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The languages accepted by finite automata are precisely the languages denoted by regular

expressions. In contrast, finite automata may exhibit behaviours that cannot be described by

regular expressions up to bisimilarity. In this paper, we consider extensions of the theory of

regular expressions with various forms of parallel composition and study the effect on

expressiveness. First we prove that adding pure interleaving to the theory of regular

expressions strictly increases its expressiveness modulo bisimilarity. Then, we prove that

replacing the operation for pure interleaving by ACP-style parallel composition gives a

further increase in expressiveness, still insufficient, however, to facilitate the expression of all

finite automata up to bisimilarity. Finally, we prove that the theory of regular expressions

with ACP-style parallel composition and encapsulation is expressive enough to express all

finite automata up to bisimilarity. Our results extend the expressiveness results obtained by

Bergstra, Bethke and Ponse for process algebras with (the binary variant of) Kleene’s star

operation.

1. Introduction

A well-known theorem by Kleene states that the languages accepted by finite automata are

precisely the languages denoted by regular expressions (see, e.g., the textbook by Hopcroft

et al. (2006)). Milner (1984) showed that how regular expressions can be used to describe

behaviour by directly associating finite automata with them. He then observed that the

process-theoretic counterpart of Kleene’s theorem – stating that every finite automaton

is described by a regular expression – fails: there exist finite automata whose behaviours

cannot faithfully, i.e., up to bisimilarity, be described by regular expressions. Baeten et al.

(2007) found a structural property on finite automata that characterizes those that are

denoted with a regular expression modulo bisimilarity. In this paper, we study to what
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extent the expressiveness of regular expressions increases when various forms of parallel

composition are added.

Our first result is to show that adding an operation for pure interleaving to regular

expressions strictly increases their expressiveness modulo bisimilarity. A crucial step in

our proof consists of characterizing the strongly connected components in finite automata

denoted by regular expressions. The characterization allows us to prove a property

pertaining to the exit transitions from such strongly connected components. If interleaving

is added, then it is possible to denote finite automata violating this property.

Our second result is to show that replacing the operation for pure interleaving by

ACP-style parallel composition of Bergstra and Klop (1984), which implements a form

of synchronization by communication between components, leads to a further increase in

expressiveness. To this end, we first characterize the strongly connected components in

finite automata denoted by regular expressions with interleaving, and deduce a property

on the exit transitions from such strongly connected components. Then, we present an

expression in the theory of regular expressions with ACP-style parallel composition that

denotes a finite automaton violating this property.

Our third result is to show that the theory of regular expressions extended with ACP-

style parallel composition, but not including encapsulation, is not expressive enough to

denote all finite automata.

Our fourth result is to establish that adding ACP-style parallel composition and

encapsulation to the theory of regular expressions actually yields a theory in which

every finite automaton can be expressed up to isomorphism, and hence, since bisimilarity

is coarser than isomorphism, also up to bisimilarity. Every expression in the resulting

theory, in turn, denotes a finite automaton, so this result can be thought of as an

alternative process-theoretic counterpart of Kleene’s theorem.

The results in this paper are inspired by the results of Bergstra et al. (1994) pertaining

to the relative expressiveness of process algebras with a binary variant of Kleene’s star

operation. They establish an expressiveness hierarchy on the extensions of the process

theories BPA(A), BPAδ(A), PA(A), PAδ(A), ACP(A, γ), and ACPτ(A, γ) with binary Kleene

star. The reason that their results are based on extensions with the binary version of the

Kleene star is that they want to avoid the process-theoretic complications arising from

the notion of intermediate termination (a state in a finite automaton is intermediately

terminating if it is terminating but also admits a transition). Most of the expressiveness

results of Bergstra et al. (1994) are included in Bergstra et al. (2001), with more elaborate

proofs.

For a comparison of our results with the results of Bergstra et al. (1994) and Bergstra

et al. (2001), we first cast our contributions in process-theoretic terminology: regular

expressions are the expressions of BPA∗
0,1(A), regular expressions extended with pure

interleaving are the expressions of PA∗
0,1(A), regular expressions extended with ACP-style

parallel composition, but without encapsulation, are the expressions of ACP∗,-∂
0,1 (A, γ), and

regular expressions extended with ACP-style parallel composition and encapsulation are

the expressions of ACP∗
0,1(A, γ). Our results then establish a strict relative expressiveness

hierarchy on the process theories BPA∗
0,1(A), PA∗

0,1(A), ACP∗,-∂
0,1 (A, γ) and ACP∗

0,1(A, γ),

modulo bisimilarity.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 11 Feb 2015 IP address: 192.16.191.143

Regular expressions with parallel composition 3

The differences between the process theories BPAδ(A), PAδ(A) and ACP(A, γ) considered

by Bergstra et al. (1994) and Bergstra et al. (2001) on the one hand, and the process theories

BPA∗
0,1(A), PA∗

0,1(A), ACP∗,-∂
0,1 (A, γ) and ACP∗

0,1(A, γ) considered in this paper on the other

hand are as follows: we write 0 for the constant deadlock which is denoted by δ in Bergstra

et al. (1994, 2001), we include the unary Kleene star instead of its binary variant, and we

include a constant 1 denoting the successfully terminated process. The first difference is, of

course, cosmetic, and with the addition of the constant 1 the unary and binary variants of

Kleene’s star are interdefinable. So, our results pertaining to the relative expressiveness of

BPA∗
0,1(A), PA∗

0,1(A), ACP∗,-∂
0,1 (A, γ) and ACP∗

0,1(A, γ) extend the expressiveness hierarchy

of Bergstra et al. (1994) and Bergstra et al. (2001) with the constant 1.

The paper is organized as follows. In Section 2, we present the process theory

ACP∗
0,1(A, γ), and its subtheories ACP∗,-∂

0,1 (A, γ), PA∗
0,1(A), and BPA∗

0,1(A). In Section 3,

we provide a characterization of the strongly connected components in the subtheories

ACP∗,-∂
0,1 (A, γ), PA∗

0,1(A) and BPA∗
0,1(A). In Section 4, we prove that PA∗

0,1(A) is more

expressive than BPA∗
0,1(A). In Section 5 we prove that ACP∗,-∂

0,1 (A, γ), by which we denote

ACP∗
0,1(A, γ) without encapsulation, is more expressive than PA∗

0,1(A). In Section 6, we

prove that ACP∗
0,1(A, γ) is more expressive than ACP∗,-∂

0,1 (A, γ). In Section 7 we prove that

every finite automaton is denoted, up to isomorphism, by an ACP∗
0,1(A, γ) expression. We

end the paper in Section 8 with some conclusions.

An extended abstract of this article without proofs and without the results of Section 6

has already appeared in the proceedings of EXPRESS 2010 edited by Fröschle and

Valencia (2010).

2. Regular expressions with ACP(A, γ)-style parallel composition and encapsulation

In this section, we present the relevant definitions for the process theory ACP∗
0,1(A, γ)

and its subtheories ACP∗,-∂
0,1 (A, γ), PA∗

0,1(A), and BPA∗
0,1(A). We give their syntax and

operational semantics, and the notion of (strong) bisimilarity. We also introduce some

auxiliary technical notions that we need in the remainder of the paper. The expressions

of the process theory BPA∗
0,1(A) are precisely the well-known regular expressions, but we

shall consider the automata associated with them, modulo bisimilarity instead of modulo

language equivalence.

The process theory ACP∗
0,1(A, γ) is parameterized by a non-empty set A of actions,

and a communication function γ on A, i.e., an associative and commutative binary partial

operation γ : A × A ⇀ A. ACP∗
0,1(A, γ) incorporates a form of synchronization between

the components of a parallel composition by allowing certain actions to engage in a

communication resulting in another action. The communication function γ then defines

which actions may communicate and what is the result. The details of this feature will

become clear when we present the operational semantics of parallel composition.

The set of ACP∗
0,1(A, γ) expressions PACP∗

0,1(A,γ) is generated by the following grammar:

p ::= 0 | 1 | a | p · p | p + p | p∗ | p ‖ p | ∂H (p),

with a ranging over A and H ranging over subsets of A.

http://journals.cambridge.org
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The constants 0 and 1 respectively stand for the deadlocked process and the successfully

terminated process, and the constants a ∈ A denote processes of which the only behaviour

is to execute the action a and then successfully terminate. An expression of the form p · q
is called a sequential composition, an expression of the form p + q is called an alternative

composition, and an expression of the form p∗ is called a star expression. An expression

of the form p ‖ q is called a parallel composition, and an expression of the form ∂H (p) is

called an encapsulation.

The process theory ACP(A, γ) (excluding the constants 0 and 1, but including a

constant δ with exactly the same behaviour as 0, and without the operation ∗) originates

with Bergstra and Klop (1984). The extension of ACP(A, γ) with a constant denoting

the successfully terminated process was investigated by Koymans and Vrancken (1985),

Baeten and van Glabbeek (1987), Vrancken (1997), and by Baeten et al. (2010) (in the

first three works, the constant was denoted ε). The extension of ACP(A, γ) with the binary

version of the Kleene star was first proposed by Bergstra et al. (1994). The reader already

familiar with the process theory ACP∗
0,1(A, γ) will have noticed that the operations �

(left merge) and | (communication merge) are missing from our syntax definition. Bergstra

and Klop (1984) included these operations as auxiliary operations necessary for a finite

axiomatization of the theory. They do not, however, add expressiveness in our setting

with Kleene star instead of a general form of recursion (see Appendix A for the proof of

this fact); we have omitted them to achieve a more efficient presentation of our results.

From the names for the constructions in the syntax of ACP∗
0,1(A, γ), the reader probably

has already an intuitive understanding of the behaviour of the corresponding processes.

The operational rules listed in Table 1 formalize the operational behaviour in the style of

structural operational semantics (Plotkin 2004). Note how the communication function in

rule 15 is employed to model a form of communication between parallel components: if

one of the components of a parallel composition can execute a transition labelled with a,

the other can execute a transition labelled with b, and the communication function γ is

defined on a and b, then the parallel composition can execute a transition labelled with

γ(a, b). (It may help to think of the action a as standing for the event of sending some

datum d, the action b as standing for the event of receiving datum d, and the action γ(a, b)

as standing for the event that two components communicate datum d.) The A-labelled

transition relation −−→ACP∗
0,1(A,γ) and the termination relation ↓ACP∗

0,1(A,γ) on PACP∗
0,1(A,γ) are

the least relations −−→ ⊆ PACP∗
0,1(A,γ) × A × PACP∗

0,1(A,γ) and ↓ ⊆ PACP∗
0,1(A,γ) satisfying the

rules in Table 1.

The triple

TACP∗
0,1(A,γ) = (PACP∗

0,1(A,γ),−−→ACP∗
0,1(A,γ), ↓ACP∗

0,1(A,γ)),

consisting of the ACP∗
0,1(A, γ) expressions together with the A-labelled transition relation

and the termination predicate associated with them, is an example of an A-labelled

transition system space. In general, an A-labelled transition system space (S,−−→ , ↓) consists

of a (non-empty) set S , the elements of which are called states, together with an A-labelled

transition relation −−→ ⊆ S × A × S and a subset ↓ ⊆ S . We shall in this paper consider

three more examples of transition system spaces, obtained by restricting the syntax of

ACP∗
0,1(A, γ) and making special assumptions about the communication function.

http://journals.cambridge.org
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Table 1. Operational rules for ACP∗
0,1(A, γ), with a ∈ A and H ⊆ A.

1
1↓ 2

a
a−−→ 1

3
p

a−−→ p′

p + q
a−−→ p′

4
q

a−−→ q′

p + q
a−−→ q′

5
p↓

p + q↓ 6
q↓

p + q↓

7
p

a−−→ p′

p · q a−−→ p′ · q
8

p↓ q
a−−→ q′

p · q a−−→ q′
9

p↓ q↓
p · q↓ 10

p
a−−→ p′

p∗ a−−→ p′ · p∗
11

p∗↓

12
p

a−−→ p′

p ‖ q
a−−→ p′ ‖ q

13
q

a−−→ q′

p ‖ q
a−−→ p ‖ q′

14
p↓ q↓
p ‖ q↓

15
p

a−−→ p′ q
b−−→ q′ γ(a, b) is defined

p ‖ q
γ(a,b)−−−−→ p′ ‖ q′

16
p

a−−→ p′ a 
∈ H

∂H (p)
a−−→ ∂H (p′)

17
p↓

∂H (p)↓

Firstly, we define the A-labelled transition system space

TACP
∗,-∂
0,1 (A,γ) = (PACP

∗,-∂
0,1 (A,γ),−−→ACP

∗,-∂
0,1 (A,γ), ↓ACP

∗,-∂
0,1 (A,γ))

corresponding with the process theory ACP∗,-∂
0,1 (A, γ). The set of ACP∗,-∂

0,1 (A, γ) expressions

PACP
∗,-∂
0,1 (A,γ) consists of the ACP∗

0,1(A, γ) process expressions without occurrences of the

construct ∂H ( ). The ACP∗,-∂
0,1 (A, γ) transition relation −−→ACP

∗,-∂
0,1 (A,γ) on PACP

∗,-∂
0,1 (A,γ) and the

termination predicate ↓ACP
∗,-∂
0,1 (A,γ) on PACP

∗,-∂
0,1 (A,γ) are the transition relation and termination

predicate induced on ACP∗,-∂
0,1 (A, γ) expressions by the operational rules in Table 1 minus

the rules 16–17.

Secondly, we define the A-labelled transition system space

TPA∗
0,1(A) = (PPA∗

0,1(A),−−→PA∗
0,1(A), ↓PA∗

0,1(A))

corresponding with the process theory PA∗
0,1(A). The set of PA∗

0,1(A) expressions PPA∗
0,1(A)

consists of the ACP∗
0,1(A, γ) process expressions without occurrences of the construct

∂H ( ). The PA∗
0,1(A) transition relation −−→PA∗

0,1(A) on PPA∗
0,1(A) and the termination

predicate ↓PA∗
0,1(A) on PPA∗

0,1(A) are the transition relation and termination predicate induced

on PA∗
0,1(A) expressions by the operational rules in Table 1 minus the rules 15–17.

Alternatively (and equivalently) the transition relation −−→PA∗
0,1(A) can be defined as the

restriction of the transition relation −−→ACP∗
0,1(A,�), with � denoting the communication

function that is everywhere undefined, to PPA∗
0,1(A).

Thirdly, we define the A-labelled transition system space

TBPA∗
0,1(A) = (PBPA∗

0,1(A),−−→BPA∗
0,1(A), ↓BPA∗

0,1(A))

associated with the process theory BPA∗
0,1(A). Let PBPA∗

0,1(A) consist of all PA∗
0,1(A)

expressions without occurrences of the construct ‖ . The BPA∗
0,1(A) transition relation

−−→BPA∗
0,1(A) and the BPA∗

0,1(A) termination predicate ↓BPA∗
0,1(A) are the transition relation

and the termination predicate induced on BPA∗
0,1(A) expressions by the operational rules

in Table 1 minus the rules 12–17. That is, −−→BPA∗
0,1(A) and ↓BPA∗

0,1(A) are obtained by

restricting −−→PA∗
0,1(A) and ↓PA∗

0,1(A) to PBPA∗
0,1(A).
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Henceforth, we omit the subscripts ACP∗
0,1(A, γ), ACP∗,-∂

0,1 (A, γ), PA∗
0,1(A) and BPA∗

0,1(A)

from transition relations and termination predicates whenever it is clear from the context

which transition relation or termination predicate is meant. Furthermore, we shall often

use ACP∗
0,1(A, γ), ACP∗,-∂

0,1 (A, γ), PA∗
0,1(A) and BPA∗

0,1(A) to denote the associated transition

system spaces TACP∗
0,1(A,γ), TACP

∗,-∂
0,1 (A,γ), TPA∗

0,1(A) and TBPA∗
0,1(A).

Let T = (S,−−→ , ↓) be an A-labelled transition system space. Let s, s′ ∈ S; we write

s −−→ s′ if there exists a ∈ A such that s
a−−→ s′, and s 
−−→ s′ if there does not exist a ∈ A

such that s
a−−→ s′. We denote by −−→+ the transitive closure of −−→ , and by −−→∗ the

reflexive-transitive closure of −−→ . If s −−→∗ s′, then we say that s′ is reachable from s;

the set of all states reachable from s is denoted by [s]→. T is called regular if [s]→ is finite

for all s ∈ S .

Lemma 2.1. The transition system spaces ACP∗
0,1(A, γ), ACP∗,-∂

0,1 (A, γ), PA∗
0,1(A), and

BPA∗
0,1(A) are all regular.

Proof. By induction on the maximal depth of ∗-nestings it can be established for every

p in the respective transition system spaces that the set [p]→ is finite (see also Bergstra

et al. (1994, Lemma 3.1)).

The following lemma records some straightforward consequences of the operational

rules that will turn out to be useful in the technical developments to follow.

Lemma 2.2. Let p, q and r be ACP∗
0,1(A, γ) expressions.

1. If p · q −−→∗ r, then there exists an ACP∗
0,1(A, γ) expression p′ such that p −−→∗ p′ and

either r = p′ · q or p′↓ and q −−→∗ r.

2. If p · q∗ −−→∗ r, then either there exists an ACP∗
0,1(A, γ) expression p′ such that p−−→∗ p′

and r = p′ · q∗, or there exist ACP∗
0,1(A, γ) expressions p′ and q′ such that p −−→∗ p′,

p′↓, q −−→∗ q′, and r = q′ · q∗.

3. If p ‖ q −−→∗ r, then there exist ACP∗
0,1(A, γ) expressions p′ and q′ such that r = p′ ‖ q′,

p −−→∗ p′ and q −−→∗ q′.

Proof. It is immediate from the operational rules that if p · q −−→ r, then either there

exists p′ such that p−−→ p′ and r = p′ ·q, or p↓ and q−−→ r. In the latter case it is, moreover,

immediate from the operational rules that if q = (q′)∗ for some ACP∗
0,1(A, γ) expression

q′, then there exists q′′ such that q′ −−→ q′′ and r = q′′ · (q′)∗. Finally, it is also immediate

from the operational rules that if p ‖ q −−→ r, then either there exists p′ such that p −−→ p′

and r = p′ ‖ q, or there exists q′ such that q −−→ q′ and r = p ‖ q′, or there exist p′ and q′

such that p −−→ p′, q −−→ q′ and r = p′ ‖ q′. From these observations, the lemma follows

with a straightforward induction on the lengths of transitions sequences from p · q, p · q∗

and p ‖ q to r, respectively.

We say that a state s is normed if there exists s′ such that s −−→∗ s′ and s′↓.

Lemma 2.3. Let p and q be process expressions. Then

1. p · q is normed iff p and q are both normed; and

2. p ‖ q is normed iff p and q are both normed.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 11 Feb 2015 IP address: 192.16.191.143

Regular expressions with parallel composition 7

Proof. Suppose that p and q are both normed. Then there exists p′ such that p −−→∗ p′

and p′↓, and there exists q′ such that q −−→∗ q′ and q′↓.

With a straightforward induction on the sum of the lengths of a transition sequences

from p to p′ and q to q′, it follows from rules 7 and 8 that either p · q −−→∗ p′ · q′ (if the

length of the transition sequence from q to q′ is zero), or p · q −−→∗ q′ (if the length of

the transition sequence from q to q′ is non-zero), and p′ · q′↓ follows from rule 9 and q′↓
holds by assumption. Hence, p · q is normed.

With a similar induction it follows from rules 12 and 13 that p ‖ q−−→∗p′ ‖ q′. Moreover,

from rule 14 it follows that p′ ‖ q′↓. Hence p ‖ q is normed.

Suppose that p · q is normed. Then there exists r such that p · q −−→∗ r and r↓. So, by

Lemma 2.2, either there exists p′ such that p −−→∗ p′ and r = p′ · q, or there exist p′ and

q′ such that p −−→∗ p′, p′↓, and q −−→∗ r. In the first case, from r = p′ · q and r↓ it follows,

according to the operational rules in Table 1, that p′↓ and q↓, and hence p and q are

both normed. In the second case, since p′↓ and r′↓, it also follows that p and q are both

normed.

Suppose that p ‖ q is normed. Then, there exists r such that p · q −−→∗ r and r↓, and

hence, by Lemma 2.2, there exist p′ and q′ such that p −−→∗ p′, q −−→∗ q′ and r = p′ ‖ q′.

From r↓ it follows, according to the operational rules in Table 1, that p′↓ and q′↓. Hence,

p and q are both normed.

With every state s in T we can associate an automaton (or: transition system)

([s]→,−−→ ∩ ([s]→ × A × [s]→), ↓ ∩ [s]→, s).

Its states are the states reachable from s, its transition relation and termination predicate

are obtained by restricting −−→ and ↓ accordingly, and the state s is declared as the

initial state of the automaton. If a transition system space is regular, then the automaton

associated with a state in it is finite, i.e., it is a finite automaton in the terminology

of automata theory. Thus, we get by Lemma 2.1 that the operational semantics of

ACP∗
0,1(A, γ), and, a fortiori, that of ACP∗,-∂

0,1 (A, γ), PA∗
0,1(A) and BPA∗

0,1(A), associates a

finite automaton with every process expression.

In automata theory, automata are usually considered as language acceptors and two

automata are deemed indistinguishable if they accept the same languages. Language

equivalence is, however, arguably too coarse in process theory, where the prevalent notion

is bisimilarity (Milner 1989; Park 1981).

Definition 2.4. Let T1 = (S1,−−→1, ↓1) and T2 = (S2,−−→2, ↓2) be transition system spaces.

A binary relation R ⊆ S1 × S2 is a bisimulation between T1 and T2 if it satisfies, for all

a ∈ A and for all s1 ∈ S1 and s2 ∈ S2 such that s1 R s2, the following conditions:

— if there exists s′
1 ∈ S1 such that s1

a−−→1 s
′
1, then there exists s′

2 ∈ S2 such that s2
a−−→2 s

′
2

and s′
1 R s′

2;

— if there exists s′
2 ∈ S2 such that s2

a−−→2 s
′
2, then there exists s′

1 ∈ S1 such that s1
a−−→1 s

′
1

and s′
1 R s′

2; and

— s1↓1 if, and only if, s2↓2.

http://journals.cambridge.org
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States s1 ∈ S1 and s2 ∈ S2 are bisimilar (notation: s1 ↔ s2) if there exists a bisimulation

R between T1 and T2 such that s1 R s2.

To achieve a sufficient level of generality, we have defined bisimilarity as a relation

between transition system spaces; to obtain a suitable notion of bisimulation between

automata one should add the requirement that the initial states of the automata be related.

Based on the associated transition system spaces, we can now define what we mean

when some transition system space is, modulo bisimilarity, less expressive than some other

transition system space.

Definition 2.5. Let T1 and T2 be transition system spaces. We say that T1 is less expressive

than T2 (notation: T1 ≺ T2) if every state in T1 is bisimilar to a state in T2, and, moreover,

there is a state in T2 that is not bisimilar to some state in T1.

When we investigate the expressiveness of ACP∗
0,1(A, γ), we want to be able to choose γ.

So, we are actually interested in the expressiveness of the (disjoint) union of all transition

system spaces ACP∗
0,1(A, γ) with γ ranging over all communication functions; we denote

this transition system space by
⋃

γ ACP∗
0,1(A, γ). Similarly, we denote by

⋃
γ ACP∗,-∂

0,1 (A, γ)

the (disjoint) union of all transition system spaces ACP∗,-∂
0,1 (A, γ) with γ ranging over all

communication functions. In this paper we shall establish that

BPA∗
0,1(A) ≺ PA∗

0,1(A) ≺
⋃
γ

ACP∗,-∂
0,1 (A, γ) ≺

⋃
γ

ACP∗
0,1(A, γ).

Remark 2.6. Gorla (2010) proposed a set of general criteria for comparing the relative

expressiveness of process calculi. There are two assumptions in his work that preclude its

application in our setting. First, Gorla (2010) presupposes that the compared calculi both

include a notion of parallel composition; this would exclude BPA∗
0,1(A) from consideration.

Second, the criteria formulated by Gorla (2010) are based on (the transitive-reflexive

closure) of a reduction relation on expressions. Such a reduction relation naturally arises

in a calculus in which the result of synchronization between processes is considered

unobservable (i.e., is semantically modelled as a transition labelled with the special

unobservable τ). In the process calculi we consider, however, there is no notion of

unobservability; our results are up to strong bisimilarity.

3. Strongly connected components

A crucial step in establishing the strictness of the aforementioned expressiveness hierarchy

will be to characterize the strongly connected components in the respective transition

system spaces. First, we recall below the notion of strongly connected component. Then

we shall provide an inductive characterization of the strongly connected components in

ACP∗,-∂
0,1 (A, γ), PA∗

0,1(A), and BPA∗
0,1(A).

Definition 3.1. A strongly connected component in a transition system space T = (S,−−→ , ↓)

is a maximal subset C of S such that s −−→∗ s′ for all s, s′ ∈ C . A strongly connected

component C is trivial if it consists of only one state, say C = {s}, and s 
−−→ s; otherwise,

it is non-trivial.
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Note that every state of a transition system space is in precisely one strongly connected

component of that space. Furthermore, if s is a state of a non-trivial strongly connected

component, then s−−→+ s. Since in a strongly connected component from every state every

other state can be reached, we get as a corollary to Lemma 2.1 that strongly connected

components in ACP∗
0,1(A, γ), ACP∗,-∂

0,1 (A, γ), PA∗
0,1(A) and BPA∗

0,1(A) are finite.

Let T = (S,−−→ , ↓) be a transition system space, let s ∈ S , and let C ⊆ S be a strongly

connected component in S . We say that C is reachable from s if s−−→∗ s′ for some s′ ∈ C;

clearly, this means that s −−→∗ s′ for all s′ ∈ C .

Lemma 3.2. Let T1 = (S1,−−→1, ↓1) and T2 = (S2,−−→2, ↓2) be regular transition system

spaces, and let s1 ∈ S1 and s2 ∈ S2 be such that s1 ↔ s2. If s1 is an element of a strongly

connected component C1 in T1, then there exists a strongly connected component C2

reachable from s2 satisfying that for all s′
1 ∈ C1 there exists s′

2 ∈ C2 such that s′
1

↔ s′
2.

Proof. According to Lemma 2.1, the set [s2]→ is finite; we use induction on |[s2]→|.
Let C1 be the strongly connected component in T1 that contains s1. If the unique strongly

connected component C2 in T2 containing s2 is such that for all s′
1 ∈ C1 there exists s′

2 ∈ C2

such that s′
1

↔ s′
2, then we are done. In particular, this is the case if |[s2]→| = 1. Otherwise,

there exists a state in C1, say s′
1, for which there is no bisimilar state in the strongly

connected component containing s2, and since s1 −−→+ s′
1 −−→+ s1, it follows that there

exists s′
2 distinct from s2 such that s2 −−→+ s′

2 and s1 ↔ s′
2. Clearly, |[s′

2]→| < |[s2]→|, so by

the induction hypothesis there exists a strongly connected component C2 reachable from

s′
2, and hence also from s2, satisfying that for all s′

1 ∈ C1 there exists s′
2 ∈ C2 such that

s′
1

↔ s′
2.

We shall now establish that a non-trivial strongly connected component in the transition

system space ACP∗,-∂
0,1 (A, γ) is either of the form

{p1 · q∗, . . . , pn · q∗}

with pi (0 � i � n) reachable from q and {p1, . . . , pn} not a strongly connected component,

or of the form

{p1 · q, . . . , pn · q}

where {p1, . . . , pn} is a strongly connected component, or of the form

{p1 ‖ q1, . . . , pn ‖ qn}

where both {p1, . . . , pn} and {q1, . . . , qn} are strongly connected components. To this end, we

first prove, by reasoning on the basis of the operational semantics, that process expressions

in a non-trivial strongly connected component are necessarily sequential compositions or

parallel compositions; at the heart of the argument will be the following measure on

ACP∗,-∂
0,1 (A, γ) expressions.

Definition 3.3. Let p an ACP∗,-∂
0,1 (A, γ) expression; then #(p) is defined with recursion on

the structure of p by the following clauses:

— #(0) = #(1) = 0, and #(a) = 1;

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 11 Feb 2015 IP address: 192.16.191.143

J. C. M. Baeten, B. Luttik, T. Muller and P. J. A. van Tilburg 10

— #(p · q) =

{
0 if q is a star expression

#(q) + 1 otherwise;

— #(p + q) = max{#(p),#(q)} + 1;

— #(p∗) = 1; and

— #(p ‖ q) = 0.

We establish that #( ) is non-increasing over transitions, and, in fact, in most cases

decreases.

Lemma 3.4. If p and p′ are ACP∗,-∂
0,1 (A, γ) expressions such that p−−→+p′, then #(p) � #(p′).

Moreover, if #(p) = #(p′), then either p = p1 · q and p′ = p′
1 · q, or p = p1 ‖ p2 and

p′ = p′
1 ‖ p′

2 for some ACP∗,-∂
0,1 (A, γ) expressions p1, p2, p

′
1, p

′
2, and q.

Proof. Let p and p′ be ACP∗,-∂
0,1 (A, γ) expressions. Note that if the lemma holds in the

special case that p −−→ p′, then the general case follows with a straightforward induction

on the length of a transition sequence from p to p′. In the remainder of the proof we

concentrate on the special case: we prove that p−−→p′ implies #(p) � #(p′), and, moreover,

whenever #(p) = #(p′) then, for some ACP∗,-∂
0,1 (A, γ) expressions p1, p

′
1, p2, p

′
2, and q, either

p = p1 · q and p′ = p′
1 · q, or p = p1 ‖ p2 and p′ = p′

1 ‖ p2 with p1 −−→ p′
1, or p = p1 ‖ p2

and p′ = p1 ‖ p′
2 with p2 −−→ p′

2 or p = p1 ‖ p2, p
′ = p′

1 ‖ p′
2, and there exist b, c ∈ A such

that p1
b−−→ p′

1, p2
c−−→ p′

2 and γ(b, c) is defined.

Let a ∈ A be such that p
a−−→p′; we reason by induction on a derivation according to the

operational rules for ACP∗,-∂
0,1 (A, γ) (rules 1–15) of the transition p

a−−→ p′. We distinguish

cases according to which rule is applied last in such a derivation. (Clearly, since the rules 1,

5, 6, 9, 11 and 14 do not have a transition as a conclusion, we need not consider them.)

1. Suppose that the last rule applied is rule 2; then p = a and p′ = 1, so #(p) = 1 > 0 =

#(p′).

2. Suppose that the last rule applied is rule 3. Then there exist p1 and p2 such that

p = p1 + p2 and p1
a−−→ p′. Since there is a derivation of p1

a−−→ p′ that is a proper

subderivation of the considered derivation of p
a−−→ p′, it follows by the induction

hypothesis that #(p1) � #(p′), and hence #(p) = max{#(p1),#(p2)} + 1 � #(p1) + 1 �
#(p′) + 1 > #(p′).

3. If the last rule applied is rule 4, then the proof that #(p) > #(p′) is analogous to the

proof in the previous case.

4. Suppose that the last rule applied is rule 7. Then there exist p1, p
′
1 and q such that

p = p1 · q, p1
a−−→ p′

1, and p′ = p′
1 · q. There are two cases: if q is a star expression then

#(p) = 0 = #(p′), and otherwise #(p) = #(q) + 1 = #(p′).

5. Suppose that the last rule applied is rule 8. Then there exist p1 and q such that

p = p1 · q, with p1↓ and q
a−−→ p′. Note that, since there is a derivation of q

a−−→ p′

that is a proper subderivation of the considered derivation of p
a−−→ p′, we get by the

induction hypothesis that #(q) � #(p′). There are two subcases. On the one hand,

if q is a star expression, then the last rule applied in the derivation of q
a−−→ p′

is rule 10, so there exists p′
1 such that p′ = p′

1 · q. Since q is a star expression, it
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follows that #(p) = 0 = #(p′). On the other hand, if q is not a star expression, then

#(p) = #(q) + 1 � #(p′) + 1 > #(p′).

6. If the last rule applied is rule 10, then there exist q and q′ such that p = q∗,

q
a−−→ q′, and p′ = q′ · q∗. It then follows immediately from the definition of #( ) that

#(p) = 1 > 0 = #(q′ · q∗).

7. Suppose that the last rule applied is rule 12. Then there exist p1, p
′
1 and p2 such that

p = p1 ‖ p2, p1
a−−→ p′

1, and p′ = p′
1 ‖ p2, and hence #(p) = 0 = #(p′).

8. Suppose that the last rule applied is rule 13. Then there exist p1, p2 and p′
2 such that

p = p1 ‖ p2, p2
a−−→ p′

2, and p′ = p1 ‖ p′
2, and hence #(p) = 0 = #(p′).

9. Suppose that the last rule applied is rule 15. Then there exist p1, p2, p
′
1, p

′
2, b and c,

such that p = p1 ‖ p2, p1
b−−→ p′

1, p2
c−−→ p′

2, p
′ = p′

1 ‖ p′
2, and γ(b, c) = a, and hence

#(p) = 0 = #(p′).

To complete the proof, we note that #(p) = #(p′) only in case 4, in the first subcase of 5,

in case 7, in case 8, and in case 9, and in each of these cases the extra requirement of the

lemma is satisfied.

For a succinct presentation of the characterization of non-trivial strongly connected

components in ACP∗,-∂
0,1 (A, γ), it is convenient to introduce some auxiliary notation. Let P

and Q be sets of ACP∗,-∂
0,1 (A, γ) expressions, and let q be an ACP∗,-∂

0,1 (A, γ) expression; we

define the sets of ACP∗,-∂
0,1 (A, γ) expressions P · q and P ‖ Q, respectively, by

P · q = {p · q | p ∈ P } ; and

P ‖ Q = {p ‖ q | p ∈ P ∧ q ∈ Q}.

We also write P ‖ q and p ‖ Q for P ‖ {q} and {p} ‖ Q, respectively.

Proposition 3.5. If C1 and C2 are strongly connected components in ACP∗,-∂
0,1 (A, γ), then

C1 ‖ C2 is also a strongly connected component in ACP∗,-∂
0,1 (A, γ); moreover, if at least one

of C1 and C2 is nontrivial, then so is C1 ‖ C2.

Proof. Suppose that C1 and C2 are strongly connected components; we need to prove

that C1 ‖ C2 is a strongly connected component. To this end, we need to establish that

1. p1 ‖ p2 −−→∗ p′
1 ‖ p′

2 for all p1, p
′
1 ∈ C1 and p2, p

′
2 ∈ C2, and

2. for all ACP∗,-∂
0,1 (A, γ) expressions p1, p2, q1 and q2 such that p1 ‖ p2 ∈ C1 ‖ C2,

p1 ‖ p2 −−→ q1 ‖ q2 and q1 ‖ q2 
∈ C1 ‖ C2 it holds that q1 ‖ q2 
−−→∗ p1 ‖ p2.

To prove (1), note that if p1, p
′
1 ∈ C1 and p2, p

′
2 ∈ C2, then, since C1 and C2 are strongly

connected components, we have that p1 −−→∗p′
1 and p2 −−→∗p′

2, so, according to operational

rules 12 and 13, it follows that p1 ‖ p2 −−→∗ p′
1 ‖ p′

2.

To prove (2), note that if q1 ‖ q2 
∈ C1 ‖ C2, then q1 
∈ C1 or q2 
∈ C2; without loss of

generality we can assume that q1 
∈ C1. Note that p1 ‖ p2 −−→ q1 ‖ q2 by Lemma 2.2(3)

implies p1 −−→ q1. So, since p1 −−→ q1, q1 
∈ C1, and C1 is a strongly connected component,

it follows that q1 
−−→∗ p1, and hence q1 ‖ q2 
−−→∗ p1 ‖ p2.

It remains to establish that if at least one of C1 and C2 is non-trivial, then so is

C1 ‖ C2. We proceed by contraposition. Suppose that C1 ‖ C2 is trivial. Then there exist

ACP∗,-∂
0,1 (A, γ) expressions p1 and p2 such that C1 ‖ C2 = {p1 ‖ p2}, and p1 ‖ p2 
−−→ p1 ‖ p2.
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Then C1 = {p1} and C2 = {p2}, and from p1 ‖ p2 
−−→ p1 ‖ p2 it follows by operational

rules 12 and 13 that p1 
−−→ p1 and p2 
−−→ p2. Hence, C1 and C2 are both trivial.

Lemma 3.6. If C is a non-trivial strongly connected component in ACP∗,-∂
0,1 (A, γ), then

either there exist a set of ACP∗,-∂
0,1 (A, γ) expressions C ′ and a ACP∗,-∂

0,1 (A, γ) expression

q such that C = C ′ · q, or there exist strongly connected components C1 and C2 in

ACP∗,-∂
0,1 (A, γ), at least one of them non-trivial, such that C = C1 ‖ C2.

Proof. Let p ∈ C . Then, since p −−→+ p, by Lemma 3.4, either p = p1 · q or p = p1 ‖ p2,

for some ACP∗,-∂
0,1 (A, γ) expressions p1, p2 and q. We consider these cases separately:

1. Suppose that p = p1 · q, and consider an arbitrary p′ ∈ C . Then, since p−−→+ p′ −−→+ p,

by Lemma 3.4, #(p) � #(p′) � #(p), so #(p) = #(p′). Therefore, again by Lemma 3.4,

there exist p′
1 such that p′ = p′

1 · q. It follows that there exists a set of ACP∗,-∂
0,1 (A, γ)

expressions C ′ such that C = C ′ · q.
2. Suppose that p = p1 ‖ p2, and let C1 and C2 be the strongly connected components

containing p1 and p2, respectively. We establish that C = C1 ‖ C2 and that one of C1

and C2 is non-trivial.

To see that C ⊆ C1 ‖ C2, consider an arbitrary ACP∗,-∂
0,1 (A, γ) expression p′ ∈ C . Then,

since p′ −−→+ p −−→+ p′, by Lemma 2.2(3) there exist ACP∗,-∂
0,1 (A, γ) expressions p′

1 and

p′
2 such that p′ = p′

1 ‖ p′
2, p

′
1 −−→∗ p1 −−→∗ p′

1, and p′
2 −−→∗ p2 −−→∗ p′

2. It follows that p′
1

and p′
2 are in the same strongly components as p1 and p2, respectively, so p′

1 ∈ C1 and

p′
2 ∈ C2. Hence, p′ ∈ C1 ‖ C2. Moreover, from p′ −−→+ p′ it can be easily deduced that

either p′
1 −−→+ p′

1 or p′
2 −−→+ p′

2, so at least one of C1 and C2 is non-trivial.

To see that C1 ‖ C2 ⊆ C , consider an arbitrary ACP∗,-∂
0,1 (A, γ) expression p′ ∈ C1 ‖ C2.

Then there exist ACP∗,-∂
0,1 (A, γ) expressions p′

1 ∈ C1 and p′
2 ∈ C2 such that p′ = p′

1 ‖ p′
2.

Since C1 is a strongly connected component containing p1 and p′
1, we have that

p′
1 −−→∗ p1 −−→∗ p′

1, and, since C2 is a strongly connected component containing p2 and

p′
2, we have that p′

2 −−→∗ p2 −−→∗ p′
2. It follows that p′ −−→∗ p −−→∗ p′, so p′ ∈ C .

We proceed to give an inductive description of the non-trivial strongly connected

components in ACP∗,-∂
0,1 (A, γ). The basis for the inductive description is the following

notion of basic strongly connected component.

Definition 3.7. A non-trivial strongly connected component C in ACP∗,-∂
0,1 (A, γ) is basic if

there exist a set of ACP∗,-∂
0,1 (A, γ) expressions C ′ and an ACP∗,-∂

0,1 (A, γ) expression q such

that C = C ′ · q∗ and C ′ is not a strongly connected component in ACP∗,-∂
0,1 (A, γ).

Proposition 3.8. Let C be a non-trivial strongly connected component in ACP∗,-∂
0,1 (A, γ).

Then one of the following holds:

1. C is a basic strongly connected component; or

2. there exist a non-trivial strongly connected component C ′ in ACP∗,-∂
0,1 (A, γ) and a

ACP∗,-∂
0,1 (A, γ) expression q such that C = C ′ · q; or

3. there exist strongly connected components C1 and C2 in ACP∗,-∂
0,1 (A, γ), at least one of

them non-trivial, such that C = C1 ‖ C2.
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Proof. Let C be a non-trivial strongly connected component in ACP∗,-∂
0,1 (A, γ). According

to Lemma 3.6 there are two cases: either there exist a set of process expressions C ′ and a

process expression q such that C = C ′ · q, or there exist strongly connected components

C1 and C2, at least one of them non-trivial, such that C = C1 ‖ C2.

In the second case, there is nothing left to prove.

In the first case, we should argue that either C is basic, or C ′ is a non-trivial

strongly connected component. So, suppose that C ′ is not a non-trivial strongly connected

component. Then there are p, p′ ∈ C ′ such that p 
−−→+ p′. Since C is a non-trivial strongly

connected component and C = C ′ · q, it holds that p · q −−→+ p′ · q. Using that p 
−−→+ p′,

it can be established with induction on the length of the transition sequence from p · q
to p′ · q that q −−→+ p′ · q. It follows by Lemma 3.4 that #(q) � #(p′ · q), and therefore,

according to the definition of #( ), q must be a star expression. We conclude that C is

basic.

Note that, in the above proposition, one of the strongly connected components C1 and

C2 may be trivial in which case it consists of a single ACP∗,-∂
0,1 (A, γ) expression.

Every ACP∗,-∂
0,1 (A, γ) expression is a PA∗

0,1(A) expression. Moreover, although the trans-

ition relation associated with ACP∗,-∂
0,1 (A, γ) does not coincide with the transition relation

associated with PA∗
0,1(A), the relation −−→∗ associated with ACP∗,-∂

0,1 (A, γ) actually coincides

with the relation −−→∗ associated with PA∗
0,1(A). Hence, it immediately follows that a set of

PA∗
0,1(A) expressions is a strongly connected component in ACP∗,-∂

0,1 (A, γ) iff it is a strongly

connected component in PA∗
0,1(A). Thus, we may use Proposition 3.5 also for strongly

connected components in PA∗
0,1(A), and Proposition 3.8 also provides a characterization

of the non-trivial strongly connected components in PA∗
0,1(A). For the sake of clarity, we

restate both propositions for PA∗
0,1(A) in the following two corollaries.

Corollary 3.9. If C1 and C2 are strongly connected components in PA∗
0,1(A), then C1 ‖ C2

is also a strongly connected component in PA∗
0,1(A); moreover, if at least one of C1 and

C2 is non-trivial, then so is C1 ‖ C2.

Corollary 3.10. Let C be a non-trivial strongly connected component in PA∗
0,1(A). Then

one of the following holds:

1. C is a basic strongly connected component; or

2. there exist a non-trivial strongly connected component C ′ in PA∗
0,1(A) and a PA∗

0,1(A)

expression q such that C = C ′ · q; or

3. there exist strongly connected components C1 and C2 in PA∗
0,1(A), at least one of them

non-trivial, such that C = C1 ‖ C2.

Recall that −−→BPA∗
0,1(A) is obtained by restricting −−→PA∗

0,1(A) to BPA∗
0,1(A) expressions,

which are PA∗
0,1(A) expressions without occurrences of ‖. It is easy to see that if p

is a BPA∗
0,1(A) expression and p −−→PA∗

0,1(A)
∗ p′, then p′ is a BPA∗

0,1(A) expression too.

Hence, if a strongly connected component in PA∗
0,1(A) contains a BPA∗

0,1(A) expression,

then it consists entirely of BPA∗
0,1(A) expressions. We therefore obtain the following

inductive characterization of non-trivial strongly connected components in BPA∗
0,1(A) as

a consequence of the preceding corollary.
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1 · (a · (a + 1))∗ · b (a + 1) · (a · (a + 1))∗ · b

1

a

b a
a

b

Fig. 1. A transition system in BPA∗
0,1(A) with a cycle with multiple exit transitions.

Corollary 3.11. Let C be a non-trivial strongly connected component in BPA∗
0,1(A). Then

one of the following holds:

1. C is a basic strongly connected component; or

2. there exist a non-trivial strongly connected component C ′ in BPA∗
0,1(A) and a BPA∗

0,1(A)

expression q such that C = C ′ · q.

4. Relative expressiveness of BPA∗
0,1(A) and PA∗

0,1(A)

Bergstra et al. (1994) prove that BPA∗
0(A) is less expressive than PA∗

0(A), by arguing that

the PA∗
0(A) expression (a · b)∗c ‖ d is not bisimilar with any BPA∗

0(A) expression. Bergstra

et al. (2001) present an alternative and more general proof that the PA∗
0(A) expression

above is not expressible in BPA∗
0(A). (Actually, the PA∗

0(A) expression they employ uses

only a single action a, i.e., considers the PA∗
0(A) expression (a ·a)∗a ‖ a; we use the actions

b, c and d for clarity.) They establish that the PA∗
0(A) expression above fails the following

general property, which is satisfied by all BPA∗
0(A)-expressible automata:

If C is a cycle in an automaton associated with a BPA∗
0(A) expression, then there is at most one

state p ∈ C that has an exit transition.

(A cycle is a sequence (p1, . . . , pn) such that pi −−→ pi+1 (1 � i < n) and pn −−→ p1; an exit

transition from pi is a transition pi −−→ p′
i such that no element of the cycle is reachable

from p′
i.)

The following example shows that automata associated with BPA∗
0,1(A) expressions do

not satisfy the property above.

Example 4.1. Consider the automaton associated with the BPA∗
0,1(A) expression 1 · (a ·

(a + 1))∗ · b (see Figure 1). It has a cycle consisting of two states, and both states on the

cycle have a b-transition off the cycle.

In this section, we shall establish that BPA∗
0,1(A) is less expressive than PA∗

0,1(A). As

in Bergstra et al. (2001) we prove that BPA∗
0,1(A)-expressible automata satisfy a general

property that some automaton expressible in PA∗
0,1(A) fails to satisfy. We find it technically

convenient, however, to base our relative expressiveness proofs on the notion of strongly

connected component, instead of cycle. Note, e.g., that every process expression is an

element of precisely one strongly connected component, while it may reside on more

than one cycle. Furthermore, if p −−→ q and p and q are in distinct strongly connected

components, then we can be sure that p −−→ q is an exit transition, while if p and q are

on distinct cycles, then it may happen that p is reachable from q.
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1 · (a · b · (c + 1))∗ · d b · (c + 1) · (a · b · (c + 1))∗ · d (c + 1) · (a · b · (c + 1))∗ · d

1

a b

c

a

d

d

Fig. 2. A non-trivial strongly connected component in BPA∗
0,1(A) with multiple exit transitions.

1 · (a · ((b · 0) + 1))∗ · c ((b · 0) + 1) · (a · ((b · 0) + 1))∗ · c

0 · (a · ((b · 0) + 1))∗ · c1

a

b

c

ac

Fig. 3. A strongly connected component with an unnormed exit transition.

The crucial tool that will allow us to establish that BPA∗
0,1(A) is less expressive than

PA∗
0,1(A) will be a special property of states with a transition out of their strongly

connected component in BPA∗
0,1(A). Roughly, if C is a strongly connected component in

BPA∗
0,1(A), then all states with a transition out of C have the same transitions out of C .

Definition 4.2. Let C be a strongly connected component in the transition system space

T = (S,−−→ , ↓) and let s ∈ C . An exit transition from s is a pair (a, s′) such that s
a−−→ s′

and s′ 
∈ C . An element s ∈ C is called an exit state if s↓ or there exists an exit transition

from s.

Example 4.3. Consider the automaton associated with the BPA∗
0,1(A) expression 1 · (a · b ·

(c + 1))∗ · d (see Figure 2). It has a strongly connected component with two exit states,

both with a single exit transition (d, 1).

Non-trivial strongly connected components in BPA∗
0,1(A) arise from executing the

argument of a Kleene star. An exit state of a strongly connected component in BPA∗
0,1(A)

is then a state with the termination option. Due to the presence of 0 in BPA∗
0,1(A) this is,

however, not the only type of exit state in BPA∗
0,1(A) strongly connected components.

Example 4.4. Consider the automaton associated with the BPA∗
0,1(A) expression 1 · (a · ((b ·

0)+ 1))∗ · c (see Figure 3). The strongly connected component contains two exit states and

two (distinct) exit transitions. One of these exit transitions leads to a deadlocked state.

The preceding example illustrates that the special property of strongly connected

components in BPA∗
0,1(A) that we are after, should exclude from consideration any exit

transition arising from an occurrence of 0. This is achieved in the following definition.
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Definition 4.5. Let C be a strongly connected component and let s ∈ C . An exit transition

(a, s′) from s is normed if s′ is normed. We denote by ETn(s) the set of normed exit

transitions from s.

An exit state s ∈ C is alive if s↓ or there exists a normed exit transition from s.

Our goal is to prove that any two alive exit states in a strongly connected component

C in BPA∗
0,1(A) have the same normed exit transitions. We proceed by first characterizing

the set of exit transitions of a state in C , using its inductive description provided by

Corollary 3.11: Lemma 4.7 will deal with the case that C is a basic non-trivial strongly

connected component, and Lemma 4.9 will deal with the case that C = C ′ · q for some

non-trivial strongly connected component C ′ in BPA∗
0,1(A) and a BPA∗

0,1(A) expression q.

The following three lemmas are valid not only for BPA∗
0,1(A), but also for PA∗

0,1(A) and

ACP∗,-∂
0,1 (A, γ); in fact, we will reuse them in subsequent sections.

Lemma 4.6. Let C = C ′ · q∗ be a basic strongly connected component. Then q −−→+ p for

all p ∈ C ′.

Proof. Let p ∈ C ′. Note that, since C ′ is not a strongly component, there exists r ∈ C ′

such that either r 
−−→+ p or p 
−−→+ r.

First we consider the case that r 
−−→+ p. Then, since C is a strongly connected

component, it holds that r · q∗ −−→+ p · q∗, so, by Lemma 2.2(2), there exist r0, . . . , rk such

that r · q∗ = r0 · q∗ −−→ · · · −−→ rk · q∗ = p · q∗. From r 
−−→+ p it follows that r� 
−−→ r�+1 for

some 0 � � < k; we let � be the largest such natural number, so that in addition we have

r�+1 −−→∗ p. Then, from r� 
−−→ r�+1 we conclude that the last rule applied in the derivation

of r� · q∗ −−→ r�+1 · q∗ must be rule 8, so q∗ −−→ r�+1 · q∗, which by rule 10 implies that

q −−→ r�+1. Thus, we have now established that q −−→ r�+1 −−→∗ p.

It remains to consider the case that r −−→+ p and p 
−−→+ r. Then from p 
−−→+ r it can

be concluded, in a similar manner as above, that q −−→+ r, and hence q −−→+ p.

Lemma 4.7. If C is a basic strongly connected component, then ETn(p) = � for all p ∈ C .

Proof. Let p ∈ C . To prove that ETn(p) = �, we suppose that p has a normed exit

transition and derive a contradiction. So, let r and r′ be process expressions such that

r 
∈ C and p
a−−→ r −−→∗ r′↓. Since C is a basic strongly connected component, there exist a

set of process expressions C ′ and a process expression q such that C = C ′ · q∗. It follows

from p ∈ C that there exists p′ ∈ C ′ such that p = p′ · q∗, and hence, by Lemma 2.2(2), it

follows from p −−→∗ r′ that there exists a process expression s such that r′ = s · q∗. Since

r′↓, according to rule 9, also s↓. Hence, since q −−→+ p by Lemma 4.6, it follows that

r′ −−→+ p. But then r′ ∈ C and, a fortiori, r ∈ C , contradicting our assumption that r 
∈ C .

We conclude that p does not admit normed exit transitions, and hence ETn(p) = �.

Lemma 4.8. Let C be a non-trivial strongly connected component, let p ∈ C , and let q be

a process expression such that C · q is a strongly connected component. Then p · q is an

alive exit state in C · q iff p is an alive exit state in C and q is normed.

Proof. We prove the implications from left to right and from right to left separately.
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(⇒)If p · q is an alive exit state in C · q, then either p · q↓, or there exist a ∈ A and a

normed process expression r such that p · q a−−→ r and r 
∈ C · q.
In the first case it is immediately clear from rule 9 that p↓ and q↓, so p is an alive exit

state in C and q is normed.

In the second case, since p · q a−−→ r and r is normed, it follows that p · q is normed,

and hence, by Lemma 2.3(1), q is normed. It remains to prove that p is an alive exit

state. To this end, note that from p · q a−−→ r it follows that either p↓ and q
a−−→ r or

there exists p′ such that p
a−−→ p′ and r = p′ · q. If p↓, then p is an alive exit state of C

directly by definition. If there exists p′ such that p
a−−→ p′ and r = p′ · q, then it remains

to prove that p′ 
∈ C and p′ is normed. Since p′ ∈ C incorrectly implies r = p′ ·q ∈ C ·q,
it follows that p′ 
∈ C , and since r is normed, by Lemma 2.3(1) so is p′.

(⇐)Suppose that p is an alive exit state in C and q is normed. Then there are two cases:

either p↓, or there exist an a ∈ A and a normed process expression such that p
a−−→ p′

and p′ 
∈ C . We consider these two cases separately.

Suppose that p↓. If also q↓, then p · q↓, and hence p · q is an alive exit state in C · q. If

q
 ↓, then, since q is normed, there exist a ∈ A and a normed process expression q′ such

that q
a−−→ q′. From p · q a−−→ q′ it follows by Lemma 3.4 that either #(p · q) > #(q′), or

#(p · q) = #(q′) and there is a p′ such that q′ = p′ · q. If #(p · q) > #(q′), then (a, q′) is a

normed exit transition from p · q, so p · q is an alive exit state in C · q. The other case,

that #(p · q) = #(q′) and there is a p′ such that q′ = p′ · q, cannot occur, for q
a−−→ p′ · q

implies by Lemma 3.4 and the definition of #( ) that q is a star expression, which is

in contradiction with our assumption that q
 ↓.

Suppose there exist a ∈ A and a normed process expression p′ such that p
a−−→ p′ and

p′ 
∈ C . Then p · q a−−→ p′ · q, and since p′ 
∈ C it follows that p′ · q 
∈ C · q. We conclude

that (a, p′ · q) is an exit transition of p · q, which, by Lemma 2.3(1), is normed since p′

and q are both normed.

For a characterization of the set of normed exit transitions of a sequential composition,

it is convenient to have the following notation: if E is a set of exit transitions and p is a

expression, then E · p is defined by

E · p = {(a, q · p) | (a, q) ∈ E}.

Lemma 4.9. Let C be a non-trivial strongly connected component, let p ∈ C , and let q be

a normed process expression such that C · q is a strongly connected component. Then

ETn(p · q) =

{
ETn(p) · q if p
 ↓; and

ETn(p) · q ∪ {(a, r) | r 
∈ C · q ∧ r is normed ∧ q
a−−→ r} if p↓.

Proof. We distinguish cases according to whether p↓ or p
 ↓:

1. Suppose that p
 ↓.

To see that ETn(p · q) ⊆ ETn(p) · q, consider an exit transition (a, r) ∈ ETn(p · q). Then

r is a normed process expression such that p · q a−−→ r and r 
∈ C · q. Since p
 ↓, it follows

that there exists p′ such that p
a−−→ p′ and r = p′ · q. From r 
∈ C · q, it follows that
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p′ 
∈ C . Moreover, since r is normed, by Lemma 2.3(1) p′ is normed too. Thereby, we

have now established that (a, p′) ∈ ETn(p), and hence (a, r) ∈ ETn(p) · q.
To see that ETn(p) · q ⊆ ETn(p · q), consider and exit transition (a, p′) ∈ ETn(p). Then

p′ is a normed process expression such that p
a−−→ p′ and p′ 
∈ C . Now, since both p′

and q are normed, by Lemma 2.3(1), p′ · q is normed. Furthermore, p · q a−−→ p′ · q, and

from p′ 
∈ C it follows that p′ · q 
∈ C · q. Hence, (a, p′ · q) ∈ ETn(p · q).
2. Suppose that p↓.

To see that ETn(p · q) ⊆ ETn(p) · q ∪ {(a, r) | r 
∈ C · q ∧ r is normed ∧ q
a−−→ r}, consider

an exit transition (a, r) ∈ ETn(p · q). Then r is a normed process expression such

that p · q a−−→ r and r 
∈ C · q. From p · q a−−→ r and p↓ it follows that either q
a−−→ r

or there exists p′ such that p
a−−→ p′ and r = p′ · q. In the first case it follows that

(a, r) ∈ {(a, r) | r 
∈ C ·q∧ r is normed∧q
a−−→ r}. In the second case, note that, since r is

normed, by Lemma 2.3(1) so is p′. Furthermore, p′ 
∈ C , for otherwise r = p′ · q ∈ C · q
contradicting (a, r) ∈ ETn(p · q). Hence (a, p′) ∈ ETn(p).

To see that ETn(p) · q ⊆ ETn(p · q), consider an exit transition (a, p′) ∈ ETn(p). Then p′

is a normed process expression such that p
a−−→ p′ and p′ 
∈ C . From p

a−−→ p′ it follows

that p · q a−−→ p′ · q, and from p′ 
∈ C it follows that p′ · q 
∈ C · q. Furthermore, since p′

and q are both normed, by Lemma 2.3(1) so is p′ · q. Hence (a, p′ · q) ∈ ETn(p · q).
That {(a, r) | r 
∈ C · q ∧ r is normed ∧ q

a−−→ r} ⊆ ETn(p · q) is immediate.

Proposition 4.10. Let C be a non-trivial strongly connected component in BPA∗
0,1(A). If

p1 and p2 are alive exit states in C , then ETn(p1) = ETn(p2).

Proof. Suppose that p1 and p2 are alive exit states; we prove by induction on

the structure of non-trivial strongly connected components in BPA∗
0,1(A) as given by

Corollary 3.11 that ETn(p1) = ETn(p2), and p1↓ iff p2↓.

If C is basic, then by Lemma 4.7 ETn(p1) = � = ETn(p2), and, since p1 and p2 are

alive exit states, it also follows from this that both p1↓ and p2↓.

Suppose that C = C ′ · q, with C ′ a non-trivial strongly connected component, and

let p′
1, p

′
2 ∈ C ′ be such that p1 = p′

1 · q and p2 = p′
2 · q. Since p1 and p2 are alive exit

states, by Lemma 4.8 so are p′
1 and p′

2, furthermore, q is normed. Hence, by the induction

hypothesis, ETn(p
′
1) = ETn(p

′
2) and p′

1↓ iff p′
2↓. From the latter it immediately follows that

p1↓ iff p2↓. We now apply Lemma 4.9: if, on the one hand, p1↓ and p2↓, then

ETn(p1) = ETn(p
′
1) · q ∪ {(a, r) | r 
∈ C ∧ r is normed ∧ q

a−−→ r}
= ETn(p

′
2) · q ∪ {(a, r) | r 
∈ C ∧ r is normed ∧ q

a−−→ r}
= ETn(p2),

and if, on the other hand, p1
 ↓ and p2
 ↓, then

ETn(p1) = ETn(p
′
1) · q = ETn(p

′
2) · q = ETn(p2).

Theorem 4.11. BPA∗
0,1(A) is less expressive than PA∗

0,1(A).
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p0 p1

p2 p3

a

b

a

b

c c

Fig. 4. A PA∗
0,1(A)-expressible automaton that is not expressible in BPA∗

0,1(A).

Proof. According to Definition 2.5 we should prove that every state in BPA∗
0,1(A) is

bisimilar to a state in PA∗
0,1(A) and that there exists a state in PA∗

0,1(A) for which there is

no bisimilar state in BPA∗
0,1(A).

That every state in BPA∗
0,1(A) is bisimilar to a state in PA∗

0,1(A) is immediately clear.

To prove that there exists a state in PA∗
0,1(A) for which there is no bisimilar state

in BPA∗
0,1(A), consider the PA∗

0,1(A) expression 1 · (a · b)∗ ‖ c. Let us use the following

abbreviations:

p0 = 1 · (a · b)∗ ‖ c,

p1 = b · (a · b)∗ ‖ c,

p2 = 1 · (a · b)∗ ‖ 1, and

p3 = b · (a · b)∗ ‖ 1;

the automaton associated with this PA∗
0,1(A) expression, with the states labelled with the

above abbreviations, is shown in Figure 4.

To establish that there is no BPA∗
0,1(A) expression bisimilar to 1 · (a · b)∗ ‖ c, we assume

that p is a BPA∗
0,1(A) expression bisimilar to 1 · (a ·b)∗ ‖ c and derive a contradiction. Note

that the set C = {p0, p1} is a non-trivial strongly connected component in PA∗
0,1(A) and

p0 ↔ p. Hence, by Lemma 3.2, there is a strongly connected component C ′ in BPA∗
0,1(A)

reachable from p satisfying the condition that there exist p′
0, p

′
1 ∈ C ′ such that p0 ↔ p′

0 and

p1 ↔ p′
1. From p0 ↔ p′

0 and p0
c−−→ p2 it follows that there exists a BPA∗

0,1(A) expression p′
2

such that p′
0

c−−→ p′
2 and p2 ↔ p′

2. Similarly, from p1 ↔ p′
1 and p1

c−−→ p3 it follows that there

exists a BPA∗
0,1(A) expression p′

3 such that p′
1

c−−→ p′
3 and p3 ↔ p′

3. It is easy to see that

p′
2 
∈ C ′, for p′

2 ∈ C ′ would imply the existence of a transition sequence p′
2 −−→∗ p′

0
c−−→ p′

2

that clearly cannot be simulated by p2. For similar reasons, p′
3 
∈ C ′. So (b, p′

2) and (c, p′
3)

are exit transitions. From p2 ↔ p′
2 and p2↓ it follows that p′

2↓, so (b, p′
2) is normed. From

p3 ↔ p′
3 and p3

b−−→ p2 it follows that there exists p′′
2 such that p′

3
b−−→ p′′

2 and p2 ↔ p′′
2,

and therefore p′′
2↓, and hence (c, p′

3) is normed. We conclude that both p′
0 and p′

1 are alive

exit states. By Proposition 4.10 p′
0 and p′

1 have the same normed exit transitions, so, in

particular, p′
0

c−−→ p′
3. Since p0 ↔ p′

0, it follows that p2 ↔ p′
3

↔ p3, and hence p2 ↔ p3,

which is clearly not the case. Thus, we have now arrived at a contradiction.

5. Relative expressiveness of PA∗
0,1(A) and ACP∗,-∂

0,1 (A, γ)

Bergstra et al. (2001) proof that PA∗
δ(A) is less expressive than ACP∗(A, γ) uses the

same expression as the one showing that BPA∗
δ(A) is less expressive than PA∗

δ(A), but it
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(a · (b + b · b))∗ · d (b + b · b) · (a · (b + b · b))∗ · d b · (a · (b + b · b))∗ · d

1 · (a · (b + b · b))∗ · d1

a

d

b

b

b
a

d

Fig. 5. A PA∗
0,1(A)-expressible automaton with a cycle and multiple transitions going out of the

cycle.

presupposes that γ(c, d) = e. It is claimed that the associated automaton fails the following

general property of cycles in PA∗
δ(A):

If C is a cycle reachable from a PA∗
δ(A) process term and there is a state in C with a transition to

a terminating state, then all other states in C have only successors in C .

The claim, however, is incorrect, as illustrated by the following example. (To avoid having

to introduce the syntax and operational semantics of PA∗
δ(A) formally, we present the

example in the syntax of PA∗
0,1(A). To translate it into the syntax of PA∗

δ(A) the occurrence

of 1· should be removed, and ∗· should be replaced by (the binary version of) ∗; we refer

to Bergstra et al. (2001) for the operational semantics of PA∗
δ(A).)

Example 5.1. Consider the PA∗
0,1(A) expression (a · (b + b · b))∗ · d (see Figure 5 for the

complete associated automaton), from which the cycle

C = {1 · (a · (b + b · b))∗ · d, (b + b · b) · (a · (b + b · b))∗ · d}

is reachable. Clearly, the first expression in C can perform a d-transition to 1. Then,

according to the property above, every other expression only has transitions to expressions

in C . However,

(b + b · b) · (a · (b + b · b))∗ · d b−−→ b · (a · (b + b · b))∗ · d 
∈ C.

If we replace, in the property above, the notion of cycle by the notion of strongly

connected component, then the resulting property does hold for PA∗
0(A), but it still fails

for PA∗
0,1(A).

Example 5.2. Consider the PA∗
0,1(A) expression (a · b)∗ ‖ c (see Figure 6 for the associated

automaton); it gives rise to the following non-trivial strongly connected component:

{1 · (a · b)∗ ‖ c, b · (a · b)∗ ‖ c}.

The expression 1 ·(a ·b)∗ ‖ c can do a c-transition to 1 ·(a ·b)∗ ‖ 1, for which the termination

predicate holds, but at the same time b · (a · b)∗ ‖ c has an exit transition (c, b · (a · b)∗ ‖ 1).

In this section, we shall establish that PA∗
0,1(A) is less expressive than ACP∗,-∂

0,1 (A, γ). We

use the syntactic characterization of strongly connected components in PA∗
0,1(A) as given

by Corollary 3.10 to conclude that a weakened version of the aforementioned property
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(a · b)∗ c

(a · b)∗ 1

b · (a · b)∗ c 1 · (a · b)∗ c

b · (a · b)∗ 1 1 · (a · b)∗ 1

a

a

b

b

a

a

c c c

Fig. 6. A PA∗
0,1(A)-expressible automaton with a strongly connected component and multiple

(different) exit transitions.

for strongly connected components holds in PA∗
0,1(A). Then, we present an ACP∗,-∂

0,1 (A, γ)

expression that does not satisfy it.

In Section 4 we deduced, from our syntactic characterization of strongly connected

components in BPA∗
0,1(A), the property that all alive exit states of a strongly connected

component have the same sets of normed exit transitions. This property may fail for

strongly connected components in PA∗
0,1(A): the automaton in Figure 4 is PA∗

0,1(A)-

expressible, but the alive exit states p0 and p1 of the strongly connected component {p0, p1}
have different normed exit transitions. Note, however, that these normed exit transitions

both end up in another strongly connected component {p2, p3}. It turns out that we can

relax the requirement on normed exit transitions from strongly connected components in

BPA∗
0,1(A) to get a requirement that holds for strongly connected components in PA∗

0,1(A).

The idea is to identify exit transitions if they have the same action and end up in the

same strongly connected component.

Definition 5.3. Let T = (S,−−→ , ↓) be an A-labelled transition system space. We define

a binary relation ∼ on A × S by (a, s) ∼ (a′, s′) iff a = a′ and s and s′ are in the same

strongly connected component in T.

Since the relation of being in the same strongly connected component is an equivalence

on states in a transition system space, it is clear that ∼ is an equivalence relation on exit

transitions. The following lemma, which is valid both in PA∗
0,1(A) and ACP∗,-∂

0,1 (A, γ), will

give some further properties of the relation ∼.

Lemma 5.4. Let p, q and r be process expressions, and let a and b be actions.

1. If (a, p) ∼ (b, q), then (a, p · r) ∼ (b, q · r).
2. If (a, p) ∼ (b, q), then (a, p ‖ r) ∼ (b, q ‖ r).

3. If (a, p) ∼ (b, q), then (a, r ‖ p) ∼ (b, r ‖ q).

Proof. Suppose that (a, p) ∼ (b, q). Then a = b, and p and q are in the same strongly

connected component of PA∗
0,1(A). So p −−→∗ q −−→∗ p, and hence p · r −−→∗ q · r −−→∗ p · r,

p ‖ r−−→∗ q ‖ r−−→∗ p ‖ r, and r ‖ p−−→∗ r ‖ q−−→∗ r ‖ p. From this it follows that p · r and

q · r, p ‖ r and q ‖ r, and r ‖ p and r ‖ q, are in the same strongly connected component,

and hence (a, p · r) ∼ (b, q · r), (a, p ‖ r) ∼ (b, q ‖ r), and (a, r ‖ p) ∼ (b, r ‖ q).
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The following notation will be convenient in the sequel: if e = (a, p) is an exit transition,

then e ‖ q = (a, p ‖ q) and q ‖ e = (a, q ‖ p). If E is a set of exit transitions E and p is a

PA∗
0,1(A) expression, then E ‖ p and p ‖ E are defined by

E ‖ p = {e ‖ p | e ∈ E}, and

p ‖ E = {p ‖ e | e ∈ E}.

For a succinct formulation of the property that will allow us to property that PA∗
0,1(A) is

less expressive than ACP∗,-∂
0,1 (A, γ), it is convenient to extend the definition of normedness

to strongly connected components.

Definition 5.5. A strongly connected component C is normed if all states in C are normed.

The following lemma explains how extending the definition of normedness to strongly

connected components is conducive to succinct formulation: to ensure that a strongly

connected component has alive exit states, it suffices to require that it is normed.

Lemma 5.6. Let C be a strongly connected component. Then C is normed iff it has alive

exit states.

Proof. Note that if C contains a normed state, then C is normed. Hence, since an alive

exit state is clearly normed, the implication from right to left is immediate. It remains to

establish the implication from left to right. To this end, let s ∈ C . Since C is normed, there

exists a process expression s′ such that s −−→∗ s′ and s′↓. On the one hand, if s′ ∈ C , then

s′ is an alive exit state. On the other hand, if s′ 
∈ C , then there exist states s1 ∈ C and

s2 
∈ C and an action a such that s −−→∗ s1
a−−→ s2 −−→∗ s′. Then, clearly, (a, s2) is a normed

exit transition from s1, so s1 is an alive exit state.

We proceed, in the following lemma, to characterize the set of normed exit transitions

in a normed strongly connected component of the form C1 ‖ C2 in PA∗
0,1(A) in terms of

the normed exit transitions in the constituent normed strongly connected components C1

and C2.

Lemma 5.7. Let C1 and C2 be normed strongly connected components in PA∗
0,1(A). Then

C1 ‖ C2 is a normed strongly connected component, and for all p ∈ C1 and q ∈ C2

ETn(p ‖ q) = (ETn(p) ‖ q) ∪ (p ‖ ETn(q)).

Proof. Suppose that C1 and C2 are normed strongly connected components. Then, by

Corollary 3.9, C1 ‖ C2 is a strongly connected component too, which, by Lemma 2.3(2), is

normed. It remains to prove that for all p ∈ C1 and q ∈ C2

ETn(p ‖ q) = (ETn(p) ‖ q) ∪ (p ‖ ETn(q)).

To prove that ETn(p ‖ q) ⊆ (ETn(p) ‖ q) ∪ (p ‖ ETn(q)), consider an arbitrary (a, r) ∈
ETn(p ‖ q). Then r is a normed PA∗

0,1(A) expression such that p ‖ q
a−−→ r and r 
∈ C1 ‖ C2.

From the operational rules for PA∗
0,1(A) with ‖ in the conclusion it follows that we can

distinguish two cases: either there exists p′ such that r = p′ ‖ q and p
a−−→ p′, or there exists

q′ such that r = p ‖ q′ and q
a−−→ q′. The proofs for these cases are entirely analogous; we
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only present details for the first case. Since q ∈ C2, p
′ ‖ q 
∈ C1 ‖ C2 implies that p′ 
∈ C1,

and, since r is normed and r = p′ ‖ q, by Lemma 2.3(1) p′ is normed too. It follows that

(a, p′) ∈ ETn(p), and hence (a, r) ∈ ETn(p) ‖ q.

To prove that (ETn(p) ‖ q) ⊆ ETn(p ‖ q) consider an arbitrary (a, r) ∈ ETn(p) ‖ q.

Then there exists a PA∗
0,1(A) expression p′ such that (a, p′) ∈ ETn(p) and r = p′ ‖ q. From

(a, p′) ∈ ETn(p) it follows that p′ is a normed PA∗
0,1(A) expression such that p

a−−→ p′

and p′ 
∈ C1. From the latter, it follows that p′ 
−−→∗ p and hence, by Lemma 2.2(3),

p′ ‖ q 
−−→∗ p ‖ q, so p′ ‖ q 
∈ C1 ‖ C2. Further note that, by our assumption that

C2 is normed, q is normed, so, by Lemma 2.3(2), p′ ‖ q is normed. We conclude that

(a, p′ ‖ q) ∈ ETn(p ‖ q).

The proof that (p ‖ ETn(q)) ⊆ ETn(p ‖ q) is completely analogous to the proof that

(ETn(p) ‖ q) ⊆ ETn(p ‖ q), so the proof of the lemma is now complete.

To formulate the special property of strongly connected components in PA∗
0,1(A) that

will allow us to prove that some ACP∗,-∂
0,1 (A, γ) expressions do not have a counterpart in

PA∗
0,1(A), we need the following notion of maximal alive exit state.

Definition 5.8. Let T = (S,−−→ , ↓) be an A-labelled transition system space, let ∼ be the

equivalence relation on A × S associated with T according to Definition 5.3, let C be a

strongly connected component in T, and let s ∈ C be an alive exit state. We say that s is

maximal (modulo ∼) if for all alive exit states s′ ∈ C and for all e′ ∈ ETn(s
′) there exists

an exit transition e ∈ ETn(s) such that e ∼ e′.

We are now in a position to establish the property with which we shall prove that

PA∗
0,1(A) is less expressive than ACP∗,-∂

0,1 (A, γ).

Proposition 5.9. Every normed strongly connected component in PA∗
0,1(A) has a maximal

alive exit state.

Proof. Let C be a normed strongly connected component in PA∗
0,1(A). If C is trivial,

then C is a singleton, say C = {pm}, and, since C is normed, by Lemma 5.6 pm is an alive

exit state that is, vacuously, maximal. So, for the remainder of the proof we may assume

that C is non-trivial. We proceed to prove with induction on the structure of C , as given

by Corollary 3.10, that C has a maximal alive exit state pm such that, in addition, pm↓ if

p↓ for some p ∈ C . We distinguish three cases:

1. If C is basic, then, by Lemma 4.7, ETn(p) = � for all p ∈ C . Since C is normed, by

Lemma 5.6 it contains an alive exit state, say pm, which is then vacuously maximal

and satisfies pm↓.

2. Suppose that C = C ′ · q with C ′ a non-trivial strongly connected component and q a

PA∗
0,1(A) expression. Since C is normed, by Lemma 5.6 it contains an alive exit state,

say p′ · q with p′ ∈ C ′; then, by Lemma 4.8, p′ is an alive exit state in C ′ and q is

normed. Hence, by the induction hypothesis, C ′ has a maximal alive exit state pm ∈ C ′

such that pm↓ if p↓ for some p ∈ C ′. By Lemma 4.8 pm · q is an alive exit state in C . If

p · q↓ for some p ∈ C ′, then p↓ and q↓, so pm↓, and hence pm · q↓.

For this case it therefore remains to prove that pm · q is maximal. To this end, consider

an alive exit state p · q ∈ C and let (a, r) be a normed exit transition from p · q. Then
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by Lemma 4.9 either there exist p′ such that r = p′ · q and (a, p′) is a normed exit

transition from p, or p↓ and q
a−−→ r. In the first case, since pm is maximal, there exists

a PA∗
0,1(A) expression p′

m such that (a, p′
m) is a normed exit transition from pm and

(a, p′
m) ∼ (a, p′); it follows by Lemma 4.9 that (a, p′

m · q) is a normed exit transition

from pm · q, and by Lemma 5.4 (a, p′
m · q) ∼ (a, r). In the second case, since p↓ implies

pm↓, (a, r) is a normed exit transition from pm · q.
3. Suppose that C = C1 ‖ C2 with C1 and C2 strongly connected components. Since C

is normed, by Lemma 2.3(2) both C1 and C2 are normed. Hence, by the induction

hypothesis C1 has a maximal alive exit state pm and C2 has a maximal alive exit state

qm. Moreover, also by the induction hypothesis, pm↓ if p↓ for some p ∈ C1 and qm↓ if

q↓ for some q ∈ C2. We argue that pm ‖ qm is a maximal alive exit state in C , and that

whenever p ‖ q↓ for some p ‖ q ∈ C , then also pm ‖ qm↓.

Note that if p ‖ q↓ for some p ‖ q ∈ C , then, according to operational rule 14, p↓ and

q↓, so pm↓ and qm↓, and hence pm ‖ qm↓.

To see that pm ‖ qm is maximal, suppose that e ∈ ETn(p ‖ q) for some p ‖ q ∈ C . Then

by Lemma 5.7 there are two cases: either there exists e′ ∈ ETn(p) such that e = e′ ‖ q,

or there exists e′ ∈ ETn(q) such that e = p ‖ e′. In the first case, if e′ ∈ ETn(p), then by

the induction hypothesis there exists e′′ ∈ ETn(pm) such that e′′ ∼ e′. By Lemma 5.7,

e′′ ‖ qm ∈ ETn(pm ‖ qm) and since qm and q are in the same strongly connected

component C2, it is clear that e′′ ‖ qm ∼ e. In the second case, if e′ ∈ ETn(pm) we find

by an analogous reasoning e′′ such that pm ‖ e′′ ∈ ETn(pm ‖ qm) and pm ‖ e′′ ∼ e.

We can now prove the main result of this section.

Theorem 5.10. PA∗
0,1(A) is less expressive than

⋃
γ ACP∗,-∂

0,1 (A, γ).

Proof. According to Definition 2.5, we should prove that every state in PA∗
0,1(A) is

bisimilar to a state in ACP∗,-∂
0,1 (A, γ) and that there exists a state in ACP∗,-∂

0,1 (A, γ) for which

there is no bisimilar state in PA∗
0,1(A).

That every state in PA∗
0,1(A) is bisimilar to a state in ACP∗,-∂

0,1 (A, γ) is immediate since

PA∗
0,1(A) is included in

⋃
γ ACP∗,-∂

0,1 (A, γ) as ACP∗,-∂
0,1 (A,�).

To prove that there exists a state in
⋃

γ ACP∗,-∂
0,1 (A, γ) for which there is no bisimilar state

in PA∗
0,1(A), consider the ACP∗,-∂

0,1 (A, γ) expression 1 · (a ·b)∗ ·d ‖ c with γ satisfying γ(b, c) =

γ(c, b) = e and γ undefined everywhere else. Let us use the following abbreviations:

p0 = 1 · (a · b)∗ · d ‖ c,

p1 = 1 · b · (a · b)∗ · d ‖ c,

p2 = 1 · (a · b)∗ · d ‖ 1,

p3 = 1 · b · (a · b)∗ · d ‖ 1,

p4 = 1 ‖ c, and

p5 = 1 ‖ 1;

the automaton associated with p0, with the states labelled with the above abbreviations,

is shown in Figure 7.
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p0 p1p4

p2 p3p5

a

b

a

b

d

d

c cc e

Fig. 7. An ACP∗,-∂
0,1 (A, γ)-expressible automaton that is not expressible in PA∗

0,1(A).

To establish that there is no PA∗
0,1(A) expression bisimilar to p0, we assume that p is

such a PA∗
0,1(A) expression and derive a contradiction. Note that the set C = {p0, p1} is

a strongly connected component in ACP∗,-∂
0,1 (A, γ). Hence, since p0 ↔ p, by Lemma 3.2

there is a strongly connected component C ′ in PA∗
0,1(A) reachable from p satisfying the

condition that there exist p′
0, p

′
1 ∈ C ′ such that p0 ↔ p′

0 and p1 ↔ p′
1. Clearly, C ′ is normed,

so by Proposition 5.9 it has a maximal alive exit state. From p0 ↔ p′
0 it follows that there

exists p′
4 
∈ C ′ such that p0

d−−→ p′
4 and p4 ↔ p′

4. From p1 ↔ p′
1 it follows that there exists

p′
2 
∈ C ′ such that p′

1
e−−→ p′

2 and p2 ↔ p′
2. So, on the one hand, both p′

0 and p′
1 are alive

exit states. On the other hand, p′
0 does not have a normed exit transition labelled with e

and p1 does not have a normed exit transition labelled with d. It is, moreover, easy to see

that every state p′ ∈ C ′ is bisimilar to either p′
0 or p′

1. We conclude that C ′ does not have

a maximal alive exit state, and thus arrive at a contradiction. We conclude that p0 is not

PA∗
0,1(A)-expressible.

6. Relative expressiveness of ACP∗,-∂
0,1 (A, γ) and ACP∗

0,1(A, γ)

In the next section, we shall prove that every finite automaton is expressible in ACP∗
0,1(A, γ).

The purpose of this section is to prove that encapsulation is actually an essential ingredient

in this result: we shall prove that ACP∗,-∂
0,1 (A, γ) is less expressive than ACP∗

0,1(A, γ), which

extends ACP∗,-∂
0,1 (A, γ) with encapsulation. The proof proceeds by an adaptation of the

proof of the previous section. It suffices to relax the property stating the existence of a

maximal alive exit state, which, as we have seen in Figure 7, fails for strongly connected

components in ACP∗,-∂
0,1 (A, γ). In ACP∗,-∂

0,1 (A, γ) there does not necessarily exist an alive

exit state that, up to ∼, has all the exit transitions of all other alive exit states. But there

does exist a special alive exit state that, up to ∼, always shares at least one exit transition

with every other alive exit state.

Operational rule 15 gives rise to additional transitions from parallel compositions. As

a consequence, the characterization of the set of normed exit transitions in a normed

strongly connected component of the form C1 ‖ C2 in Lemma 5.7 does not hold for

normed strongly connected components in ACP∗,-∂
0,1 (A, γ). But we do have the following

weaker property.
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Lemma 6.1. Let C1 and C2 be normed strongly connected components in ACP∗,-∂
0,1 (A, γ).

Then C1 ‖ C2 is a normed strongly connected component, and for all p ∈ C1 and q ∈ C2

(ETn(p) ‖ q) ∪ (p ‖ ETn(q)) ⊆ ETn(p ‖ q); and

ETn(p) ∪ ETn(q) = � iff ETn(p ‖ q) = �.

Proof. Suppose that C1 and C2 are strongly connected components with alive exit

states. Then, by Proposition 3.5, C1 ‖ C2 is a strongly connected component too, which,

by Lemma 2.3(2), is normed. So it remains to prove that for all p ∈ C1 and q ∈ C2

(ETn(p) ‖ q) ⊆ ETn(p ‖ q);

(p ‖ ETn(q)) ⊆ ETn(p ‖ q); and

ETn(p) ∪ ETn(q) = � iff ETn(p ‖ q) = �.

To prove that (ETn(p) ‖ q) ⊆ ETn(p ‖ q) consider an arbitrary (a, r) ∈ ETn(p) ‖ q. Then

there exists an ACP∗,-∂
0,1 (A, γ) expression p′ such that (a, p′) ∈ ETn(p) and r = p′ ‖ q. From

(a, p′) ∈ ETn(p) it follows that p′ is a normed ACP∗,-∂
0,1 (A, γ) expression such that p

a−−→ p′

and p′ 
∈ C1. From the latter, it follows that p′ 
−−→∗ p and hence, by Lemma 2.2(3),

p′ ‖ q 
−−→∗ p ‖ q, so p′ ‖ q 
∈ C1 ‖ C2. Note that, since C2 is normed, q is normed, so, by

Lemma 2.3(2), p′ ‖ q is normed. We conclude that (a, p′ ‖ q) ∈ ETn(p ‖ q).

The proof that (p ‖ ETn(q)) ⊆ ETn(p ‖ q) is completely analogous to the proof that

(ETn(p) ‖ q) ⊆ ETn(p ‖ q).

Note that from (ETn(p) ‖ q) ⊆ ETn(p ‖ q) and (p ‖ ETn(q)) ⊆ ETn(p ‖ q) it immediately

follows that if ETn(p ‖ q) = �, then ETn(p) = � and ETn(q) = �. So, it remains to

prove that if ETn(p) = � and ETn(q) = �, then ETn(p ‖ q) = �. We proceed by

contraposition and assume ETn(p ‖ q) 
= �. Then there is (a, r) ∈ ETn(p ‖ q), so r

is a normed ACP∗,-∂
0,1 (A, γ) expression such that p ‖ q

a−−→ r and r 
∈ C1 ‖ C2. From

the operational rules for ACP∗,-∂
0,1 (A, γ) with ‖ in the conclusion it follows that we can

distinguish three cases: either there exists p′ such that r = p′ ‖ q and p
a−−→ p′, or there

exists q′ such that r = p ‖ q′ and q
a−−→ q′, or there exists p′ and q′ such that r = p′ ‖ q′,

p
b−−→ p′ and q

c−−→ q′ and γ(b, c) = a.

In the first case, since q ∈ C2, p
′ ‖ q 
∈ C1 ‖ C2 implies that p′ 
∈ C1, and, since r is

normed and r = p′ ‖ q, by Lemma 2.3(2) p′ is normed too. It follows that (a, p′) ∈ ETn(p),

and hence ETn(p) 
= �.

In the second case, by an analogous argument as in the first case, (a, q′) ∈ ETn(q), and

hence ETn(q) 
= �.

Finally, in the third case, as p′ ‖ q′ 
∈ C1 ‖ C2, either p′ 
∈ C1 or q′ 
∈ C2. Without loss of

generality, we can assume that p′ 
∈ C1. Since r is normed and r = p′ ‖ q′, by Lemma 2.3(2)

p′ is normed too. It follows that (a, p′) ∈ ETn(p), and hence ETn(p) 
= �.

To formulate the property of strongly connected components in ACP∗,-∂
0,1 (A, γ) that

will allow us to prove that some ACP∗
0,1(A, γ) expressions do not have a counterpart in

ACP∗,-∂
0,1 (A, γ), we use the following notion.
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Definition 6.2. Let T = (S,−−→ , ↓) be an A-labelled transition system space, let ∼ be the

equivalence relation on A × S associated with T according to Definition 5.3, let C be a

strongly connected component in T, and let s ∈ C be an alive exit state. We say that s is

dominating (modulo ∼) if for every alive exit state s′ ∈ C such that ETn(s
′) 
= � there

exist e ∈ ETn(s) and e′ ∈ ETn(s
′) such that e ∼ e′.

Note that if an alive exit state is maximal, then it is also dominating.

The following proposition establishes the property with which we shall prove that

ACP∗,-∂
0,1 (A, γ) is less expressive than ACP∗

0,1(A, γ).

Proposition 6.3. If C is a normed strongly connected component in ACP∗,-∂
0,1 (A, γ), then C

has a dominating alive exit state.

Proof. Suppose that C is a normed strongly connected component in ACP∗,-∂
0,1 (A, γ). If

C is trivial, then C is a singleton, say C = {pd}, and, since C is normed, by Lemma 5.6 pd
is an alive exit state that is, vacuously, dominating. So, for the remainder of the proof we

may assume that C is non-trivial. We proceed to prove with induction on the structure of

C , as given by Proposition 3.8, that C has a dominating alive exit state pd such that, in

addition, pd↓ if p↓ for some p ∈ C . We distinguish three cases:

1. If C is basic, then, by Lemma 4.7, ETn(p) = � for all p ∈ C . Since C is normed, by

Lemma 5.6 it contains an alive exit state, say pd, which is then vacuously dominating

and satisfies pd↓.

2. Suppose that C = C ′ · q with C ′ a non-trivial strongly connected component and q an

ACP∗,-∂
0,1 (A, γ) expression. Since C is normed, by Lemma 5.6 it contains an alive exit

state, say p′ · q with p′ ∈ C ′; then, by Lemma 4.8, p′ is an alive exit state in C ′ and

q is normed. Hence, by the induction hypothesis, C ′ has a dominating alive exit state

pd ∈ C ′ such that pd↓ if p↓ for some p ∈ C ′. By Lemma 4.8, pd · q is an alive exit state

in C . If p · q↓ for some p ∈ C ′, then p↓ and q↓, so pd↓, and hence pd · q↓.

For this case it therefore remains to prove that pd · q is dominating. To this end,

consider an alive exit state p · q ∈ C such that ETn(p · q) 
= �. We distinguish two

cases:

On the one hand, if ETn(p) = �, then, according to Lemma 4.9, p↓ and

ETn(p · q) = {(a, r) | r 
∈ C ∧ r is normed ∧ q
a−−→ r}.

Since ETn(p · q) 
= �, there exists r such that r 
∈ C , r is normed, and q
a−−→ r. Since,

by the induction hypothesis, pd↓, it follows that pd · q a−−→ r, so (a, r) ∈ ETn(pd · q), and

clearly (a, r) ∼ (a, r).

On the other hand, if ETn(p) 
= �, then, by the induction hypothesis, there exist

e ∈ ETn(pd) and e′ ∈ ETn(p) such that e ∼ e′. By Lemma 4.9, e · q ∈ ETn(pd · q) and

e′ · q ∈ ETn(p · q), and, by Lemma 5.4, e · q ∼ e′ · q.
3. Suppose that C = C1 ‖ C2 with C1 and C2 strongly connected components. Since C

is normed, by Lemma 2.3(2), both C1 and C2 are normed. Hence, by the induction

hypothesis, C1 has a dominating alive exit state pd and C2 has a dominating alive exit

state qd. Moreover, also by the induction hypothesis, pd↓ if p↓ for some p ∈ C1, and
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qd↓ if q↓ for some q ∈ C2. We argue that pd ‖ qd is a dominating alive exit state in C ,

and that if p ‖ q↓ for some p ‖ q ∈ C , then pd ‖ qd↓.

Note that if p ‖ q↓ ∈ C , then, according to operational rule 14, p↓ and q↓, so pd↓ and

qd↓, and hence pd ‖ qd↓.

To prove that pd ‖ qd is a dominating alive exit state, let p ‖ q be an alive exit state in

C such that ETn(p ‖ q) 
= �. Then, by Lemma 6.1, at least one of ETn(p) and ETn(q)

is nonempty; without loss of generality, we can assume that ETn(p) 
= �. Since pd is

a dominating alive exit state in C1, there exist (a, p′
d) ∈ ETn(pd) and (a, p′) ∈ ETn(p)

such that (a, p′
d) ∼ (a, p′).

Note that, by Lemma 6.1, on the one hand, (a, p′
d ‖ qd) ∈ ETn(pd ‖ qd), and, on the

other hand, (a, p′ ‖ q) ∈ ETn(p ‖ q). Moreover, from (a, p′
d) ∼ (a, p′) it follows that p′

d

and p′ are in the same strongly connected component, and hence, since also qd and

q are in the same strongly connected component, p′
d ‖ qd and p′ ‖ q are in the same

strongly connected component. Therefore, (a, p′
d ‖ qd) ∼ (a, p′ ‖ q).

We can now prove the main result of this section.

Theorem 6.4.
⋃

γ ACP∗,-∂
0,1 (A, γ) is less expressive than

⋃
γ ACP∗

0,1(A, γ).

Proof. We have to prove that every state in
⋃

γ ACP∗,-∂
0,1 (A, γ) is bisimilar to a state

in
⋃

γ ACP∗
0,1(A, γ) and that there exists a state in

⋃
γ ACP∗

0,1(A, γ) for which there is no

bisimilar state in
⋃

γ ACP∗,-∂
0,1 (A, γ).

That every state in
⋃

γ ACP∗,-∂
0,1 (A, γ) is bisimilar to a state in

⋃
γ ACP∗

0,1(A, γ) is

immediate.

It remains to prove that there exists a state in
⋃

γ ACP∗
0,1(A, γ) for which there is no

bisimilar state in
⋃

γ ACP∗,-∂
0,1 (A, γ). To this end, we define

C = {enteri, leaveα,i | 0 � i � 2, α ∈ {a, b, c, d}};

we define a communication function γ such that

γ(enter0, leaveb,0) = γ(leaveb,0, enter0) = b,

γ(enter1, leavea,1) = γ(leavea,1, enter1) = a,

γ(enter2, leavec,2) = γ(leavec,2, enter2) = c,

γ(enter2, leaved,2) = γ(enter2, leaved,2) = d,

and γ is undefined otherwise; and we consider the ACP∗
0,1(A, γ) expressions

s0 = ∂C (p′
0 ‖ p1 ‖ p2),

s1 = ∂C (p0 ‖ p′
1 ‖ p2), and

s2 = ∂C (p0 ‖ p1 ‖ p2),
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s0 s1

s2

a

b
d

c

Fig. 8. An ACP∗
0,1(A, γ)-expressible automaton that is not expressible in ACP∗,-∂

0,1 (A, γ).

in which

p0 = 1 · (enter0 · (leavea,1 + leavec,2))
∗,

p′
0 = (leavea,1 + leavec,2) · (enter0 · (leavea,1 + leavec,2))

∗,

p1 = 1 · (enter1 · (leaveb,0 + leaved,1))
∗,

p′
1 = (leaveb,0 + leaved,1) · (enter1 · (leaveb,0 + leaved,1))

∗, and

p2 = 1 · (enter2 · 1)∗.

The automaton associated with s0 is shown in Figure 8, with the states labelled with the

above abbreviations.

To establish that there is no ACP∗,-∂
0,1 (A, γ) expression bisimilar to s0, we assume that s is

such a ACP∗,-∂
0,1 (A, γ) expression and derive a contradiction. Note that the set C = {s0, s1}

is a strongly connected component in ACP∗
0,1(A, γ). Hence, since s0 ↔ s, by Lemma 3.2

there is a strongly connected component C ′ in ACP∗,-∂
0,1 (A, γ) reachable from s satisfying

the condition that there exist s′
0, s

′
1 ∈ C ′ such that s0 ↔ s′

0 and s1 ↔ s′
1. By Proposition 6.3,

C ′ has a dominating alive exit state. From s0 ↔ s′
0 it follows that there exists s′

2 
∈ C ′

such that s′
0

c−−→ s′
2 and s2 ↔ s′

2. From s1 ↔ s′
1 it follows that there exists s′′

2 
∈ C ′ such

that s′
1

d−−→ s′′
2 and s2 ↔ s′′

2. So, on the one hand, both s′
0 and s′

1 are alive exit states

with normed exit transitions. Now, on the one hand, s′
0 has a normed exit transition

labelled with c, but it does not have a normed exit transition labelled with d, and, on the

other hand, s′
1 does have a normed exit transition labelled with d, but it does not have

a normed exit transition labelled with c. It follows that s′
0 does not dominate s′

1, and, on

the same grounds, s′
1 does not dominate s′

0. Since all states in C ′ are bisimilar to either

s′
0 or s′

1, we conclude that C ′ does not have a dominating exit state, and hence s0 is not

ACP∗,-∂
0,1 (A, γ)-expressible.

7. Every finite automaton is ACP∗
0,1(A, γ)-expressible

Milner (1984) observed that there exist finite automata that are not bisimilar to a

finite automaton associated with a BPA∗
0,1(A) expression. Our proof of Theorem 4.11

has Milner’s observation as an immediate consequence: the finite automaton associ-

ated with the PA∗
0,1(A) expression used in the proof (see Figure 3) is not BPA∗

0,1(A)-

expressible. Similarly, by Theorem 5.10, there are finite automata that are not expressible

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 11 Feb 2015 IP address: 192.16.191.143

J. C. M. Baeten, B. Luttik, T. Muller and P. J. A. van Tilburg 30

0 1

2 3

b

a

b
ca

b

ca

b

Fig. 9. A finite automaton.

in PA∗
0,1(A), and by Theorem 6.4 there are finite automata that are not expressible in

ACP∗,-∂
0,1 (A, γ).

In this section, we shall prove that every finite automaton is expressible in ACP∗
0,1(A, γ),

for suitable choices of A and γ, even up to isomorphism. Before we formally prove

the result, let us first explain the idea informally and illustrate it with an example. The

ACP∗
0,1(A, γ) expression that we shall associate with a finite automaton will have one

parallel component per state of the automaton, representing the behaviour in that state

(i.e., which outgoing transitions it has to which other states and whether it is terminating).

At any time, one of those parallel components, the one corresponding with the ‘current

state,’ has control. An a-transition from that current state to a next state corresponds with

a communication between two components. We will make essential use of ACP∗
0,1(A, γ)’s

facility to let the action a be the result of communication.

Example 7.1. Consider the finite automaton in Figure 9.

We associate with every state i ∈ {0, 1, 2, 3} an ACP∗
0,1(A, γ) expression pi as follows:

p0 = (enter0 · (leavea,1 + leaveb,1))
∗,

p1 = (enter1 · b∗ · (leavec,2))
∗,

p2 = (enter2 · (leavea,0 + leaveb,3 + 1))∗,

p3 = (enter3 · 0)∗.

Every pi has an enter i transition to gain control, and by executing a leaveα,j it may then

release control to pj with action α (α ∈ {a, b, c}) as effect. We define the communication

function so that an enter i action communicates with a leaveα,i action, resulting in the

action α. That is, in this particular case,

γ(enter0, leavea,0) = γ(leavea,0, enter0) = a

γ(enter1, leavea,1) = γ(leavea,1, enter1) = a

γ(enter1, leaveb,1) = γ(leaveb,1, enter1) = b

γ(enter2, leavec,2) = γ(leavec,2, enter2) = c

γ(enter3, leaveb,3) = γ(leaveb,3, enter3) = b,
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and γ is undefined otherwise. Loops in the automaton (such as the loop on state 1) require

special treatment as they should not have the effect of releasing control to some other

state.

Let p′
0 be the result of executing the enter0-transition from p0, i.e.,

p′
0 = 1 · (leavea,1 + leaveb,1) · p0.

We define the ACP∗
0,1(A, γ) expression that simulates the finite automaton in Figure 9 as

the parallel composition of p′
0, p1, p2 and p3, encapsulating the control actions enter i and

leaveα,i, i.e., as

∂{enter i ,leaveα,i|i∈{0,1,2,3}, α∈{a,b,c}}(p
′
0 ‖ p1 ‖ p2 ‖ p3).

We now present the technique illustrated in the preceding example in full generality.

Let F = (S,−−→ , ↑, ↓) be a finite automaton. We shall associate with F an ACP∗
0,1(A, γ)

expression pF that has one parallel component ps for every state s in S . To allow a parallel

component to gain and release control, we use a collection of control actions C , assumed

to be disjoint from A, and defined as

C = {enter s | s ∈ S} ∪ {leaveα,t | s ∈ S, α ∈ A}.

Gaining and releasing control is modelled by the communication function γ on A ∪ C

satisfying:

γ(enter s, leaveα,t) = γ(leaveα,t, enter s) =

{
α if s = t; and

undefined otherwise.

For the specification of the ACP∗
0,1(A, γ) expressions ps we need one more definition: for

s, t ∈ S we denote by As,t the set of actions occurring as the label on a transition from s

to t, i.e.,

As,t = {α | s α−−→ t}.

Now we can specify the ACP∗
0,1(A, γ) expressions ps (s ∈ S) by

ps = 1·
(
enter s ·

( ∑
α∈As,s

α

)
∗ ·

(∑
t∈S
t
=s

∑
α∈As,t

leaveα,s [+ 1]s↓

))
∗ .

(We use the notation
∑

P (x) p(x), with P (x) a unary predicate and p(x) a process expression

parametrized in x, to abbreviate the alternative composition of the elements of the set

{p(x) | P (x)}, implicitly assuming that this set is finite. Let {p(x) | P (x)} = {p1, . . . , pn};
then

∑
P (x) p(x) = p1 + · · · + pn, adopting the convention that if the set {p(x) | P (x)} is

empty, then
∑

P (x) p(x) = 0.) By [+ 1]s↓ we mean that the summand + 1 is optional; it is

only included if s↓. The empty summation denotes 0. (We let ps start with 1 to later get

that the finite automaton associated with the ACP∗
0,1(A, γ) expression for F is isomorphic

and not just bisimilar with F.)
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Note that, in ACP∗
0,1(A, γ), every ps has a unique outgoing transition; specifically

ps
enter s−−−−→ p′

s, where p′
s denotes:

p′
s =

(
1 ·

( ∑
α∈As,s

α

)
∗ ·

(∑
t∈S
t
=s

∑
α∈As,t

leaveα,s [+ 1]s↓

))
· ps .

Now suppose that S = {s0, . . . , sn} with ↑ = s0; then we define pF by

pF = ∂C (p′
s0

‖ ps1 ‖ · · · ‖ psn).

Clearly, the construction of pF works for every finite automaton F. The bijection defined by

si �→ ∂C (ps0 ‖ · · · ‖ psi−1
‖ p′

si
‖ psi+1

‖ · · · ‖ psn) is an isomorphism from F to the automaton

associated with pF by the operational semantics. We shall refer to pF as the ACP∗
0,1(A, γ)

expression associated with F.

Theorem 7.2. Let F be a finite automaton, and let pF be its associated ACP∗
0,1(A, γ)

expression. The automaton associated with pF by the operational rules for ACP∗
0,1(A, γ)

is isomorphic to F.

Proof. The bijection defined by si �→ ∂C(ps0 ‖ · · · ‖ psi−1
‖ p′

si
‖ psi+1

‖ · · · ‖ psn) is an

isomorphism from F to the automaton associated to pF by the operational semantics in

ACP∗
0,1(A, γ).

Corollary 7.3. For every finite automaton F there exists an instance of ACP∗
0,1(A, γ) with

a suitable finite set of actions A and a handshaking communication function γ such that

F is ACP∗
0,1(A, γ)-expressible up to isomorphism.

8. Conclusion

In this paper, we have investigated the effect on the expressiveness of regular expressions

modulo bisimilarity if different forms of parallel composition are added. We have

established an expressiveness hierarchy that can be briefly summarized as:

BPA∗
0,1(A) ≺ PA∗

0,1(A) ≺
⋃
γ

ACP∗,-∂
0,1 (A, γ) ≺

⋃
γ

ACP∗
0,1(A, γ).

Furthermore, while not every finite automaton can be expressed modulo bisimilarity

with a regular expression, it suffices to add a form of ACP(A, γ)-style parallel composition,

with handshaking communication and encapsulation, to get a language that is sufficiently

expressive to express all finite automata modulo bisimilarity. These results should be

contrasted with the well-known result from automata theory that every non-deterministic

finite automaton can be expressed with a regular expression modulo language equivalence.

As an important tool in our proof, we have characterized the strongly connected

components in BPA∗
0,1(A), PA∗

0,1(A), and ACP∗,-∂
0,1 (A, γ). An interesting open question is

whether the given characterizations are complete, in the sense that a finite automaton

is expressible in BPA∗
0,1(A), PA∗

0,1(A), or ACP∗,-∂
0,1 (A, γ) iff all its strongly connected

components satisfy the respective characterizations. If so, then our characterizations

would constitute a useful complement to the characterization of Baeten et al. (2007)
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and perhaps lead to a more efficient algorithm for deciding whether a non-deterministic

automaton is expressible.

Bergstra et al. (2001) prove that every finite transition system without intermediate

termination can be denoted in ACP∗
0,τ(A, γ) up to branching bisimilarity (Glabbeek and

Weijland 1996), and that ACP∗
0(A, γ) modulo (strong) bisimilarity is strictly less expressive

than ACP∗
0,τ(A, γ). In contrast, we have established that every finite automaton (i.e.,

every finite transition system not excluding intermediate termination) is denoted by

an ACP∗
0,1(A, γ) expression. It follows that ACP∗

0,1(A, γ) and ACP∗
0,1,τ(A, γ) are equally

expressive.
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Appendix A. Left Merge and Communication Merge do not Add Expressiveness to

ACP∗
0,1(A, γ)

Our process theory ACP∗
0,1(A, γ) is grounded in Bergstra and Klop (1984) ACP(A, γ), but

we have omitted the operations � and | introduced by Bergstra and Klop to facilitate a

finite axiomatization of the theory. We establish below that they do not add expressiveness

in our setting of ACP∗
0,1(A, γ) with Kleene star instead of general recursion.

We shall in this appendix assume that the binary operations � and | are included in

the syntax of ACP∗
0,1(A, γ) and that the operational rules in Table 2 are added to those in

Table 1 on page 5.

Table 2. Operational rules for � and |, with a ∈ A.

18
p

a−−→ p′

p � q
a−−→ p′ ‖ q

19
p

a−−→ p′ q
b−−→ q′ γ(a, b) is defined

p | q γ(a,b)−−−−→ p′ ‖ q′
20

p↓ q↓
p | q↓

We shall prove that the process theories ACP∗
0,1(A, γ) with and without � and | are

equally expressive in a strong sense: modulo bisimilarity the operations � and | can be

eliminated from ACP∗
0,1(A, γ) expressions. We proceed as follows: first we establish that �

and | can be eliminated from ACP∗
0,1(A, γ) expressions of the form p � q or p | q provided

that � and | do not occur in p and q. Then we recall that bisimilarity is a congruence.

Finally, we combine these facts to conclude that � and | can be eliminated from all

ACP∗
0,1(A, γ) expressions.

According to the following lemma, occurrences of � can be eliminated from ACP∗
0,1(A, γ)

expressions.

Lemma A.1. Let p and q be ACP∗
0,1(A, γ) expressions. If p and q do not contain occurrences

of �, then there exists a process expression r without occurrences of � such that p � q ↔ r.
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Proof. If � and | are added to the syntax, then the transition system space ACP∗
0,1(A, γ)

is still regular (cf. Lemma 2.1 on page 6). Hence, the set

Der(p) = {(a, p′) | p a−−→ p′}

is finite. We define r by

r =
∑

(a,p′)∈Der(p)

a · (p′ ‖ q).

Clearly, r has no occurrences of �, and it is straightforward to verify that the binary

relation

{(p � q, r), (r, p � q)} ∪ {(p, p) | p a process expression}

is a bisimulation relation from ACP∗
0,1(A, γ) to ACP∗

0,1(A, γ), so p � q ↔ r.

According to the following lemma, occurrences of | can be eliminated from ACP∗
0,1(A, γ)

expressions too.

Lemma A.2. Let p and q be process expressions. If p and q do not contain occurrences

of |, then there exists a process expression r without occurrences of | such that p | q ↔ r.

Proof. If � and | are added to the syntax, then the transition system space ACP∗
0,1(A, γ)

is still regular (cf. Lemma 2.1 on page 6). Hence, the sets

Der(p) = {(a, p′) | p a−−→ p′}

and

Der(q) = {(b, q′) | q b−−→ q′}

are finite. Define the set Der(r) by

Der(r) = {(γ(a, b), p′ ‖ q′) | (a, p′) ∈ Der(p), (b, q′) ∈ Der(q), and γ(a, b) is defined},

and define r by

r =
∑

(c,r′)∈Der(r)

c · r′.

Clearly, r has no occurrences of |, and it is straightforward to verify that the binary

relation

{(p | q, r), (r, p | q)} ∪ {(p, p) | p a process expression}

is a bisimulation relation from ACP∗
0,1(A, γ) to ACP∗

0,1(A, γ), so p | q ↔ r.

To be able to apply the previous two lemmas in the context of a larger ACP∗
0,1(A, γ)

expression, we need to know that bisimilarity is a congruence on ACP∗
0,1(A, γ) expressions.

Lemma A.3. The relation ↔ is a congruence on the set of ACP∗
0,1(A, γ) expressions.
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Proof. It is well known that ↔ is an equivalence. Moreover, the operational rules in

Tables 1 and 2 are all in the path format, so by Theorem 5.4 of Baeten and Verhoef (1993)

bisimilarity is compatible with the syntax of ACP∗
0,1(A, γ).

Now we are in a position to establish the elimination � and | from all ACP∗
0,1(A, γ)

expressions.

Proposition A.4. For every ACP∗
0,1(A, γ) expression p there exists an ACP∗

0,1(A, γ) expres-

sion q such that p ↔ q.

Proof. By a straightforward induction on the structure of p, using Lemma A.3 for

applying the induction hypothesis, Lemma A.1 for the case that p is of the form p1 � p2,

and Lemma A.2 for the case that p is of the form p1 | p2.

Similarly, it can be shown that adding � to PA∗
0,1(A) or � and | to ACP∗,-∂

0,1 (A, γ) does

not add expressiveness to the respective process theories.
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