
Centrum voor Wiskunde en lnformatica 
Centre for Mathematics and Computer Science 

J.C.M. Baeten, R.J. van Glabbeek 

Abstraction and empty process in process algebra 

Computer Science/Department of Software Technology 

B~ 
Centmmvoorw~m~a 

Am!J,~ 

Report CS-R8721 April 

\\Ill\\\\\\ \Ill \l~~f 11rnm~~~1~~\\\\ \Ill\\ 111111\ 
3 0054 00087 9503 



The Centre for Mathematics and Computer Science is a research institute of the Stichting 
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics1 computer science. and their applications. It is sponsored by 
the Dutch Government through the Netherlands Organization for the Advancement of Pure 
Research (Z.W.0.). 

Copyright ·~ Stichting Mathematisch Centrum, Amsterdam 



Abstraction and Empty Process in Process Algebra 

J.C.M. Baeten, 

Dept. of Computer Science, University of Amsterdam, 

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands 

R.J. van Glabbeek, 

Dept. of Software Technology, Centre for Mathematics and Computer Science, 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

Abstract: In this paper, we combine the hidden step TJ of the authors' paper [2] with the 
empty process E of VRANCKEN (12] and the authors' (3]. We formulate a system ACPc, 
which is a conservative extension of the systems ACP 11, ACP'I/, but also of ACP't. This is 
a general system, in which most relevant issues can be discussed. Abstraction from 
internal steps can be achieved in two ways, in two stages: we can abstract to the hidden 
step TJ, and then from TJ to Milner's silent step "C. 

Key words and phrases: concurrency, process algebra, hidden step, hiding, abstraction, 
silent step, internal action, empty process, termination. 
1985 Mathematics subject classification: 68010, 68055, 68045, 68N15. 
1982 CR categories: F.1.2, F.3.2, F.4.3, D.3.3. 

Note: Partial support received from the European Communities under ESPRIT contract 
no. 432, An Integrated Formal Approach to Industrial Software Development (Meteor). 
This report will be submitted for publication elsewhere. 

1. lN'IRODUCTION 

1 

Having been introduced to the Algebra of Communicating Processes of BERGSTRA & KLOP [4], 

many people ask the question why there is no neutral element for the sequential composition ·. The 

neutral element for alternative composition + is the constant C>, that is used to denote deadlock, 

unsuccessful termination. A constant E satisfying the laws e·x = x·E = x must stand for an empty 

process, a process that terminates immediately and successfully. The investigation of what 

happens when we want to add such a constant to ACP was started by KOYMANS & VRANCKEN 

[8]. It turned out that the constant E is very useful, but that the technicalities involved were 

substantial. For instance, the just quoted paper contained a non-associative merge operator. This 

problem was remedied in VRANCKEN [12], where the theory ACP was modified and extended to 

ACPE. Recently, the system ACPE was reformulated as ACP'J in BAETEN & v AN GLABBEEK [3], 

where termination was made explicit. In practice, the constant E already showed its usefulness in 

BERGSTRA, KLOP & OLDEROG [6], where E was needed to define the constant tl denoting 

divergence. However, this last paper left an open question: how do we combine the empty process 

E with the,,system ACP"C ofBERGSTRA& KLoP [5]? 

Incorporated in ACP"' is the notion of abstraction, a central issue in concurrency theory. We use 

Report CS-R8721 
Centre for Mathematics and Computer Science 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 



2 

operators like alternative, sequential and parallel composition, to build up large systems from 

smaller processes. Often, such a large system must have a certain prescribed external behaviour, 

must communicate in a certain way with the environment To verify that is indeed the case, we need 

to abstract from all internal behaviour of the system. 

Following ideas of MILNER [9] and HOARE [7], abstraction can be modelled by distinguishing two 

kinds of actions in a process, viz. external or observable actions, and internal or hidden actions, 

and by introducing an explicit abstraction operator that transforms observable actions into internal 

ones. Now the constant E stands for a process of no duration, and so cannot be used for an internal 

action; using it, we would loose too much information, e.g. information on deadlock behaviour. 

The silent step 't of MILNER [9] can be used for an internal step, and the operator 't1, that renames 

actions from the set I into 't, can be used for abstraction. 

Koymans and Vrancken found that the second law for 't immediately translates to 't = 't + e, so 't 

contains a summand E. This raised the question, what the process 't turns into, when we remove the 

option of immediate termination. The resulting process, called T), together with the abstraction 

operator 111, that renames actions from I into 11. was extensively investigated in BAETEN & VAN 

GLABBEEK [2]. There, laws were formulated for the constant 11. and it was added to the system 

ACP (without E).It was found that 11 can also be used for an internal step. Also, the hidden step 11 

was compared with the silent step 't. It was found that the 11 has technical advantages over the 't, but 

both types of abstraction can co-exist, indeed that one can be applied after the other. What was 

lacking, is a single system in which both constants appear. While the 't exists in ACP 11 in prefix 

position, it could not be defined as a process. 

The solution was already indicated in the last paragraph of [2]: we can define 't, if we have added 

the empty process e. Thus, the task is to combine the system ACN of [3] with the system ACP 11 
of [2]. This is what we do in this paper. The result is a system ACPc (Algebra of Communicating 

Processes with constants), which has constants 11 and E, and in which 't is definable. 

We discuss a model for ACPc consisting of finitely branching process graphs modulo an 

appropriate notion of bisimulation (cf. PARK [11], MILNER [10]). We use this model to establish 

the consistency of ACPc and the conservativity of ACPc over ACP{ and most of AepE and ACP 't" 

ACKNOWLEDGEMENT 

The original ideas for e and 11. and the central equation 't = 11 + £, are due to Karst Koymans and 

Jos Vrancken. 

2. ALGEBRA OF COMMUNICATING PROCESSES WITH EMPTY PROCESS 

In this section, we review the theory ACP'1 (Algebra of Communicating Processes with empty 

process and explicit termination) as defined in BAETEN & VAN GLABBEEK [3]. ACP'1 is a 

reformulation of the system ACPe of VRANCKEN [12]. 

For a review of related approaches and comparisons with them, we refer to BERGSTRA & KLoP 

[4]. The axioms of ACP'1 are displayed in table 1, in 2.3 on page 4. 



3 

2.1 Process algebra starts from a collection of given objects, called atomic actions, atoms or steps. 

These actions are taken to be indivisible, usually have no duration and form the basic building 

blocks of our systems. The first two compositional operators we consider are ·, denoting sequential 

composition, and+ for alternative composition. If x and y are two processes, then x·y is the 

process that starts the execution of y after the completion of x, and x+y is the process that chooses 

either x or y and executes the chosen process (not the other one). Each time a choice is made, we 

choose from a set of alternatives (we see this from laws Al-3, since A3 is equivalent to x+x=X, by 

use of A4 and A8). We do not specify whether a choice is made by the process itself, or by the 

environment. We leave out · and brackets as in regular algebra, so xy + z means (x·y) + z. · will 

always bind stronger than other operators, and+ will always bind weaker. 

On intuitive grounds x(y + z) and xy + xz present different mechanisms (the moment of choice is 

different), and therefore, an axiom x(y + z) = xy + xz is not included 

We have a special constant E denoting the empty process, characterized as the neutral element of 

sequential composition. See axioms A8,9. In a sum, as in x + E, it tells us that the process can 

terminate immediately. We have the operator..,/ to indicate whether or not a process can terminate 

immediately: ..,/(x) = E if x has the termination option, and ..,/(x) = o otherwise. 

Furthermore, there is a special constant o denoting deadlock, the acknowledgement of a process 

that it cannot do anything anymore, the absence of any alternative. See axioms A6-7 (note that 

axiom A6 is equivalent to o+x=X, by use of A4, A7 and A8). We can consider o to stand for 

unsuccessful termination, and E for successful termination. 

Next, we have the parallel composition operator II. called merge. The merge of processes x and y 

will interleave the actions of x and y, except for the communication actions. In xlly, there are 4 

possibilities: the process can terminate (only if both x and y have that option), a step from x can be 

executed, or a step from y, or x and y both synchronously perform an action, which together make 

up a new action, the communication action. These options are present in axiom EMl. Here, we use 

the auxiliary operators lL (left-merge), I (communication merge) and ..,/ (used to indicate 

termination). Thus, x[Ly is xlly, but with the restriction that the first step comes from x, and x I y is 

xlly with a communication step as the first step. A simple case distinction learns us that the 

termination summand of xlly can be represented by ..,/(x)·..,/(y). Axioms CFl,2 and EM2-8 give the 

laws for lL and I. Axioms for..,/ are discussed below. It is also possible to use the left-merge lL to 

express the termination possibility (as in VRANCKEN [12]), or even the communication merge I. 
Note that it is not a good solution to replace EM2 by the axiom E[Lx = x (as in KOYMANS & 

VRANCKEN [8]), as was shown in (12]. 

Finally, we have in table 1 the renaming operators dH and EK. Here Hand K are sets of atoms. dH 

blocks the actions from H, renames them into o (axioms D0-4), and EK erases actions from K, 

renames them into E (axioms E0-4). The operator aH can be used to encapsulate a process, i.e. to 

block communications with the environment. If we block all atomic actions, as in d A• we get an 

expression for the termination operator..,/. 

2.2 SIONA TURE 

A is a given (finite) set of atomic actions. On A, we have given a partial binary function y, which is 



commutative and associative, i.e. 

'Y(a,b) = 'Y(b,a) 

'Y(a,'Y(b,c)) = 'Y(y(a,b),c) 

4 

for all a,b,c e A (and each side of these equations is defined just when the other side is). yis the 

communication function: if 'Y(a,b) is defined (we write y(a,b).!.), and 'Y(a,b) = c, it means that 

actions a and b can communicate, and their communication is c; if'Y(a,b) is not defined, we say 

that a and b do not communicate. 

All elements of A are constants of ACP-J. Further, ACP-J has binary operators +,.,11.IL I. unary 

operators aH, EK (for H,K ~A) and constants O,e. -J is another.notation for ak 

2.3AxIOMS 

The axioms of ACP-J are presented in table 1. There a,b e Au{o}, H,K ~A, and x,y,z are 

arbitrary processes. 

X+Y=Y+X Al o+e=e A6 

(x + y) + z = x + (y + z) A2 ox =O A7 

e+e=e A3 EX=X A8 

(x + y)z = xz + yz A4 Xe=X A9 

(xy)z = x(yz) A5 

a I b = 'Y(a,b) if y(a,b).!. CFl 

alb=o otherwise CF2 

xlly = x[Ly + y[Lx + x I y + -J(x)-J(y) EMl xly=ylx EM5 

elLx = o EM2 xle= o EM6 

ax[Ly = a(xlly) EM3 x I ay = (x I a) [Ly EM7 

(x + y)[Lz = x[Lz + y[Lz EM4 x I (y + z) = x I y + x I z EMS 

()H(e) = e DO eK(e) = e EO 

()H(a) =a ifae H Dl eK(a) =a ifae K El 

aH(a) = o ifae H D2 eK(a) = e ifae K E2 

aH(x + y) = aH(x) + aH(Y) D3 eK(x + y) = eK(x) + eK(Y) E3 

aH(xy) = aH(x)·aH(Y) D4 eK(xy) = eK(x)· eK(Y) E4 

Table 1. ACP-J. 

Note that axiom CF2 implies that o I a= o for all a e Au{o}. Since every expression of the form 

a Ibis equal to an element of Au{o}, we can assume that axioms EM3,7, Dl,2, El,2 also hold for 

these expressions instead of a. We call the theory just consisting of the first nine axioms, Al-9, 

BPA& (so BPA& has in the signature only operators+,. and constants Au{o,e}). 

2.4REMARKS 

The system ACN presented above differs in four respects from the system ACPE in [12]. Firstly, 



5 

we use an explicit summand in the equation for merge for the termination possibility, as was 

discussed in 2.1. Next, in [12], yis a total function from AxA to Au{o}, while in this paper, yis a 

partial function from AxA to A Also, in the axioms in [12], a varies over A, not over Au{o}, 

which necessitates more axioms. Lastly, we left out the axiom (x I y) I z = x I (y I z), as we saw no 

reason for its inclusion. 
The system ACP°'1 differs in several aspects from the system ACP of BERGSTRA & KLOP [4]. 

Most of these differences were a consequence of the addition of the constant E. Another difference 

is the inclusion of axiom EMS, the commutativity of the communication merge, which decreased 

the number of axioms needed. 

3. HIDDEN STEPT) 

3.1 In [2], the constant T) is introduced. It stands for a hidden or internal action: when we want to 

abstract from the internal actions in systems consisting of several components (essential for 

verification purposes), we rename these actions into T), the hidden step. T) obeys the laws of atomic 

actions, but has in addition three extra laws, which serve to calculate the T) away in certain contexts. 

We cannot get rid ofT) altogether (T) is not E), because deadlock behaviour would not be preserved. 

The three T)-laws are presented in table 2 below. 

XT) = X 

a(T)(x + y) + x) = a(x + y) 

a(T)x + y) = a(T)x + y) + ax 

Table 2. T)-laws. 

Hl 

H2 

H3 

For some intuitive background on these laws, we refer to [2]. Roughly, this intuition amounts to 

saying that an T)-step cannot be directly observed, but will take some time to execute. 

In a setting with E, the first law cannot be maintained, for substituting E for x leads to an unwanted 

equation. However, by taking X=O, Y=E in the second law, we obtain aT) = a, from which the first 

law can be derived for all basic terms that do not have a subterm with an E-summand. 

Therefore, we will only add the laws H2,3 to ACP°'1, and will have a vary over C = Au{o,T)} (the 

set of atom-like constants) instead of Au{o}. Furthermore, we have to leave out the operator EK, 

which cannot be added (for we would have E = E{a}(a) = E{a}(aT)) = E{a}(a)·E{a}(Tt) =ET)= T); it is nc 

solution to have EK always rename T) into E as well (the trick we use for 1:1), since then a(b + c) = 
E0 (a(T)b + c) = E0 (a(Ttb + c) + ab) = a(b + c) + ab). 

Now we will present the system ACPc. We present the system in two parts: the first part, in 3.2, 

contains the basic system; in 3.3 we discuss in addition the constant 't and the operator'trr 

3.2 ACPC, THE BASIC SYSTEM 

As before, A is a given (finite) set of atomic actions; on A, we have given a partial binary function 



6 

"(, which is commutative and associative. All elements of A are constants of ACPc. Further, the 

basic system ACPc has binary operators +.-.11.lL, I, constants S,e;11, and unary operators aH, 111 

(for H,I k; A, but we also allow H = C = Au{S,11}). --J now is another notation for ac. Note that 11 
can only be renamed into S, when all atomic actions are renamed into Sat the same time (for 

otherwise we get an inconsistency from the equation a=a11). 111 is the hiding operator, that 

renames actions from I into 11; I is the set of internal actions, that are hidden in order to verify the 

external behaviour of a system. 111 is also called the 11-abstraction operator. The axioms of ACPc 

are presented in table 3 below. There, a e C, H,I k; A or H = C, and x,y,z are arbitrary processes. 

x+y=y+x 
(x + y) + z = x + (y + z) 

e+e=e 
(x + y)z = xz + yz 
(xy)z = x(yz) 

S+e=e 

Sx =O 

xlly = x[j_y + y[j_x + x I y + "1(x)--J(y) 
e[j_x = S 

ax[j_y = a(xlly) 
(x + y}[j_z = x[j_z + y[j_z 

()H(e) = e 

aH(a) = a if a e H 

aH(a) = s if a E H 

aH(x + y) = aH(x} + aH(Y) 
()H(xy) = ()H(x)·()H(Y) 

Al 

A2 

A3 

A4 

A5 

A6 

A7 

EMl 
EM2 

EM3 
EM4 

DO 

Dl 

D2 

D3 

D4 

EX=X 
XE=X 

a(11(x + y) + x) = a(x + y) 

a(11x + y) = a(11x + y} + ax 

a I b = y(a,b) if 'Y(a,b)J.. 

alb=S otherwise 

xly=ylx 

xle= S 
x I ay = (x I a} [j_y 

x I (y + z> = x I y + x I z 

111(e) = e 

111(a) = a if a e I 
111(a) = 11 if a e I 

111(X + Y) = 111(x) + 111(Y) 

111(xy) = 111(x)· 111(Y} 

Table 3. ACPc (basic system). 

3.3 ACPC, THE FULL SYSTEM 

't=11+e 

't11(e) = e 

't11(11) = 't 
't11(a} =a if a :;e 11 

't11(x + y) = 't11(x} + 't11(Y} 

't11(xy) = 't11(x)·'t11(Y) 

THE 

HTO 

HTl 

HT2 

HT3 

HT4 

Table 4. ACPc (additional axioms). 

A8 

A9 

H2 

H3 

CFl 

CF2 

EMS 

EM6 

EM7 
EMS 

HIO 

Hll 

HI2 

HI3 

HI4 



7 

The full system ACPc has in the signature, besides the elements mentioned in 3.2, a constant 't, and 

a unary operator 't11• 't is the silent step of MILNER [9], that, like 11. stands for an invisible step; 

we find however, that it has different properties than 11 (see [2] and below). 

'tT\ is a kind of abstraction operator, that renames 11 into 't. Applying this operator means that we 

lose some information: we 'forget' that internal actions have to take a positive amount of time ( 't has 

the option of terminating immediately, 11 does not). 

Furthermore, we use the abbreviation 't1 for~
0111 (I c A). 't1 is the ('t-)abstraction operator, 

that renames atoms from I, and also 11. into 't. This operator is also used to abstract from the 

internal behaviour of a system. Note that we must always rename 11 into 't, when we use 1:1, for 

otherwise 't = 'tA(a) = 'tA(a11) = 'tA(a)"'tA(11) = 't1l = 11· 

The axioms of ACPc comprise, besides the axioms in table 3, those in table 4. 

3.4LEMMA 

The following equations are derivable from the system ACPc (a,b e C, H, I~ A): 

1. a11 = a't = a 

2. 111: = 't1l = 11 
3. 't't = 't 

4. 'tO = 110 

5. 't + E='t +11 ='t 

6. 'tX + X = 'tX 

7. a('tx + y) = a('tx + y) + ax 

s. x I<> = o 
PROOF: Straightforward. 

3.5 NOTE 

9. 'txlL.y = 11(xlly) + xlL.y 

10. a(11xlly) = a('txlly) = a(xlly) 

11. axllby = byllax 

12. ()H('t) = 111('t) = 't1('t) = 't1(11) = 't, but dc('t) = e 

13. 't1(E) = E 

14. 't1(a) =a if ae Iu{11}, and 't1(a) = 't if ae Iu{11} 

15. 't1(x + y) = 't1(X) + 't1(Y) 
16. 't1(xy) = 't1(x)·'t1(y) 

The second equation of 3.4.1with3.4.3, together with 3.4.6 and 3.4.7, form the three 't-laws of 

MILNER [9]. They form, in the system CCS, and also in ACP 't (see BERGSTRA & KLOP [5]) the 

defining equations for the silent step 't. Compared to the defining equations for 11. we see that the 

crucial point is the difference between the law H2 and 3.4.6: H2 is more restrictive, and this 

difference has many consequences, as was made clear in [2]. 

3.6LEMMA 

In the system ACPc plus extra axiom ellx = x the following equations are derivable (a,b e C): 

1. x = xlLe + -V(x) 

2. xlle = x 5. a I bx = ax I b = (a I b)x 

3. alLx = ax 6. ax I by= (a I b}(xlly) 

4. 'tlL.X = 11X 7. a(11llx) = a('tllx) = ax 

PROOF: Straightforward. 

3.7NOTE 

Equation 3.4.1 states that we can write each process as the sum of its termination option (.../(x)) and 



8 

the summands that start with an atomic action (xll_e). Next, we consider another equation that is of 

special interest, namely the assertion that .../(x) must be either e or o (here x = x + e amounts to 

saying that x has an e-summand): 

..J(x) = e iff x = x + e, and .../(x) = o otherwise (*). 

3.8LEMMA 
In the system ACPc plus extra axiom (*) the following equations are derivable: 

1. .../(x)ll_y = o 4 . .../(x)·.../(y) = .../(y)·.../(x) 

2 . .../(x) I y = o 5. xlly = yllx 

3 . .../(.../(x)) = .../(x) 6.11xll't1Y = 11(x1ly) 

PROOF: Straightforward. 

3.9 DEFINITION 

A basic term is a closed tenn of the fonn 

t = aato + ... + an-1tn-1 + bo + ... + bm-1 (+ e) 
for certain n,m e N, certain ai,bj e C, basic tenns ti and the summand e may or may not occur. If 

the summand e does not occur, we must have n+m > 0. 

We usually abbreviate such expressions, in this case to t = ~<n aiti + Lj<m bi ( + e). Note that we 

can always write t = Li<n aiti + Lj<m bi+ .../(t), foritis easy to see that .../(t) = eifft has a summand 

e, and ..J (t) = o otherwise. 
The set of basic tenns BT can be inductively built up as follows (working modulo laws Al-3 and 

A9): 

1. EE BT 

2. if a E c and x E BT, then ax E BT 

3. if x,y E BT, then x+y E BT. 

Alternatively, if Li<o xi denotes o, we can build up BT as follows: 

-If n e N, ai e C and tie BT (for kn), then Li<n aiti {+ e) e BT. 

Both these inductive schemes can be used in proofs. 

3.10 THEOREM 

For every closed ACPc-tenn t there is a basic tenn s such that ACPc f- t=s. This is the so-called 

elimination theorem. 

PROOF: The proof is very similar to the case of ACP..J, treated in [3]. We mention the differences 

briefly: 111 should be treated like aH and 'tTl like eK. Take Te{'t) = 1, l{'t) = 1 and W{'t) = 2. In claim 

3, 't is not a nonnal fonn of RACPc. 

3.llLEMMA 

The following statements hold for all closed ACPc-tenns: 

1. ellx :::; x, and hence the equations of lemma 3.6; 

2 . .../(x) = e iff x + e = x and .../(x) = o otherwise, and hence the equations oflemma 3.8; 



9 

3. vl(xll_y) = vl(x l y) = o 6. xll_ -ty = xll_y 

4. T\X I y = 11 I x = 't I x = 0 7. -txlly = -t{xlly) 

5. 'tX I y = x I y 8. xll(T\Y + z) = xll(T\Y + z) + xll_y 
PROOF: By theorem 3.10, it is enough to prove these equations for basic terms. This proof can be 

done by structural induction, following one of the schemes in 3.9. 

Write x = Li<najxj (+ e) and y = Lj<m bjYj (+ e) (m,n e N, aj,bj e C). 
Now 1 - 5 follow immediately, and 6 follows from 3.8.5 and 3.4.10 (note that only in the proof of 

statement 1, we actually need the induction hypothesis). 

The proof of 7: -txllY = -txll_y + yll_ 'tX + 'tX I y + vl(-tx)·vl(y) = 

= T\Xll_y + xll_y + yll_x + x I y + vl(x)·vl(y) = T\(xlly) + xlly = -t(xlly). 
In the proof of 8, we use the following notation: p :::;; q iff p + q = q. 
It follows from Al, A2 and A3 that:::;; is anti.symmetrical, transitive and reflexive, respectively, and 

hence a partial ordering. Now H3 can be reformulated as a conditional equation: 

T\P :::;; q ~ ap :::;; aq (H3). 

Now we can prove 8: T\(xdlY) = 11(Yllxj) = T\Yll_Xj:::;; (T\Y + z)ll_xj:::;; xjll(T\Y + z), and thus 

xll_y = Lj ajxjll_y = Lj aj(xdlY):::;; Lj aj(xdl(T\Y + z)) = xll_(T\Y + z):::;; xll(T\Y + z). 

3 .12 PROPOSITION 

For all closed ACPc-terms x,y,z we have the following laws of standard concurrency: 

ellX=X 
vl(x) = e iff x + e = x, and vl(x) = o otherwise 

vl(xlly) = vl(x)·vl(y) 

x I (y I z) = (x I y) I z 

(xll_y) ll_z = xll_(yllz) 

(x I y)ll_z = x I (yll_z) 

xll(yllz) = (xllY)llz. 
PROOF: As in [3]. 

3.13 NOTE 

We usually assume that the laws of Standard Concurrency hold for all processes. Therefore, they 

are often called the axioms of Standard Concurrency. 

Often, we also assume the following Handshaking Axiom: 

x I y I z = 0 (HA). 

It says, that all communication is binary, i.e. only involves two communication partners. 

3.14PROPOSIDON 

In ACPc with standard concurrency and handshaking axiom we have the following expansion 

theorem (n;:::1 ): 

II Xj = L xjll_( II xk) + L (xj I xi)ll_( II xk) +IT vl(xj) 
jg, jg, k::;n,k.!i kj::;n k::;n,k.!i,j jg, 

(Where II j~n Xj means Xo 11 ... llxn, and rrj~n Xj means Xo •... ·xn.) 



10 

PROOF: As in [3]. 

3.15 PROPOSITION 
The operator 't11 is a homomorphism on closed terms, w.r.t. the operators +,.,II, ll_,aH, for H ~A. 

PROOF: The proof is only non-trivial forthe case of ll,ll. We prove the case of II. 
Thus, let x,y be closed ACPc-terms. We have to prove that ACPc I- 't11(xlly) = 't11(x) ll't11(y). 
Because of the elimination theorem, we can assume that x,y are basic terms. We use the second 

induction scheme of 3.9. 

Write x = Li<n aixi + Lj<m 11X'i + "'1(x) and y = Lk<p bkYk + Lf<q 11Y'1 + "'1(y) (ai,bke Au{o}). 
Then 't11(x) =Li a('t11(xi) + Lj 1l·'t11(x'j) + Lj 't11(x'i) + "'1(x). Also, note that "'1('t11(x)) = 
= Lj "'1('t11(x'j)) + "'1(x), and "'1('t11(y)) = L1 "'1('t11(Y'1)) + "'1(y), so "'1('t11(x))-"'1('t11(y)) = 

= Lj,1 "'1('t11(x'j))·"'1('t11(y'1)) + L1 "'1(x)-"'1('t11(y'1)) + Lj "'1('t11(x'j))·"'1(y) + "'1(x)-"'1(y) 
(use A4, in combination with 3.8.4) = 

= L1 "'1('t'Tl(x))-"'1('t11(Y'1)) + Lj "'1('t11(x'j))·"'1('t11(Y)) + "'1(x)-"'1(y). 
Now, using 3.8.1-2, we get 't11(x)ll't11(y) = 

= Li ai('t11(xi) lh11(y)) + Lj 1l('t11(x'i) ll't11(y)) + Lj 't11(x'j) lL 't11(y) + 

+ Lk bk('t11(x)ll't11(Yk)) + L11l('t11(x)ll't11(Y'1)) + L1 't11(Y'1))ll't11(x) + 

Li,k (ai I bk)('t11(xi)ll't11(yk)) + Lj 't11(x'i) I 't11(y) + L1 't11(x) I 't11(Y'1) + 

+ L1 "'1('t11(x))-"'1('t11(Y'1)) + Lj "'1('t11(x'i))-"'1('t11(Y)) + "'1(x)-"'1(y). 
Using 3.11.8, which involves an application of H3, we may add to this expression the term 

LI 't11(x) lL 't11(Y'1) + Lj 't11(y) lL 't11(x'j), which yields 
't11(x)ll't11(y) =Li ai('t11(xi)ll't11(y)) + Lj 't('t11(x'j)ll't11(y)) + 
+ Lk bk('tn(x)ll't11(yk)) + L1 't('t11(x)ll't11(Y'1)) + 
+ Li,k (ai I bk)('t11(xi)lh11(yk)) + "'1(x)-"'1(y) = 

= Li ai('t11(xdly)) + Lj 't('t11(x'jllY)) + Lk bk('t11(xllyk)) + L1 't('t11(xlly'1)) + 
+ Li,k (ai I bk)('t11(xd1Yk)) + "'1(x)-"'1(y) (by induction hypothesis)= 't11(xlly). 

3.16 NOTE 

The mapping 't11 is not a homomorphism w.r.t. I or "'1. E.g., if y(a,b) is defined, then 'ta I b = 

y(a,b), while ,,a I b = o. Also the termination behaviour that is different, viz. 't11("'1(11)) = o but 

"'1('t11(11)) =E. This is not so bad, however, as operators I ,"'1 are only auxiliary operators, needed to 
define the merge operator, and 't11 is a homomorphism for merge. 

3.17 NOTE 

In the next section we will prove that ACPc is a conservative extension of ACP11, and most of 
ACP"'1 and of ACP't, i.e. for all closed ACP11-terms t,s we have 

ACPc I- t=S iff ACP Tl I- t=S, 
for all closed ACF"'1-terms t,s in which the operator EK does not appear, we have 

ACPc I- t=S iff ACF"'11- t=S, 

and for.all closed ACP 't-terms t,s in which the operator lL does not appear, we have 

ACPc I- t=S iff ACP 't I- t=S. 



11 

4. THE GRAPH MODEL 

We construct a model for ACPc consisting of equivalence classes of process graphs. This model 

will also contain infinite processes, processes that cannot be represented by a closed term. The way 

to talk about such processes algebraically, is by means of recursive equations, or, more generally, 

recursive specifications. We will not discuss recursive specifications in this paper, but refer the 

reader e.g. to [2, 3]. 

4.1 DEFINITIONS 

A process graph is a labeled, rooted, finitely branching, directed multigraph. An edge goes from 

a node to another (or the same) node, and is labeled with an element of Au{O,Tt,t:}, the set of 

constants (but there is no label 't). We consider only finitely branching graphs, so each node has 

only finitely many outgoing edges. Graphs heed not be finite (have finitely many nodes and edges), 

but we must be able to reach every node from the root in finitely many steps. G is the set of all 

process graphs. 0 is the trivial graph, just consisting of a single node and no edges. A tree is a 

graph in which the root has no incoming edge, and all other nodes have exactly one incoming edge. 

Note that a tree has no cycles, i.e. there is no series of edges that leads from a node back to the 

same node. 'Jf' is the set of all nontrivial process trees. 

A path n in a process graph g is a finite alternating sequence of connected nodes and edges of g. 

The length of n is the number of non-e-edges in n. A node s of g is reached by the path n if n 

ends in s. Ifs is a node of graph g, then (g)5 is the subgraph of g that consists of all nodes and 

edges that can be reached from s, with roots. Note that in a process tree every node is reached by 

exactly one path from the root. The depth d(g) of a finite tree g is the length of its longest path. A 

node in a graph is an endnode if it has no outgoing edges. An edge is intermediate if it ends in a 

non-endnode. 

Au-step in a graph from s to s' is an edge going from s to s' wit.Ji label u e Au{O,Tt,t:}, notation 

s -tu s'; _,.e is the transitive and reflexive closure of -te, so s _,.e s' if there is path of (~0) 

e-labeled edges, starting ins, and ending ins'. _,.e is called a generalized e-step. Further, we 

will also need a generalized £/Tt-step _,.£111: this is a path with edges labeled e orTt. of which the 

last one (if there is a last one) has label 1'1· For more information about process graphs, see e.g. 

BAETEN, BERGSTRA & KLOP [l]. 

In order to define when two graphs denote the same process, we have the notion of bisimulating 

process graphs. For more information about bisimulations, see PARK [11], MILNER [10] or 

BAETEN, BERGSTRA & KLOP [1]. The present definition is obtained by 'putting together' the 

e-bisimulation of VRANCKEN [12] (also used in [3]) with the rrt-bisimulation of [2]. 

4.2 DEFINITION 

Let g,h be process graphs, and let R be a relation between nodes of g and nodes of h. Risa 

rooted41e-bisimulation between g and h, notation R: g ~eh, iff 

1. The roots of g and h are related. · 

2. If R(s,t) and from s, we can do a generalized e-step followed by an a-step to a nodes' (s _,.e 



12 

~as') with ae A (so a:;i!:Tt, a:te, a=t:o), then, in h, we can do a generalized £/1'}-step t _,.VT\ t* to a 

node t* with R(s,t*), and from t*, we can do a generalized £-step, followed by an a-step, followed 

by a generalized EIT\-Step, to a node r with R(s' ,t'), i.e. t* _,.E ~a -Eh\ t'. See fig. la. 

g h g 

Fig. la. 

s ........................... ~~::~::~l t 
EIT\ ~~· e .... ·•· .. .. .r~·· t 

.. .. 
a .. •· .. .. .. 

~ .. .. .. .. .. .. 
EIT\ •• •• 

s' 

.. · .. .. . ·· 
Fig. lb. 

h 

In case (s,t) is the pair of roots, we must have t=t* (this is part of the so-called root condition). 

3. Vice versa: if R(s,t) and t -ioE ~at' is a path in h with ae A, then, in g, there are nodes s* ,s' 

such that s _,.VT\ s* _,.E ~a _,.VT\ s' and R(s*,t), R(s',t'). See fig. lb. In case (s,t) is the pair of 

roots, we must have s=s* (the second part of the root condition). 

4. If R(s,t) and s _,.E ~TI s' is a path in g, then, in h, there is a node f such that t _,.E/Tt t' and 

R(s',t'). In case (s,t) is the pair of roots, the step t _,.VT\ t' must contain at least one edge (the third 

part of the root condition). 

5. Vice versa: if R(s,t) and t _,.E ~TI t' is a path in h, then, in g, there is anodes' such that s -VT\ 

s' and R(s',t'). In case (s,t) is the pair of roots, the steps _,.EIT\ s' must contain at least one edge 

(the fourth part of the root condition). 

6. If R(s,t), s' is an endpoint in g, and s ...,.Es', then, in h, there are nodes t*,t' such that t' is an 

endpoint, t ...,.vTt t* _,.Et' and R(s,t*). In case (s,t) is the pair of roots, we must have t=t* (the fifth 

part of the root condition). 

7. Vice versa: if R(s,t), t' is an endpoint in h, and t _,.Et', then, in g, there are nodes s*,s' such that 

s' is an endpoint, s _,.VT\ s* _,.E s' and R(s* ,t). In case (s,t) is the pair of roots, we must have 

s=s * (the last part of the root condition). 

A relation R between nodes of g and nodes of h is an T\E-bisimulation between g and h, g H'llE 

h, if we do not require the root condition in points 2-7. 

Graphs g and hare fl'\e-bisimilar, g .t±niE h, if there is a rooted T\e-bisimulation between g and 

h; g and hare T\E-bisimilar, g H'llE h, if there is a T\E-bisimulation between g and h. 



13 

4.3 EXAMPLES 

See fig. 2. We have a,b,c E A, so ;eC>,e,11. 

i. 

vii.!±± viii.6:~ r11e 
ix. 

B~· A fTlE 

0 0 
x. 

6 
xi. 

A H 
rrtE 

H 
rrtE 

0 0 

Fig. 2, i - xi. 



14 

xii. xiii. 

f~· A 
0 0 

Fig. 2, xii - xiii. 

4.4LEMMA 

iirqe and ±:±11e are equivalence relations on G. 

PROOF: Straightforward. 

4.SLEMMA 

Each Hrqe-equivalence class contains a nontrivial process tree. 

PROOF: As in [3]. 

4.6 G/±:±rqe will be the domain of the graph model for ACPc. The interpretation of a constant u e 

Au{B,11,e} is the equivalence class of the graph with two nodes and a single edge between them 

labeled u. The interpretation of the constant 't is the equivalence class of the graph with two nodes 

and two edges between them (with the same direction), one labeled 11. the otherlabeled e. 

What remains is the definition of the operators of ACPc on G/Hrqe· We will define these operators 

on G (the parallel operators only on 1f') and will then show that Hrqe is a congruence relation 

w.r.t. them. These definitions are also given in [3]. We repeat them here, but for comments and 

examples we refer the reader to [3]. 

4. 7 DEFINITIONS 

1. +. If g,h e G, graph g+h is obtained by taking the graphs of g and h and adding one new node 

r, that will be the root of g+h. Then, we add two edges labeled e: from r to the root of g, and from 

r to the root of h. 

2. ·. If g,h e G, graph g·h is obtained by identifying all endpoints of g with the root node of h. If 

g has no endpoints, the result is just g. The root of g·h is the root of g. 

3. II. The definition of the merge on G is rather complicated. Therefore, we will only define the 

merge on nontrivial process trees. Using lemma 4.5, this definition can be extended to G. 

If g,h e T, graph gllh is the cartesian product graph of graphs g and h, with 'diagonal' edges 

added for communication steps, and with non-e-edges 'orthogonal' to an incoming e-step turned 

into B-steps. By this, we mean the following: if (s,t) is a node in gllh, then it has the following 

outgoing edges (u,v e Au{B,11,e}, a,b e A): 

i. an ed~e (s,t) -7u (s',t) ifs -7u s' is an edge in g, and u = e or h has no edge t" -7e t; 

ii. an edge (s,t) -7B (s',t) ifs -7u s' is an edge in g, u :;e e and h has an edge t" -7e t; 

iii. an edge (s,t) -7v (s,t') if t -7v r is an edge in h, and u = e or g has no edges" -7e s; 



15 

iv. an edge (s,t) ~B (s,t') if t ~v t' is an edge in h, u :F. e and g has an edges" ~e s; 

v. an edge (s,t) ~r(a,b) (s',t') ifs ~as' is an edge in g, t ~b t' is an edge in hand y(a,b) is 

defined (these are the diagonal edges). 

The root of g II h is the pair of roots of g and h. 

Edges (s,t) ~u (s',t) are called vertical edges, and edges (s,t) ~u (s,t') are horizontal edges. 

4. [!_.If g,h e 1r, graph gli_h is obtained from graph gllh by turning all horizontal and diagonal 

edges, that are reachable from the root by a generalized e-step, into <>-edges. 

5. I. Similar to 4: If g,h e 1r, graph g I his obtained from graph glJh by turning all horizontal and 

vertical edges, that are reachable from the root by a generalized e-step, and do not have label e, or 

do have label e but lead to an endpoint, into <>-edges. 

6. aH. 111· If g E G, obtain aH(g) by replacing all labels in g from H by (), and obtain 111(9) by 

replacing all labels from I by 11. 

7. 'trr If g e G, obtain 't11(g) by adding an edges ~et for each edges ~11 tin g. 

This :finishes the definition of the operators of ACPc on G. Then we also have the operators on 

G/Hl'T\£' if we use the following theorem 4.9. 

4.8 NOTE 

In VRANCKEN [12], the parallel operators 11.!L. I are defined on a wider class of graphs, a class 

which is closed under these operators. This makes proofs of statements about them much easier. 

4.9THEOREM 

i:Zrqe is a congruence relation on G. 

PROOF: Tedious, but straightforward. As an example, consider the case of II. 
So suppose g,g',h,h' e G and g f:Zrqe g', h Hnw h'. We have to prove that gllh Hl'T\£ g'llh'. 
Using lemma4.5, we can suppose that g,g',h,h' are nontrivial process trees. 

Take an 111e-bisimulation R between g and g', such that R does not relate endpoints of intermediate 

e-edges, and an 111e-bisimulation S between h and h' with the same restriction (such bisimulations 

always exist, since we are dealing with trees). Let RxS be the cartesian product of Rand S, i.e. 

RxS((s,t),(s',t')) iff R(s,s') and S(t,t') (s a node in g, s' in g', tin h, t' in h'). 

CLAIM: RxS is an 111e-bisimulation between gllh and g'llh'. 

PROOF OF THE CLAIM: Tedious, but straightforward. As an example, consider the verification of 

condition 4.2.2 (without the root condition). 

(1) Let (s1 ,t1) ~a (s1 ,t2) be a horizontal step in gl!h, with ae A. Let (s0,t0) _,.&: 

(s1 ,t1) ~a (s1 ,t2), and RxS((s0,t0),(s'0,t'0)). Then we must have that s 0 = s 1, that the vertical 

component of (s0 ,t0) _..e {s1,t1) is empty, for otherwise, the step {s1,t1) ~a {s1,t2) would be 

orthogonal to an incoming e-edge, and would be turned into a ()-edge. Now t0 _..e t1 ~a t2 in h 

and S(t0,t'0), hence we can find nodes t* 0 and t'2 such that t'0 _..e/11 t* 0 _..e ~a _..e/11 t'2 and 

S{t0,t* 0) and S(t2,t'2). This path can be 'lifted' to g'llh', since s'0 cannot have an incoming 

e-edge by the restriction on R, and we obtain (s'0,t'0) _..£111 (s'0,t* 0) _..e ~a _..£111 {s'0,r 2) and 

RxS({s0,t0),(s'0,t*0)) and RxS({s0,t2),{s'0,t'2)). 



16 

(2) Likewise for a vertical step in gllh. 

(3) Suppose (s1 ,t1) _,,c (s2,t2) is a diagonal step in gllh, and look at a path (s0,t0) 

_,.e (s1 ,t1) _,,c (s2,t2) such that RxS((s0,t0),(s'0,t'0)). We consider the 'projections' of this path, 

i.e. there are paths s 0 _,.e s 1 _,,a s 2 in g and t0 _,.e t1 _,,b t2 in h with 'Y(a,b) =c. Since R(s0,s'0) 

there are nodes s* 0 and s'2 in g' such that s'0 _,.et11 s* 0 _,.e _,,a _,.e/11 s'2 and R(s0,s* 0) and 

R(s2,s'2). Likewise, t'0 _,.efrt t* 0 _,.e _,,b _,.e/TJ t'2, S(t0,t* 0) and S(t2,t'2) for certain t* 0, t'2 in h'. 

We compose these paths in g'llh': 

(s'o,t'o) _,.e111 (s'o,t* o) _,.e111 (s*o,t*o) _,.e _,.e _,,c _,.etrt _,.f/TJ (s'2.t'2) 

and RxS((s0,t0),(s* 0,t*0)) and RxS((s2,t2),{s'2.t'2)). Since R does not relate endpoints of 

intermediate £-edges, s'0 does not have an incoming £-edge, so the ii-edges in (s'0,t'0) _,.e/TJ 

(s'0 ,t* 0) do not tum into o-edges; since the last edge in this sequence is not an £-edge, the ii-edges 

in (s'0,t* 0) _,.f/TJ (s* 0,t* 0) do not tum into o-edges (use the restriction on Sin case the sequence is 

empty); next, the first sequence of 11-edges in the sequence following _,,c aie orthogonal to a 

component of c, and the second sequence is either orthogonal to the last ii-edge in the first 

sequence, or to the other component of c. 

The remainder of the verification is not too hard. 

4.10 THEOREM 

Glf2rrte is a model of ACPc. 

PROOF: For every axiom of ACPc, it has to be checked that if we substitute process graphs for the 

variables, and use the definitions 4.6 and 4.7, then there exists a 111£-bisimulation between the two 

graphs resulting from both sides of the equality sign. The construction of these 111£-bisimulations is 

routine, tedious and omitted (cf. BERGSTRA & KLOP [5], 2.5). The only interesting cases concern 

the ii and E laws, of which instances are presented in examples 4.3. 

4.11 REMARK 

We also obtain models of ACPc, if instead of limiting ourselves to finitely branching graphs, we 

allow all graphs of branching degree less than some infinite cardinal number. Thus we get models 

GJ±:Zrrie· G/Hnte is the model GNJHnte· Also, the set lR of all finite (or regular) process graphs 

modulo Hnte and the set IF of all finite and acyclic process graphs modulo rlrrte form models of 

ACPc. 

4.12 In the sequel, we will show that these models are complete for closed ACPc-terms, i.e. if t,s 

are closed ACPc-terms, and graph(t) denotes the graph corresponding to the closed term t 

(following definitions 4.6 and 4.7), then graph(t) ±:Zrrie graph(s) implies ACPc 1- t=S. 

For the completeness proof, it is simplest if we work with basic terms according to the first 

inductive scheme of 3.9: this means that every subterm terminates with an E-step, and that a 

subterm may have more than one E-summand. Ifs is such a basic term, this means that graph(s) is 

a nontiivial finite process tree, with no intermediate E-edges, and with all edges leading to an 

endnode having label£. We call such process trees basic trees. 

Some notation: from now on we write x = y for ACPc I- x = y; if this holds we say that x is 



17 

ACPc-equal toy. If Al,2 I- x = y we write x = y. We say x is an ACPc-summand of y if 

ACPc 1- y = x + y. 

4.13 PROPOSITION 

i. If t is a basic term then graph(t) is a basic tree. 

ii. If graph(t) = graph(s) for s,t E BT, then t = s. 

iii. For any basic tree g, there is a basic term t with graph(t) = g. 

PROOF: Easy. 

4.14 DEFINITION 

Let term be a function that maps a basic tree g onto a basic term t with graph(t) = g. 

By proposition 4.13 we have term(graph(t)) = t fort E BT. 

4.15 PROPOSITION 

If R is an 1)e-bisimulation between process graphs g,h (not necessarily rooted), and R(s,t), then 

(g)s Hrie (h)t· 
PROOF: R, restricted to the nodes of (g)5 and (h)1, will be an 1)e-bisimulation. 

4.16 PROPOSITION 

Let g be a basic tree, and a E C. 

i. term(g) has a summand s =as' iff there is an edge root(g) ~aping with a·term((g)p) = s. 

ii. term(g) has a summand e. iff there is an edge root(g) ~e p to an endnode p. 

PROOF: Easy. 

4.17 PROPOSITION 

Let q be a node of a basic tree h, such that root(h) ~a _,;rt q. Then term(h) = a·term((h)q) + 
term(h) (i.e. a·term((h)q) is an ACPc-summand of term(h)). 

PROOF: By induction on the length of the path from root(h) to q. Let this length be n. 

The induction base n= 1 follows from proposition 4.16. 

Now suppose root(h) ~a p ..... 11 q such that the path from p to q has length n~1. and the 

proposition is already proved for n. Then we can write p ~11 ..... 11 q. 

Thus term(h) = a·term((h)p) + term(h) and term((h)p) = ll·term((h)q) + term((h)p). 

Hence term(h) = a(11·term((h)q) + term((h)p)) + term(h) =(using H3) 

= a·term((h)q) + a(11·term((h)q) + term((h)p)) + term(h) = a·term((h)q) + term(h). 

4.18 PROPOSffiON 

For basic trees g,h we have: 

i. Ifg ~11e h then ACPc I- a·term(g) = a·term(h) for each aeC. 

ii. If g ~e h then ACPc 1- term(g) = term(h). 

PROOF: (i) will be proved with induction on d(g) + d(h). So suppose g ±:t11e h, say R: g ±:t
11

e h, 

and for any basic trees g',h' with d(g') + d(h') < d(g) + d(h) (i) is already proved. 



CLAJM: One of the following statements holds: 

I: term(h) = 11·term(g) + term(h) 

II: term(h) = term(g) + term(h) 

III: a·term(h) = a·term(g) for aE C. 

PROOF OF THE CLAJM: 

18 

I: Suppose there is a node q in h with root(h) ~T\ _.T\ q and R(root(g),q). 

Then, by proposition 4.15, g H'TJE (g)root(g) H'TJE (h)q and d((h)q) < d(h), so by induction 

11·term(g) = 11·term((h)q). Furthermore, using proposition 4.17, term(h) = 11·term((h)q) + 
term(h), and hence term(h) = 11 ·term(g) + term(h). 

II: Suppose there is no such node. We will prove that any summand s = e or at of term(g) either is 

an ACPc-summand of term(h), or is ACPc-equal to 11·term(h). If all summands of term(g) are 

ACPc-summands of term(h) we get II. The case that there are summands ofterm(g) ACPc-equal 

to 11·term(h) will be considered in part III of this proof. 

So let s = e or s = as' be a summand of term(g). 

CASE 1: s =e. It follows from proposition 4.16 that there is an edge root(g) ~£ping to an 

endnode p. Since R: g HT\E h, and h is a basic tree, there must be nodes q,q* in h, with q an 

endnode, such that root(h) _. T\ q* ~£ q and R(root(g),q*). By the assumption above (in the first 

sentence of II), root(h) = q*, so we are done using proposition 4.16. 

CASE 2: s = as'. By proposition 4.16 there is an edge root(g) ~aping with a·term((g)p) = s. 

CASE 2.1: a E A. Since R: g HT\E h, and h is a basic tree, there must be nodes q* and q in h with 

root(h) _,,T\ q* ~a _.T\ q, R(root(g),q*) and R(p,q). 

Hence, by proposition 4.15, (g)p HT\E (h)q, and since d((g)p) < d(g) (and also d((h)q) < d(h)), 

the induction hypothesis yields a·term((g)p) = a·term((h)q). By the assumption above root(h) = 

q* and proposition 4.17 gives term(h) = a·term((h)q) + term(h). Thus term(h) = s + term(h). 

CASE 2.2: a= 11. Since R: g HT\E h, and his a basic tree, there must be a node q in h with 

root(h) _,, q and R(p,q). Hence (g)p HT\ (h)q and since d((g)p) < d(g), the induction 

hypothesis yields 11·term((g)p) = 11·term((h)q). 

Now there are two possibilities: if root(h) '* q, then root(h) ~11 _. T\ q and proposition 4.17 gives 

term(h) = 11·term((h)q) + term(h). Thus term(h) = s + term(h). 

On the other hand, if root(h) = q, then s = 11·term((g)p) = 11·term((h)q) = 11·term(h). 

CASE 2.3: a= o. In this case term(h) = s + term(h) follows from laws A6 and A7. 

III: Finally suppose that some summands of term(g) are ACPc-equal to 11·term(h), while the 

others are ACPc-summands of term(h). Then, there is a term t such that term(g) = 11·term(h) + t 
and term(h) = t + term(h). Hence, using H2, a·term(g) = a(11(t + term(h)) + t) = a(t + term(h)) 

= a·term(h), for aE C. 

Thus we have proved the claim. Now we return to the proof of the proposition, part (i). 

For reasons of symmetry also one of the following statements must hold: 
'"' 

A: term(g) = 11·term(h) + term(g) 

B: term(g) = term(h) + term(g) 

C: a·term(g) = a·term(h), for aE C. 



19 

Now the remainder of the proof consists of a simple case distinction. 

• Suppose that I and A hold. From I it follows that for ae C 
a·term(h) = a(11·term(g) + term(h)) ~(using H3) 

= a(11·term(g) + term(h)) + a·term(g) = a·term(h) + a·term(g). 

Likewise, A implies a·term(g) = a·term(g) + a·term(h). Putting these two statements together 

yields a·term(g) = a·term(h). 

• Suppose that II and B hold. Then term(g) = term(h) + term(g) = term(h), so a·term(g) = 

a·term(h) for ae C. 
•Suppose that II and A hold. Then, for ae C, a·term(g) = a(11(term(g) + term(h)) + term(g)) = 

a·term(h), using H2. 

• Likewise the case that I and B hold. 

• If III or C hold there is nothing left to show. 

This finishes the proof of part (i). 

For part (ii), suppose g ±±rrie h, say R: g ±±rrie h. We will prove that any summand £or as' of 

term(g) is an ACPc-summand of term(h) (and vice versa), which yields the desired result. 

So lets be a summand of term(g). 

CASE 1: s =e. It follows from proposition 4.16 that there is an edge root(g) ~e ping to an 

endnode p. Since R: g Hnie h, and his a basic tree, there must be nodes q,q* in h, with q an 

endnode, such that root(h) _,;ri q* ~e q and R(root(g),q*). By the root condition, root(h) = q*, 

so we are done using proposition 4.16. 

CASE 2: s =as'. By proposition4.16 there is an edge root(g) ~aping with a·term((g)p) = s. 

CASE 2.1: a e A. Since R: g ~TJe h, and h is a basic tree, there must be nodes q* and q in h with 

root(h) _,,TJ q* ~a _,,TJ q, R(root(g),q*) and R(p,q). Moreover, the rootedness condition gives 

root(h) = q*. By proposition 4.15, (g)p tiTJe (h)q, and (i) yields a·term((g)p) = a·term((h)q). 

Furthermore, proposition 4.17 gives term(h) = a·term((h)q) + term(h), so term(h) = s + 
term(h). 

CASE 2.2: a= T}. Since R: g Hnie h, and his a basic tree, there must be a node q in h with 

root(h) _,.TI q and R(p,q). Moreover, the rootedness condition gives root(h) ~TI _,, TJ q. By 

proposition 4.15, (g)p H'lle (h)q, and (i) yields 11 ·term((g)p) = 11 ·term((h)q). Furthermore, 

proposition4.17 gives term(h) = 11·term((h)q) + term(h), so term(h) = s + term(h). 

CASE 2.3, a=o, follows from A6 and A7. 

This finishes the proof of part (ii). 

4.19 THEOREM 

ACPc is sound and complete for closed terms, with respect to G/H111v i.e. 

for all closed ACPc-terms t,s we have: graph(t) Hnie graph(s) <::} ACPc I- t = s. 

PROOF: Direction<=, the soundness, follows from theorem 4.10. 

For dir<!ction =>, the completeness, note that the elimination theorem 3.10 and direction<= imply 

that it is enough to prove=> for basic terms t,s. This amounts to an application of 4.18.ii, using 

definition4.14: ift,s e BT andgraph(t) Hnie graph(s), then 



20 

t = term(graph(t)) = term(graph(s)) = s. 

4.20 THEOREM 

ACP 11 is sound and complete for closed terms, with respect to 0/Hrr\£' i.e. 

for all closed ACP 11-terms t,s we have: graph(t) Hrrie graph(s) <=> ACP 11 1- t=S. 

PROOF: If we only consider those process graphs in 0/Hrrie that are nontrivial and have no 

e-edges, then we have the model G/Hrri of BAETEN & VAN GLABBEEK [2] (we do have to change 

the definition of+ to an equivalent one that does not use e-edges). In [2], soundness and 

completeness of closed ACP rt-terms w .r.t. this model was proven. This result transfers completely 

to the present case. 

Note that ACPrt is not sound for all open terms, since the axiom Hl of ACPrt' XT) = x, does not 

hold for x = e. However, if we replace Hl by aT) = a, we do get soundness for open terms, and 

G/Hrrie becomes a model for ACP rt· 

4.21 THEOREM 

ACP-J is sound and complete for closed terms, that do not contain the EK-operator, with respect to 

0/Hrr\£' i.e. for all closed ACP-J-terms t,s without eK we have: 

graph(t) tlnie graph(s) <=> ACP-J 1- t=s. 

PROOF: Exactly as the proof of theorem 4.18 above, but much simpler, by omitting all T)'s from 

this chapter. Essentially, this proof is given in [3]. 

Note that ACP-J is sound for all open terms, if we omit the operator eK and its axioms. Thus, 

G/Hrrie becomes a model for ACP-J. 

4.22 THEOREM 

ACP 't is sound and complete for closed terms, that do not contain the lL-operator, with respect to 

0/Hrrie• i.e. for all closed ACP 't-terms t,s without lL we have: 

graph(t) tlnie graph(s) <=> ACP 't 1- t=s. 

PROOF: We consider the graph model F J.Hrt for ACP 't' as presented in BERGSTRA & KLOP [5]. 

F't consists of all finite acyclic nontrivial process graphs with labels from Au{o;t}. The definition 

of rooted t-bisimulation Hrt is like definition 4.2, with the following changes: 

1. Omit all reference to e-steps, so s _,.e t just amounts to s = t, and s _,.e/rt t becomes s _,.rt t; 

2. Change all T)'s into t's; 

3. Drop all requirements R(s*,t) and R(s,t*); 

4. Drop the root conditions in 2,3,6,7, keep only the root conditions in 4,5. 

Concerning the definition of the operators, we use the definition for+ alluded to in 4.19, that does 

not involve e-edges, but is equivalent to the present one, and we can use the same definitions for 

the other operators, except for the communication merge I (keeping in mind the changes 1 - 4 

above). If g and h are two finite nontrivial process trees, then g I h can be obtained as follows. 

First, obtain graph g I *h from graph gllh by turning all horizontal and vertical edges, that are 

reachable from the root by a generalized t-step, and do not have label t, or do have label t but lead 

to an endpoint, into o-edges. Then, g I his the sum of all subgraphs of g I *h, that are reachable 



21 

from the root by a generalized 't-step. 

Let <p be the mapping from IF -r into G, that replaces each edge s ~ -r t by two edges s ~E t and 

s ~rt t. In BERGSTRA & KLOP [5] it is shown that IF/Hr-r is a sound and complete model for 

ACP-r, w.r.t. closed terms, i.e. graph-r(t) tlr-r graph-r(s) <=> ACP-r f- t = s for closed t,s, where 

graphit) is defined as graph(t), but w.r.t. the ACP-r-operators. 

Thus, we are done if we prove the following two claims: 

CLAIM 1: For any g,h E IF't: g Hr't h <=> <p(g) Hrl'JE <p(h). 

CLAIM 2: <p is a homomorphism w.r.t. the constants a,o,-c and the operators +,-,II, I .aH and -c1 
(H,I ~A), so for lL-free closed terms t we have <p(graph-r(t)) Hrrie graph(t). 

PROOF OF CLAIM 1: =>: Suppose g Hr-r h, take a relation R: g tlr-r h. We claim that R also is an 

flle-bisimulation between <p(g) and <p(h). For, suppose s _,.Es" ~as' is a path in <p(g). Since 

every £-edge has a 'neighbouring' 11-edge, s __,. -r s" ~a s' is a path in g. Since R is an 

rt-bisimulation, there are nodes t",t' in h such that t __,.-rt" __,. -r ~a __,.-rt' is a path in h, and R(s",t"), 

R(s' ,t'). By definition of <p, t _,.Et" _,.e ~a _,.rt t' is a path in <p(h), and we can take t* = t. It is not 

hard to finish the verification. 

<=: Suppose <p(g) Hrrie <p(h), take a relation R: <p(g) Hrrie <p(h). Now we claim that R is an 

rt-bisimulation between g and h. For, suppose s ~a s' is an edge in g. Then s ~a s' also is an 

edge in <p(g). Since R is an flle-bisimulation, there are nodes t* ,t' in <p(h) such that t _,.Elrt t* _,.e 

~a _,.Elrt t' is a path in <p(h), and R(s,t*), R(s',t'). Hence, by definition of <p, t _,.-r ~a _,.-rt' is a 

path in h. Again, it is not hard to finish the verification. 

PROOF OF CLAIM 2: The proof is easy for the constants a,o,-c and the operators +,.,aH and -c1. The 

operators II and I are defined on trees, so if g e IF-r, we have to 'unshare' <p(g), in the sense that 

whenever an edges ~-rt appears in g, we make two copies of (<p(g))1, with root nodes t1 .~.and 

have edges s ~rt t1 and s ~E t2 in the tree constructed from <p(g). 

Now let g, h e IF -r be two process trees, then for the operator II we have to prove that 

<p(gllh) ±±rrie tree(<p(g))lltree(<p(h)), 

where the operation tree is as just explained. Let R be the relation that relates each node (s,t) in 

<p(gllh) (s a node of g, ta node of h) to the corresponding node in tree(<p(g))lltree(<p(h)), or, if 

there is more than one copy, to all copies which have no incoming £-step. We claim that Risa 

flle-bisimulation. The crux of the verification is the following: if (s,t) ~e (s',t) ~a (s',t') is a path 

in <p(gllh) (a e A), then the corresponding a-edge in tree(<p(g))lltree(<p(h)) is turned into a 

o-edge by definition 4.7.3. However, we can take the path (s,t) ~a (s,t') ~rt {s',t') in 

tree(<p(g))lltree(<p(h)) for the bisimulation. The rest of the verification is left to the reader. 

For the operator I , we have to prove that 

<p(g I h) Hrrie tree( <p(g)) I tree( <p(h)). 

First remark that <p(g I h) Hrrie 'Jf(<p(g I *h)), where v(g) is obtained from g by changing all 

11-edges, that are reachable from the root by a generalized £-step, into <>-edges. Now there is a clear 

correspondence between the nodes of 'Jf(<p(g I *h)) and tree(<p(g)) I tree(<p(h)) so that R: 

'Jf(<p(g l'*h)) Hrrie tree(<p(g)) I tree(<p(h)) can be defined as above. Also the verification that Risa 

bisimulation follows the case of II. 
We remark that ACP -r is sound for all open terms, apart from the law Tl (X't = x) that does not hold 



22 

for E (and could be replaced by a't = a and 't't = 't), and the laws for the operator [l_. 

4.23 EXAMPLE 

The mapping cp in the proof of 4.22 is not a homomorphism w.r.t. the operator [l_. For, let g = 't, 
and h =a (a E A). Then the graph cp(g[Lh) in fig. 3a does not 111£-bisimilate with the graph 

tree(cp(g)}[Ltree(cp(h)) in fig. 3b. 

~ 

Fig. 3a. 

n---=a=---1••0 
Fig. 3b. 

We see that when we compare the process 't in ACP 't with the process Tl + E in ACPc, they interact 

in the same way with the operators except for the auxiliary operator [L. On the other hand, we 

found in 3.15 that when we compare 't with Tl in ACPc by means of the homomorphism 't11, we 

also get the same interaction with the operators, except for the auxiliary operators I and.../. Both 

comparisons however work for the merge operator, which is defined by means of these auxiliary 

operators. This is the same duality that we found in (2]. 

4.24 THEOREM 

ACPc is a conservative extension of ACP 11, and most of ACP.../ and of ACP't, i.e. for all closed 

ACP 11-terms t,s we have 

ACPc I- t=S iff ACP 11 I- t=S, 

for all closed ACp.../-terms t,s in which the operator EK does not appear, we have 

ACPc I- t=S iff Acp...j I- t=S, 

and for all closed ACP't-terms t,s in which the operator lL does not appear, we have 

ACPc I- t=S iff ACP't I- t=S. 

PROOF: Combine 4.19 with 4.20, 4.21 and 4.22. 

4.25 THEOREM 

Let g be a finitely branching process graph, and let h be a finitely branching process graph with no 

Tt-label, such that 't11(g) Hnie h. Then g ±±nie h. 

PROOF: Let g,h be as stated. 't11
(g) is obtained from g by adding an £-step for each 11-step, but has 

the same nodes. Let R be a 111£-bisimulation between 't
11

(g} and h. We claim that R is also a 

111£-bisimulation between g and h. We only give the most difficult part of the verification. 

Let R(s,t) and let t _,.e ~a t' be a path in h with ae A. Since R is a 111£-bisimulation, there are 

nodes s*,s' in g such that s ..... e111 s* _,.e ~a _..E.111 s' is a path in 't
11

(g) and R(s*,t), R(s',t'). Some 

of the £-steps in this path might not appear in g. All of such steps however, have a 'neighbouring' 

Tt-step. We now take the path in g with, where necessary, £-steps replaced by the neighbouring 



23 

11-steps. Thus s _,.Ef1'\ s" _,.e ~a _,.Ef1'\ s' is a path in g for some nodes" (that may be further along 

the path than nodes*). Since s _,.E/1'\ s", there is anode t" in h such that t _,.Ef1'\ t" and R(s",t"). But 

h contains no 11-labels, so the number of 11-steps in _,.EITJ must be 0, whence t" = t. This means 

R(s",t) holds. 

4.26 Theorem 4.25 allows us to formulate the following proof principle: 

if x is an ACPc-process and y is an ACPv'-process, 

and 't1'\(x) = y, then x = y. 
We call this the Two-tiered Abstraction Principle (TAP). It follows from the completeness 

of the graph model that TAP is derivable for closed terms. 

4.27REMARK 

The principles RDP (the Recursive Definition Principle), RSP (the Recursive Specification 

Principle), Aw- (the Approximation Induction Principle) and HAR (the 11 Abstraction Rule) from 

BAETEN & VAN GLABBEEK [2] also hold in the graph model Glf:±rrte• and the same proofs and 

definitions can be used. Note that the fairness principle HAR has a nice formulation in this setting 

(equivalent to the one in [2]) (cf. 4.3.xi): 

if x = ix + e, and i E I, then 111(x) = 't. 
We conjecture that.the principles FAP (the Fresh Atom Principle) and LR- (the Limit Rule) from 

BAETEN & v AN GLABBEEK [3] hold in the graph model G/~nie· In the setting of ACPc, the Limit 

Rule says that any equation without abstraction operators (111, 't1'\' 't1), that holds for all basic terms, 

holds for all processes. 

REFERENCES 

[1] J.C.M.BAETEN, J.A.BERGSTRA & J.W.KLOP, On the consistency of Koomen's fair 

abstraction rule, report CS-R8511, Centre for Math. & Comp. Sci., Amsterdam 1985, to appear in 

Theor. Comp. Sci. 51 (1/2). 

[2] J.C.M.BAETEN & R.J.v AN GLABBEEK, Another look at abstraction in process algebra, report 

CS-R8701, Centre for Math. & Comp. Sci., Amsterdam 1987, extended abstract to appear in Proc. 

14th ICALP, Karlsruhe 1987. 

[3] J.C.M.BAETEN & R.J.VAN GLABBEEK,Merge and termination in process algebra, report 

CS-R8716, Centre for Math. & Comp. Sci., Amsterdam 1987. 

[4] J.A.BERGSTRA & J.W.KLOP, Process algebra for synchronous communication, Inf. & 

Control 60 (1/3), pp. 109 - 137, 1984. 

[5] J.A.BERGSTRA & J.W.KLOP, Algebra of communicating processes with abstraction, Theor. 

Comp. Sci. 37 (1), pp. 77 - 121, 1985. 

[6] J.A.BERGSTRA, J.W.KLOP & E.-R. OLDEROG, Failures without chaos: a new process 
•· 

semantics for fair abstraction, report CS-R8625, Centre for Math. & Comp. Sci., Amsterdam 

1986, to appear in: Proc. IFIP Conf. on Formal Description of Progr. Concepts (M.Wirsing, ed.), 

Gl. Avemres 1986, North-Holland. 



24 

[7] C.A.R.HOARE, Communicating sequential processes, Prentice Hall 1985. 

[8] C.P.J.KOYMANS & J.L.M.VRANCKEN, Extending process algebra with the empty process e, 

report LGPS 1, Dept. of Philosophy, State University of Utrecht, The Netherlands 1985. 

[9] R.MILNER, A calculus of communicating systems, Springer LNCS 92, 1980. 

[10] R.MILNER, Lectures on a calculus of communicating systems, Seminar on concurrency 

(S.D.Brookes, AW.Roscoe & G.Winskel, eds.), pp. 197 - 220, Springer LNCS 197, 1985. 

[11] D.M.R.PARK, Concurrency and automata on infinite sequences, Proc. 5th GI Conf. (P. 

Deussen, ed.), Springer LNCS 104, pp. 167 - 183, 1981. 

[12] J.L.M.VRANCKEN, The algebra of communicating processes with empty process, report FYI 

86-01, Dept. of Comp. Sci., Univ. of Amsterdam 1986. 


