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Abstract. Stochastic Collocation (SC) has been studied and used in different disciplines for
Uncertainty Quantification (UQ). The method consists of computing a set of appropriate points,
called collocation points, and then using Lagrange interpolation to construct the probability
density function (pdf) of the quantity of interest (QoI). The collocation points are usually chosen
as Gauss quadrature points, i.e., the roots of orthogonal polynomials with respect to the pdf of
the uncertain inputs. If the mathematical model has more than one stochastic parameter, the
multidimensional set of points is usually build using the tensor product of the roots of the one-
dimensional orthogonal polynomials. As a result of that, for multidimensional problems the
same set of collocation points is used for both correlated and uncorrelated inputs. In this work,
we propose to compute an alternative set of points for correlated inputs. The set will be derived
using the orthogonal polynomials for correlated inputs that we developed in a previous work.
As these polynomials are not unique, we will obtain multiple sets of collocations points for each
input pdf. The aim of this paper is to study the differences between those sets of points and to
find and optimal one.
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1 INTRODUCTION

Uncertainty quantification can be seen as the theory which tries to determine how likely
certain outcomes of a model are. Therefore, the ability to quantify the uncertainty in systems
and models with a strong “real-world” setting is fundamental to many inference problems in
science and engineering. Proof of this is the large number of applications in different fields that
can be found in the literature: combustion chemistry [22], neuroscience [21], fluid dynamics
[14], ocean wave modeling [26], meteorology [16], to state just a few.

Several methods exist to quantify the uncertainties. The simplest approach is Monte Carlo
simulation [1], where - given a probability density function (pdf) for the random inputs - the
mean and other characteristics of the output distribution can be estimated by sampling repeat-
edly from the pdf and simulating the model for each sample. This method is often too expensive,
since a lot of samples are required for a reasonable accuracy. Therefore, to decrease the compu-
tational effort, several modifications leading to new methods were introduced: Latin hypercube
sampling (LHS) [9], the Quasi-Monte Carlo (QMC) method [5], the Markov Chain Monte Carlo
method (MCMC) [12], etc. An alternative method is the Polynomial Chaos Expansion (PCE)
method, which is based on Wiener’s homogeneous chaos theory [23]. In this method to find
the polynomial coefficients either Galerkin projection or Spectral projection is used, which re-
sults in a coupled system of deterministic equations. Since the first version of this method for
Gaussian random variables appeared, until now several generalizations and improvements of
the PCE technique have been published: [2, 3, 20, 18], etc. So nowadays, due to increased
relevance of UQ during the last years, a wide variety of techniques to compute the uncertainties
in the model have been applied, for instance: Karhunen-Loève decomposition [11], gradient-
based methods [24], sparse grids [7], perturbation methods [6] based on local Taylor series
expansions, Bayesian methods [10] etc.

In this paper we consider the Stochastic Collocation method to compute the uncertainties.
It is a nonintrusive method, which was developed by Mathelin and Hussaini [13]. The method
consists of computing a set of appropriate points, called collocation points, and then to approx-
imate the probability distribution function of the QoI by using Lagrange interpolation [25]. The
standard collocation points are usually chosen as the roots of the orthogonal polynomials with
respect to the marginals pdf’s of the uncertain inputs. Thus, the same points are used for both
correlated and uncorrelated inputs. On account of this, the following question is raised: will
there be a more suitable set of points for correlated inputs? In order to answer this question,
we propose to compute an alternative set of points using the new orthogonal polynomials for
correlated inputs that we developed in a previous study [15] and then to compare the obtained
results with both sets of points. The new polynomials are not unique in the multidimensional
case. As a result of that, we will have multiple sets of points for each random input. The aim of
this paper is therefore, to perform a comparison study of different sets of points. Specifically,
we will see that one of them can be seen as the optimal set of points, in the sense that in the
limit of full and no correlation the collocation points are equal to the known optimal ones. We
will also prove that all sets of points achieve the same integration degree of exactness. However,
some differences are found in terms of integration error and interpolation error; the set with the
smallest error of integration is the set with the highest error of interpolation and vice versa.

The outline of this paper is as follows: Section 2 reviews the Stochastic Collocation method.
Section 3 introduces new sets of collocation points for the case of correlated inputs. In Sec-
tion 4, we perform a comparison study between the new sets of collocation points in terms of
integration degree of exactness, integration error, and interpolation error. The conclusions are
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drawn in Section 5.

2 STOCHASTIC COLLOCATION

Consider the following stochastic equation in the probability space (Ω,A, P ) where Ω is the
event space, A ⊆ 2Ω its σ-algebra and P its probability measure

L(x, ξ(ω);u) = f(x, ξ(ω)), x ∈ X and ω ∈ Ω, (1)

where u(x, ξ(ω)) is the stochastic solution vector, L is an operator, and f a source function; x
is the vector of deterministic input variables describing, e.g., time or space, and ξ(ω) is the n-
dimensional vector of random input variables, with joint probability density function ρ(ξ(ω));
ξ typically contains the uncertainties in model parameters or initial and boundary conditions.
In order to make the notation less cumbersome, we denote the realization of a random vector
ξ(ω), for ω ∈ Ω, by ξ ∈ Ξ, with Ξ the support of the pdf.

In the Stochastic Collocation method the solution u is approximated by the following ex-
pansion in case of one uncertain input parameter ξ:

u(x, ξ) =

p+1∑
i=1

ui(x)hi(ξ), (2)

with ui(x) the solution values u(x, ξ) of Equation (1) at the one-dimensional collocation points
αi. These unidimensional collocation points are computed as the zeros of the orthogonal poly-
nomials to the pdf. The hi(ξ) are the unidimensional Lagrange interpolating polynomials of
degree p with hi(αj) = δij . The Lagrange interpolating polynomial that passes through the
collocation points is given by:

hi(ξ) =

p+1∏
j=1
j 6=i

ξ − αj
αi − αj

. (3)

One-dimensional Stochastic Collocation can be extended to n-dimensional stochastic input vec-
tors ξ = {ξ1, . . . , ξn} using a tensor product. This results inN n-dimensional collocation points
with N = (p+ 1)n.

2.1 Statistic

The mean and the variance of the stochastic solution can be determined using:

µu =
N∑
i=1

ui(x)ωi, (4)

σ2
u =

N∑
i=1

(ui(x))2ωi − µ2
u, (5)

where the ωi are the weights corresponding to the collocation points αi.

3 COLLOCATION POINTS FOR CORRELATED INPUTS

To find the collocation points the procedure below is followed. To avoid any misunderstand-
ing between the sets of points, we will use the name n-dimensional standard collocation points
for the ones that come from the tensor product approach; and n-dimensional collocation points
for correlated inputs to name the points computed using the new orthogonal polynomials.
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3.1 n-dimensional standard collocation points

The computation of the n-dimensional standard collocation points is based on the computa-
tion of the unidimensional ones, which are the Gaussian quadrature points. These points are the
roots of the orthogonal polynomials with respect to a given weight function. In our situation,
the weight function will be given by the marginal pdf of the uncertain input. Once the unidi-
mensional points are computed, the n-dimensional points are built based on the tensor product
approach. For a simple example, we assume a model with two uncertain inputs, (ξ1, ξ2), that
follow a normal distribution where the mean µ and the covariance matrix Σ are fixed as:

µ =

(
0
0

)
and Σ =

(
1 0.8

0.8 1

)
. (6)

It is also assumed that only four collocation points are necessary to approximate the solution.
As the uncertain inputs are Gaussian distributed, we compute -for each uncertain input- the
roots of the one dimensional Hermite orthogonal polynomials of degree 2: Φ(ξ1) = ξ2

1 − 1 and
Φ(ξ2) = ξ2

2 − 1. Finally the set of n-dimensional standard collocation points is built using the
tensor product of the roots ±1. Figure 1 shows the final set of points.
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Figure 1: n-dimensional standard collocation points, which usually are used for both correlated
and uncorrelated inputs.

3.2 n-dimensional collocation points for correlated inputs

The n-dimensional collocation points for correlated inputs are calculated based on the mul-
tidimensional orthogonal polynomials for correlated inputs [15]. In this section we present
both how the polynomials are built by using Gram-Schmidt orthogonalization and how the new
points are derived from them.

3.2.1 Computation of the orthogonal polynomials

For Gram-Schmidt the first step is the choice of a suitable set of linearly independent polyno-
mials. It should be noticed that any linearly independent set of polynomials can be used in this
method, but for simplicity we will use the set of monic polynomials {ej(ξ)}Mj=0. For example,
if dim(ξ) = n = 2 and the maximum degree m = 2, then M + 1 = (n+m)!

n!m!
= 6, and the

set of linearly independent polynomials {ej(ξ1, ξ2)}5
j=0 equals {1, ξ1, ξ2, ξ

2
1 , ξ1ξ2, ξ

2
2}. Next, the

orthogonal polynomial basis {Φj(ξ)}Mj=0 is constructed sequentially from {ej(ξ)}Mj=0 using the
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Gram Schmidt algorithm

Φ0(ξ) = 1,

Φj(ξ) = ej(ξ)−
j−1∑
k=0

cjkΦk(ξ) for 1 ≤ j ≤M, (7)

where the coefficients cjk are given by

cjk =
〈ej(ξ),Φk(ξ)〉
〈Φk(ξ),Φk(ξ)〉

(8)

and the innerproduct is taken with respect to the pdf ρ(ξ). Note, that in the multidimensional
case the basis is not unique, it is dependent on the order of the set of polynomials {ej} of a
specific degree.

3.2.2 Computation of the new collocation points

The new set of collocation points is computed as the solution of the system of equations
given by the new orthogonal polynomials of a specific degree m. Consider again the example
in Section 3.1. We first generate the multidimensional orthogonal polynomials of degree 2
with respect to the normal distribution given by (6). To do that, the following set of linearly
independent polynomials of degree 2 is used{

ξ2
1 , ξ1ξ2, ξ

2
2

}
. (9)

In general, the dimension of this sets M̃m = (n+m−1)!
(n−1)!m!

. For simplicity monic polynomials
are used. Then the polynomials are build sequentially from (9) by applying Gram-Schmidt
orthogonalization. In this case the following polynomials of degree 2 are obtained:

Φ1(ξ1, ξ2) = ξ2
1 − 1,

Φ2(ξ1, ξ2) = ξ1ξ2 − 0.8ξ2
1 ,

Φ3(ξ1, ξ2) = ξ2
2 + 0.64ξ2

1 − 1.6ξ1ξ2 − 0.36. (10)

If the order of (9) is changed, different polynomials will be obtained and therefore different sets
of collocation points will also be derived. Specifically, we will have as many different sets of
collocation points for correlated inputs as orders in (9). For the example 6 = 3! different sets of
points are obtained, that is, the total number of combinations in (9). Figure 2 shows all possible
sets of points for this example. Appendix A shows all sets of points for polynomials of degree 3.

Remark 3.1 Note that we are extending the tensor product approach, so, the points are com-
puted by solving the system given by the polynomials that come from the monic polynomials
of one variable, Mm. In this example the points are computed by solving the system given by
Φ1 and Φ3 (M2 = 2). As we can see in Figure 2 some sets of nodes are equal, so from now on
we will just consider the sets of points given by: order a, order b, and order e.

4 DIFFERENCES BETWEEN SET OF NODES

In this section, the differences between sets of points will be studied. In particular, we will try
to find differences in: integration degree of exactness (DOE), integration error, and interpolation
error.
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Figure 2: Plots of the nodes with order a: {ξ2
1 , ξ1ξ2, ξ

2
2}, order b: {ξ2

1 , ξ
2
2 , ξ1ξ2, }, order c:

{ξ2
2 , ξ1ξ2, ξ

2
1}, order d: {ξ2

2 , ξ
1
2 , ξ1ξ2} order e: {ξ1ξ2, ξ

2
1 , ξ

2
2} and order f : {ξ1ξ2, ξ

2
2 , ξ

2
1}.

4.1 Integration degree of exactness

To check which set of points presents the highest degree of exactness, we will define first
the concept of Gaussian quadrature rules based on the tensor product which is an extension
of the unidimensional Gaussian quadrature rules. Also Theorem 4.2 and its proof follow the
well-known proof of the Gaussian integration method (see, e.g., [19]).

Definition 4.1 (n-dimensional tensor product quadrature rule). Given [a1, b1]× · · · × [an, bn] ⊆
Rn such that ai < bi ∀i ∈ {1, . . . , n}, a weight function ρ : [a1, b1] × · · · × [an, bn] −→ R+

0 ,
and N ∈ N, let α1, . . . ,αN ∈ [a1, b1] × · · · × [an, bn] be the zeros of the system of equations
given by the set of polynomials Φ1

m, . . . ,Φ
Mm
m , where Φi

m is the ith orthogonal polynomial of
degree m with respect to the inner product <· , ·>ρ and let h1, . . . ,hN be the corresponding
multivariate Lagrange basis polynomials [17], then the quadrature rule

Inm : Cn([a1, b1]× · · · × [an, bn]) −→ R, Inm(f) :=
N∑
j=1

ωjf(αj), (11)

where

ωj :=< hj,1 >ρ=

∫ b1

a1

· · ·
∫ bn

an

hj(ξ1, . . . , ξn)ρ(ξ1, . . . , ξn)dξ1 · · · dξn (12)

for each j ∈ {1, . . . , N} is called the mth order n-dimensional tensor product of the unidi-
mensional Gaussian quadrature rule with respect to ρ.

Theorem 4.2. Consider the situation of Definition 4.1. In particular, let Inm be an mth order
n-dimensional tensor product quadrature rule with respect to ρ, then Inm is exact for each
polynomial of degree d = 2m− 1 or less, that means:

< p,1 >ρ=
N∑
j=1

ωjp(αj) for each p ∈ P2m−1[ξ1, . . . , ξn] (13)

6



Maria Navarro, Jeroen Witteveen, and Joke Blom

we call d the degree of exactness of the quadrature rule.

Proof. Let p be a polynomial of degree 2m − 1 (or lower) in n variables, that means,
p ∈ P2m−1[ξ1, . . . , ξn]. By contruction (cf. Remark 4.1) the set of polynomials {Φi

m}ni=1 used
to compute the collocation points are triangular polynomials (see Theorem 5.3, Appendix B).
Applying the iterated pseudodivision, we can write p as:

bδnn · · · b
δ1
1 p = q1 ·Φn

m + · · ·+ qn ·Φ1
m + r (14)

Then the relation Φi
m(αj) = 0, with i = {1, . . . , n} and j = {1, . . . , N}, implies:

p(αj) = r(αj) for each j ∈ {1, . . . , N} (15)

Applying Proposition 5.5 (see Appendix B) gives N ≥ Tnt(r), so we have enough points
to build the Lagrange multivariate interpolation polynomial of the final reminder r:

r(ξ1, . . . , ξn) =
N∑
j=1

r(αj)rj(ξ1, . . . , ξn). (16)

This allows to compute the integral of p as follows:∫ b1

a1

· · ·
∫ bn

an

p(ξ1, . . . , ξn)ρ(ξ1, . . . , ξn)dξ1 · · · dξn =

=

∫ b1

a1

· · ·
∫ bn

an

q1(ξ1, . . . , ξn)Φn
m(ξ1, . . . , ξn)ρ(ξ1, . . . , ξn)dξ1 · · · dξn + . . .+

+

∫ b1

a1

· · ·
∫ bn

an

qn(ξ1, . . . , ξn)Φ1
m(ξ1, . . . , ξn)ρ(ξ1, . . . , ξn)dξ1 · · · dξn + . . .+

+

∫ b1

a1

· · ·
∫ bn

an

r(ξ1, . . . , ξn)ρ(ξ1, . . . , ξn)dξ1 · · · dξn =

=

∫ b1

a1

· · ·
∫ bn

an

r(ξ1, . . . , ξn)ρ(ξ1, . . . , ξn)dξ1 · · · dξn

because of the orthogonality property and

=

∫ b1

a1

· · ·
∫ bn

an

r(ξ1, . . . , ξn)ρ(ξ1, . . . , ξn)dξ1 · · · dξn =

=

∫ b1

a1

· · ·
∫ bn

an

N∑
j=1

r(αj)hj(ξ1, . . . , ξn)ρ(ξ1, . . . , ξn)dξ1 · · · dξn =

=
N∑
j=1

r(αj)

∫ b1

a1

· · ·
∫ bn

an

hj(ξ1, . . . , ξn)ρ(ξ1, . . . , ξn)dξ1 · · · dξn =

=
N∑
j=1

ωjr(αj) =
N∑
j=1

ωjp(αj).
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4.2 Integration error

We have proved in the previous section that there is no difference between the sets in terms
of integration DOE. Let us study now the integration error, EI, the error in approximating the
integral by the quadrature rule. In particular, we will study EId, that is, the error associated to
the first non exact integral whose degree of exactness is d, it is given by:

EId(f) =

∫
Ω

f(ξ)ρ(ξ)dξ − Ind(f). (17)

4.2.1 2 dimensions integration error comparison

In order to compare EId between different sets of nodes, we follow this procedure. First,
the integral of a general polynomial is computed; second, that integral is approximated by
quadrature rules using different sets of nodes; and finally the error of integration is computed by
Equation (17). Let us assume we are under the hypothesis of the example in Section 3, therefore
we have computed the set collocation points for degree of exactness d = 3 (d = 2m − 1 with
m = 2). Consider the following polynomial of degree 4 (the next order after exactness).

f(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8x

2y + a9xy
2 + a10y

3 +

+ a11x
4 + a12x

3y + a13x
2y2 + a14xy

3 + a15y
4.

After computing the errors with Equation (17), we obtain these results:

EIa3 (f) = 2a11 + 1.6a12 + 1.28a13 + 1.024a14 + 1.0784a15,

EIb3(f) = 2a11 + 1.6a12 + 1.28a13 + 1.6a14 + 2a15,

EIe3(f) = −5.10128a11 − 5.68814a12 − 5.83043a13 − 5.68828a14 − 5.11058a15

where the upper indices a, b, e account for the order in the set of points (see Figure 2). It turns
out that the only important coefficients to measure the error are the ones which correspond to
the highest degree in the polynomial. Finally, without a deeper analysis, we can only say that
when a11, a12, a13, a14, a15 are all of equal sign the errors satisfy:

|EIa3 (f)| ≤ |EIb3(f)| ≤ |EIe3(f)| (18)

4.3 Interpolation error

As we have different sets of points, we also have different Lagrange interpolating polynomi-
als as approximations of the function of interest. Throughout this section we will focus on the
study of the interpolation error, that we defined as follows:

EL2(f) =

∫
Ω

(f(ξ)− p(ξ))2ρ(ξ)dξ (19)

where p is the Lagrange interpolating polynomial

8
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4.4 2 dimensions interpolation error comparison

We compute the interpolation error for the set of points in Figure 2 orders a, b, e and as weight
function the normal distribution given in Equation (6). We consider a general polynomial of
degree 2:

f(x, y) = ax2 + by2 + cxy + dx+ ey + f (20)

The Lagrange interpolating polynomials for the three set of points are:

pa(x, y) = a− 0.28b+ f + dx+ ey + (1.6b+ c)xy,

pb(x, y) = a+ b+ f + dx+ ey + cxy,

pe(x, y) = 0.219489a+ 0.219509b+ f + dx+ ey + (0.975595a+ 0.975613b+ 0.999996c)xy,

Applying Equation (19) gives the L2 interpolating error:

Ea
L2

(a, b) = 2a2 − 2.56ab+ 1.0784b2,

Eb
L2

(a, b) = 2a2 + 2.56ab+ 2b2,

Ee
L2

(a, b) = 0.439024a2 − 0.561951ab+ 0.439024b2,

The minimum of all the errors is (0,0) (computed analytically). Figure 3 shows the behavior
of the error. As we can see, order e, which was the order with highest integration error, is the
order with the smallest interpolation error. On the other hand, order a and order b are similar,
but it is possible to appreciate a slight difference between them in favor of order a.

4.5 Optimal set of points

In this section we will check the convergence of the sets of points when the correlation is
increased. We know in advance the optimal points for the extreme cases. For uncorrelated
inputs the optimal set of points is the set that comes from the tensor product approach and for
fully correlated inputs the one that comes from the unidimensional Gaussian quadrature points.
Thus, it is reasonable to think that optimal points for correlation ρ ∈ [0, 1] should converge to
these limiting cases. Figure 4 give us an idea about how the behavior of the points is when
the correlation is increased. The plot shows that the set of points computed with order a is the
optimal set of points. Optimal in the sense that when the problem is fully correlated the four
points are on the fully correlated line, and when the problem is uncorrelated the four points are
equal to the tensor product approach points.

5 CONCLUSIONS

In this paper we have shown how to compute new sets of points for Stochastic Collocation
for correlated inputs. As the points were not unique in the multidimensional case, we have
also performed an analytical comparison between sets of points in terms of integration degree
of accuracy, integration error, interpolation error and convergence. We can conclude that: i)
analytically it is possible to prove that all sets have the same integration degree of exactness;
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Figure 3: Interpolation error with order a, order b, and order e.
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Figure 4: Convergence of the set of points when the correlation is increased.
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ii) the sets differ in terms of integration and interpolation errors, specifically the set with the
smallest integration error presents the highest interpolation error and vice versa; iii) one of the
set of points is optimal in the sense that in the limit to full and no correlation its points are equal
to the known optimal ones.
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APPENDIX A

In this Appendix we plot the sets of collocation points for a polynomial of degree 3. To gen-
erate the polynomials of degree 3, we use this set of linearly independent monic polynomials:
{ξ3

1 , ξ
3
2 , ξ

2
1ξ2ξ1ξ

2
2}. The number of combinations is 4!, meaning, 24 different sets of collocation

points. The results are presented in four groups, where Figure 5 is the group whose first element
in each order is always ξ3

1 , Figure 6 is the one with ξ3
2 , and Figure 7 and Figure 8 with ξ2

1ξ2 and
ξ1ξ

2
2 respectively.
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APPENDIX B

In this section we define and prove some technicalities that are neccesary to prove Theorem
4.2. We will start introducing the concept of pseudodivision. Note that proof of Theorem 5.1
and Theorem 5.2 are based on references [24, 4].

Theorem 5.1. Let p(x) and Φ(x) 6= 0 be two polynomials in P [x] of respective degrees n and
m:

p(x) = bmx
m + · · ·+ b0,

Φ(x) = anx
n + · · ·+ a0.

Let δ = max(m− n+ 1, 0). Then there exist polynomials q(x) and r(x) in P [x] such that

aδnp(x) = q(x)Φ(x) + r(x) and deg(r) < deg(Φ). (21)

Moreover, if an is not a zero divisor, then q(x) and r(x) are unique.

Proof.
We can show the existence of the polynomials q(x) and r(x) by induction on m:

• m < n

Take q(x) = 0 and r(x) = Φ(x).

• m ≥ n

The polynomial
p̂(x) = an · p(x)− bmxm−n · Φ(x)

has degree at most (m− 1).

If we pseudodivide p̂(x) by Φ(x), then by the inductive hypothesis, there exist polynomials
q̂(x) and r̂(x) such that:

am−nn

(
an · p(x)− bmxm−n · Φ(x)

)
= q̂(x) · Φ(x) + r̂(x) and deg(r̂) < deg(Φ).

If we leave just p(x) in the lhs:

am−nn · an · p(x) = am−nn bmx
m−n · Φ(x) + q̂(x) · Φ(x) + r̂(x)

13
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Taking q(x) = am−nn bmx
m−n + q̂(x) and r(x) = r̂(x),

aδnp(x) = q(x)Φ(x) + r(x) and deg(r) < deg(Φ).

Proof of Uniqueness:
Suppose that there are q(x), q̂(x), r(x) and q̂(r) verifying q(x) − q̂(x) 6= 0, r(x) − r̂(x) 6= 0
and such that:

aδnp(x) = q(x) · Φ(x) + r(x) and deg(r) < deg(Φ)

aδnp(x) = q̂(x) · Φ(x) + r̂(x) and deg(r̂) < deg(Φ)

then 0 = (q(x)− q̂(x))Φ + (r(x)− r̂(x)), since an 6= 0, then [q(x)− q̂(x)]Φ(x) 6= 0 and has
degree at least n and degree deg(r − r̂) < deg(Φ) = n. However, this is impossible since

(q(x)− q̂(x))f(x) = r̂(x)− r(x). (22)

Thus q(x)− q̂(x) = 0 = r̂(x)− r(x).

Theoreme 5.1 allows us to define the concept of pseudodivision.

Definition 5.2 (Pseudodivision). For any two polynomials p(x) and Φ(x) 6= 0 in P [x], we will
call polynomials q(x) and r(x) in P [x] the pseudoquotient and the pseudoremainder, respec-
tively, of p(x) with respect to Φ(x), denoted pquo(p,Φ) and prem(p,Φ) if

aδnp(x) = q(x)Φ(x) + r(x) and deg(r) < n (23)

where m = deg(p), n = deg(Φ), bn = lcoef(Φ) the leading coefficient of Φ(x) and δ =
max(m − n + 1, 0). Also, if p = prem(p,Φ), then p(x) is said to be reduced with respect to
Φ(x).

The notion of pseudodivision can be generalized to polynomials in more than one variable.
Given two nonzero polynomials Φ(x1) ∈ P [x1] and p(x1, . . . , xn) ∈ P [x1, . . . , xn], it is possi-
ble to find two polynomials q(x1, . . . , xn) pseudoquotient and r(x1, . . . , xn) pseudoremainder
such that

bδnp(x1, . . . , xn) = q(x1, . . . , xn) · Φ(x1) + r(x1, . . . , xn), and degx1(r) < deg(Φ),

where bn = lcoef(Φ) and δ = max(degx1(p) − deg(Φ) + 1, 0). To make clear that the
pseudodivision is performed with respect to the variable x1, we will write

q(x1, . . . , xn) = pquo(p,Φ, x1) and r(x1, . . . , xn) = prem(p,Φ, x1).

Theorem 5.3 (Iterated Pseudodivision). Consider the following succession of triangular poly-
nomials:

Φ1(u1, . . . , ud, x1)
Φ2(u1, . . . , ud, x1, x2)

...
Φn(u1, . . . , ud, x1, . . . , xn)

(24)

and polynomial p(u1, . . . , ud, x1, . . . , xn) all in the ring P [u1, . . . , ud, x1, . . . , xn]. Let the
following sequence of polynomials be obtained by iterated pseudodivisions:

14
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rn = p

rn−1 = prem(rn,Φn, xn)

rn−2 = prem(rn−1,Φn−1, xn−1)
...

r0 = prem(r1,Φ1, x1).

The polynomial r0 ∈ P [u1, . . . , ud, x1, . . . , xn] is said to be the generalized pseudoremainder
of p with respect to Φ1, . . . ,Φn and denoted

r0 = prem
(
p, {Φn, . . . ,Φ1}

)
. (25)

We also say p is reduced with respect to Φ1, . . . ,Φn if

p = prem
(
p, {Φn, . . . ,Φ1}

)
. (26)

Furthermore, there are non-negative integers δ1, . . ., δn and polynomials q1, . . . , qn such
that

i) bδnn · · · b
δ1
1 p = q1 ·Φn + · · ·+ qn ·Φ1 + r0

where b1 = lcoef(Φ1) ∈ P [u1, . . . , ud],
...

bn = lcoef(Φn) ∈ P [u1, . . . , ud, x1, . . . , xn−1].

ii) degxi(r0) < degxi(Φi), for i = 1, . . . , n.

Proof. The proof is by induction on r and by repeated applications of the pseudodivision
theorem given in the beginning of the section.

Lemma 5.4. Let p be a complete polynomial of degree m in n variables, p ∈ Pm[x1, . . . , xn],
then:

i) The number of terms in the polynomial p with degree s ∈ N, 0 ≤ s ≤ m, nts(p), is given
by:

nts(p) =

(
s+ n− 1

n− 1

)
(27)

ii) The total number of terms in the polynomial p, Tnt(p), is given by:

Tnt(p) =

(
m+ n

n

)
(28)

iii) The number of terms in the polynomial p where a specific variable, xi has an specific
degree s ∈ N with 0 ≤ s ≤ m, ntxis (p), is given by:

ntxis (p) =

(
(m− s) + (n− 1)

n− 1

)
(29)

In other words, ntxis (p) is the number of times that the variable xsi appears in p

15
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Proof.

i) A general term of degree s of the polynomial p can be expressed as

n∏
i=1

xeii such that
n∑
i=1

ei = s. (30)

To find the number of terms that verifies Equation 30 is equal to find the number of solutions of
the equation e1 + . . .+ en = s, where ei is a non-negative integers for each i ∈ {1, . . . , n}. To
find the solution of that equation we apply a technique popularly known as “stars and bars” [ref].
The idea behind this method is, essentially, if there are s indistinguishable objects to be divided
into n distinguishable groups, then there are Cs+n−1,n−1 ways of distributing the objects. We
assume the objects are “stars” in our problem the exponents and the groups are the “bars” in
our problem the variables. Since 1 bar divides into 2 groups, 2 bars into 3 groups, and so on,
the number of bars will be n − 1 and therefore the number of the solution for the equation is
Cs+n−1,n−1 =

(
s+n−1
n−1

)
.

ii) As we know the number of terms of a specific degree we compute the sum of all them:

Tntp =

(
0 + n− 1

n− 1

)
+

(
1 + n− 1

n− 1

)
+ . . .+

(
m+ n− 1

n− 1

)
=

m+n−1∑
j=n−1

(
j

n− 1

)

By applying the Hockeystick Identity:
∑m

j=n

(
j
n

)
=
(
m+1
n+1

)
, we obtain:

Tnt(p) =
m+n−1∑
j=n−1

(
j

n− 1

)
=

(
m+ n

n

)
iii) We use again the “stars and bars” technique, where the exponents are the “stars” and the

variables the “bars”. As we know that one variable has fixed degree equals s, then we have
m− s “stars” and n− 2 “bars” and the number C(m−s)+(n−2),n−2 gives us the number of terms
of degree m where the fixed variable has degree s. To compute all terms that contains that fixed
variable we have to sum everything

ntxis (p) =

(
(m− s) + n− 2

n− 2

)
+

(
(m− s)− 1 + n− 2

n− 2

)
+. . .+

(
0 + n− 2

n− 2

)
=

(m−s)+(n−2)∑
j=n−2

(
j

n− 2

)
By applying the Hockeystick Identity, we obtain:

ntxis (p) =

(m−s)+(n−2)∑
j=n−2

(
j

n− 2

)
=

(
(m− s) + (n− 1)

n− 1

)

Proposition 5.5. Let p be a polynomial in the ringP2m−1[x1, . . . , xn] withm ∈ N and Φ1, . . . ,Φm,
such that: Φ1(x1, . . . , xn) = Φm

1 (x1),Φ2(x1, . . . , xn) = Φm
2 (x1, x2), . . . ,Φm(x1, . . . , xn) =

Φm
m(x1, . . . , xn), a succession of triangular polynomials in the ring Pm[x1, . . . , xn], where each

triangular polynomial has only one terms of degree m, then:
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i) the generalized pseudoremainder of pwith respect to Φm
1 , . . . ,Φmm, r0 = prem

(
p, {Φm, . . . ,Φ1}

)
,

has at least
(

(2m−1)+n
n

)
− n

(
n+m−1
n−1

)
number of terms.

ii) The non-linear system of equation formed by the set of orthogonal triangular polynomials
has at least N = mn real and different solutions.

iii) N ≥ Tnt(r0).

Proof.

i) Analogously to the proof of Lemma 5.4.
ii) Because of the orthogonality of the polynomials. It is known that unidimensional orthogo-

nal polynomials of degree d always have d real roots. Given that, the system of linear equations
is triangular, the first equation always will have all its roots because it will correspond to a uni-
dimensional orthogonal polynomial. If we replace the roots into the second equation, we will be
able to compute all the roots. After substituting the polynomial is a unidimensional orthogonal
polynomial again.

iii) Analogously to the proof of Lemma 5.4.
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