

Corollary 4.9 we know that all inductively strongly connected graphs (with at most
2n − 2 vertices) have the expected dimension. Using the computer algebra package
Mathematica, the cardinalities of these classes have been calculated for n = 3, 4, 5.

Let G(n) denote the class of strongly connected graphs on n vertices with at most
2n−2 edges, up to the following equivalence. Since vertex 1 has a special role, graphs
are considered to be equivalent if they can be obtained from one another by permuting
vertices 2, 3, . . . , n. Now we define the following subclasses of G(n):

G∗(n) = {G ∈ G(n) | G has the expected dimension},
Gc(n) = {G ∈ G(n) | G has a nontrivial ear decomposition},

GISC(n) = {G ∈ G(n) | G is inductively strongly connected},
GMSC(n) = {G ∈ G(n) | G is minimally strongly connected}.

From subsection 4.3, we know that

GMSC(n) � Gc(n) � G∗(n) � G(n).

The class of inductively strongly connected graphs GISC(n) is also a subset of Gc(n),
but GMSC(n) is not contained in GISC(n) or vice versa.

The cardinalities of these classes (for n = 3, 4, 5) are presented in Table 1. It
shows that the class of graphs with a nontrivial ear decomposition is a large subset
of G∗(n), but the ratio |Gc(n)|/|G∗(n)| decreases as n grows.

5. Conclusions and future work. Inspired by the work of Meshkat and Sulli-
vant, we have derived a new criterion to determine whether a graph has an identifiable
scaling reparametrization. This criterion allowed us to derive two new constructions
to obtain graphs for which an identifiable scaling reparametrization exists, extend-
ing the results of [14]. This led us to the concept of ear decompositions of graphs
and a procedure to transform any graph into one that has an identifiable scaling
reparametrization.

The results presented in this paper are based on a couple of assumptions that
restrict the class of graphs considered. One of our main results, Theorem 1.8, and
the application of this theorem to obtain graphs that admit an identifiable scaling
reparametrization both remain valid under relaxed assumptions. However, with more
information available (additional inputs or outputs) or fewer parameters to identify
(missing leaks), following this procedure could alter the graph much more than neces-
sary. Therefore, it would be very interesting to see if our approach can be generalized
to a less restricted class of graphs. Some work in this direction appeared recently
[15], showing how to add inputs, add outputs, or remove leaks in order to obtain an
identifiable model.

A nice starting point for further research would be Conjecture 4.15. Then, the
next step is to consider more general models; for example, what can we say about the
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case where input and output do not take place in the same compartment? Suppose
the input takes place in compartment 1, while the output takes place in compartment
2. This affects the input-output equation and hence also the double characteristic
polynomial map. Similar to Theorem 2.1, the input-output equation becomes

det(∂In −A)y = det(∂In−1 −A2)u,

where A2 denotes the matrix obtained from A by removing its first row and its second
column. This equation gives rise to a coordinate map c′, analogous to the definition
of the double characteristic polynomial map c. It would be interesting to apply an
analysis to the coordinate map c′ similar to the analysis we did for c.
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