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ABSTRACT
Experimental studies have observed synaptic potentiation when a presynaptic neuron fires
shortly before a postsynaptic neuron, and synaptic depression when the presynaptic neuron
fires shortly after. The dependence of synaptic modulation on the precise timing of the two
action potentials is known as spike-timing dependent plasticity or STDP. We derive STDP from
a simple computational principle: synapses adapt so as to minimize the postsynaptic neuron's
variability to a given presynaptic input, causing the neuron's output to become more reliable in
the face of noise. Using an entropy-minimization objective function and the biophysically
realistic spike-response model of Gerstner (2001), we simulate neurophysiological experiments
and obtain the characteristic STDP curve along with other phenomena including the reduction in
synaptic plasticity as synaptic efficacy increases. We compare our account to other efforts to
derive STDP from computational principles, and argue that our account provides the most
comprehensive coverage of the phenomena. Thus, reliability of neural response in the face of
noise may be a key goal of unsupervised cortical adaptation.
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of synaptic modulation on the precise timing of the two action potentials is known as spike-timing dependent

plasticity or STDP. We derive STDP from a simple computational principle: synapses adapt so as to minimize

the postsynaptic neuron’s variability to a given presynaptic input, causing the neuron’s output to become
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realistic spike-response model of Gerstner (2001), we simulate neurophysiological experiments and obtain the
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1. Introduction

Experimental studies have observed synaptic potentiation when a presynaptic neuron fires shortly
before a postsynaptic neuron, and synaptic depression when the presynaptic neuron fires shortly after
(Markram, Lübke, Frotscher, & Sakmann, 1997; Bel1, Han, Sugawara, & Grant, 1997; Zhang, Tao,
Holt, Harris, & Poo, 1998; G.-q. Bi & Poo, 1998; Debanne, Gähwiler, & Thompson, 1998; Feldman,
2000; Sjöström, Turrigiano, & Nelson, 2001; Nishiyama, Hong, Mikoshiba, Poo, & Kato, 2000). The
dependence of synaptic modulation on the precise timing of the two action potentials, known as spike-
timing dependent plasticity or STDP, is depicted in Figure 1. Typically, plasticity is observed only
when the presynaptic and postsynaptic spikes occur within a 20–30 ms time window, and the transition
from potentiation to depression is very rapid. The effects are long lasting, and are therefore referred
to as long-term potentiation (LTP) and depression (LTD). An important observation is that the
relative magnitude of the LTP component of STDP decreases with increased synaptic efficacy between
presynaptic and postsynaptic neuron, whereas the magnitude of LTD remains roughly constant (G.-q.
Bi & Poo, 1998). This finding has led to the suggestion that the LTP component of STDP might
best be modeled as additive, whereas the LTD component is better modeled as being multiplicative

∗This paper has been submitted for publication. This is a preprint, CWI Technical Report Number SEN E0505.
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Figure 1: (a) Measuring STDP experimentally: presynaptic and postsynaptic spike pairs are repeat-
edly induced at a fixed interval ∆tpre−post, and the resulting change to the strength of the synapse is
assessed; (b) change in synaptic strength after repeated spike pairing as a function of the difference
in time between the presynaptic and postsynaptic spikes: a presynaptic before postsynaptic spike
induces LTP, postsynaptic before presynaptic LTD (data redrawn from Zhang et al., 1998). We have
superimposed an exponential fit of LTP and LTD.

(Kepecs, van Rossum, Song, & Tegner, 2002). For detailed reviews of STDP, see (G.-q. Bi & Poo,
2001; Roberts & Bell, 2002; Dan & Poo, 2004).

Because these intriguing findings appear to describe a fundamental learning mechanism in the brain,
a flurry of models have been developed that focus on different aspects of STDP. A number of studies
focus on biochemical models that explain the underlying mechanisms giving rise to STDP: (Senn,
Markram, & Tsodyks, 2000; G.-Q. Bi, 2002; Karmarkar, Najarian, & Buonomano, 2002; Saudargiene,
Porr, & Wörgötter, 2004; Porr & Wörgötter, 2003). Many researchers have also focused on models
that explore the consequences of a STDP-like learning rules in an ensemble of spiking neurons, i.e.
(Gerstner, Kempter, van Hemmen, & Wagner, 1996; Kempter, Gerstner, & van Hemmen, 1999; Song,
Miller, & Abbott, 2000; van Rossum, Bi, & Turrigiano, 2000; Kempter, Gerstner, & van Hemmen,
2001; Izhikevich & Desai, 2003; Abbott & Gerstner, 2004; Burkitt, Meffin, & Grayden, 2004; Shon,
Rao, & Sejnowski, 2004; Legenstein, Naeger, & Maass, n.d.), a comprehensive review of the different
types and conclusions can be found in Porr and Wörgötter (2003). Finally, a recent trend is to propose
models that provide fundamental computational justifications for STDP. This article proposes a novel
justification and we explore the consequences of this justification in detail.

Most commonly, STDP is viewed as a type of asymmetric Hebbian learning with a temporal di-
mension. However, this perspective is hardly a fundamental computational rationale, and one would
hope that such an intuitively sensible learning rule would emerge from a first-principle computational
justification.

Several researchers have tried to derive a learning rule yielding STDP from first principles. Dayan
and Häusser (2004) show that STDP can be viewed as an optimal noise-removal filter for certain noise
distributions. However, even small variation from these noise distributions yield quite different learning
rules, and the noise statistics of biological neurons are unknown. Similarly, Porr and Wörgötter (2003)
propose an unsupervised learning rule based on the correlation of bandpass-filtered inputs with the
derivative of the output, and show that the weight change rule is qualitatively similar to STDP.

Hopfield and Brody (2004) derive learning rules that implement ongoing network self-repair. In
some circumstances, a qualitative similarity to STDP is found, but the shape of the learning rule
depends on both network architecture and task. Eisele (private communication) has shown that an
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STDP-like learning rule can be derived from the goal of maintaining the relevant connections in a
network.

Rao and Sejnowski (1999, 2001) suggest that STDP may be related to prediction, in particular
to temporal difference (TD) learning. They argue that STDP emerges when a neuron attempts to
predict its membrane potential at some time t from the potential at time t − ∆t. As Dayan (2002)
points out however, temporal difference learning depends on an estimate of the prediction error, which
will be very hard to obtain. Rather, a quantity that might be called an “activity difference” can be
computed, and the learning rule is then better characterized as a “correlational learning rule between
the stimuli, and the differences in successive outputs” (Dayan, 2002) (see also Porr and Wörgötter
(2003), Appendix B). Furthermore, Dayan argues that for true prediction, the model has to show that
the learning rule works for biologically realistic timescales. The qualitative nature of the modeling
makes it unclear whether a quantitative fit can be obtained. Lastly, the derived difference rule is
inherently instable, as it does not impose any bounds on synaptic efficacies; also, STDP emerges only
for a narrow range of ∆t values.

Chechik (2003) relates STDP to information theory via maximization of mutual information between
input and output spike trains. This approach derives the LTP portion of STDP, but fails to yield the
LTD portion. Nonetheless, an information-theoretic approach is quite elegant and has proven valuable
in explaining other neural learning phenomena (e.g., Linsker, 1989).

The account we describe in this paper also exploits an information-theoretic approach. We are
not the only ones to appreciate the elegance of information-theoretic accounts. In parallel with a
preliminary presentation of our work at the NIPS 2004 conference, two quite similar information-
theoretic accounts also appeared (Bell & Parra, 2005; Toyoizumi, Pfister, Aihara, & Gerstner, 2005).
It will be easiest to explain the relationship of these accounts to our own once we have presented ours.

The computational approaches of Chechik, Dayan & Häusser, and Porr & Wörgötter are all premised
on a rate-based neuron model that disregards the relative timing of spikes. It seems quite odd to argue
for STDP using neural firing rate: if spike timing is irrelevant to information transmission, then STDP
is likely an artifact and is not central to understanding mechanisms of neural computation. Further,
as in Dayan and Häusser (2004) note, because STDP is not quite additive in the case of multiple input
or output spikes that are near in time (Froemke & Dan, 2002), one should consider interpretations
that are based on individual spikes, not aggregates over spike trains.

In this paper, we present an alternative theoretical motivation for STDP from a spike-based neuron
model that takes the specific times of spikes into account. We conjecture that a fundamental objective
of cortical computation is to achieve reliable neural responses, that is, neurons should produce the
identical response—both in the number and timing of spikes—given a fixed input spike train. Reliabil-
ity is an issue if neurons are affected by noise influences, because noise leads to variability in a neuron’s
dynamics and therefore in its response. Minimizing this variability will reduce the effect of noise and
will therefore increase the informativeness of the neuron’s output signal. The source of the noise is
not important; it could be intrinsic to a neuron (e.g., a time-varying threshold) or it could originate
in unmodeled external sources that cause fluctuations in the membrane potential uncorrelated with a
particular input.

We are not suggesting that increasing neural reliability is the only objective of learning. If it were,
a neuron would do well to shut off and give no response regardless of the input. Rather, reliability is
but one of many objectives that learning tries to achieve. This form of unsupervised learning must, of
course, be complemented by supervised and reinforcement learning objectives that allow an organism
to achieve its goals and satisfy drives.

We derive STDP from the following computational principle: synapses adapt so as to minimize
the entropy of the postsynaptic neuron’s output in response to a given presynaptic input. In our
simulations, we follow the methodology of neurophysiological experiments. This approach leads to a
detailed fit to key experimental results. We model not only the shape (sign and time course) of the
STDP curve, but also the fact that potentiation of a synapse depends on the efficacy of the synapse—it
decreases with increased efficacy. In addition to fitting these key STDP phenomena, the model allows
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us to make predictions regarding the relationship between properties of the neuron and the shape of
the STDP curve. The detailed quantitative fit to data makes our work unique among first-principle
computational accounts.

Before delving into the details of our approach, we attempt to give a basic intuition about the
approach. Noise in spiking neuron dynamics leads to variability in the number and timing of spikes.
Given a particular input, one spike train might be more likely than others, but the output is nonde-
terministic. By the entropy-minimization principle, adaptation should reduce the likelihood of these
other possibilities. To be concrete, consider a particular experimental paradigm. In Zhang et al.
(1998), a presynaptic neuron is identified with a weak synapse to a post neuron, such that this presy-
naptic input is unlikely to cause the postsynaptic neuron to fire. However, the postsynaptic neuron
can be induced to fire via a second presynaptic connection. In a typical trial, the presynaptic neuron
is induced to fire a single spike, and with a variable delay, the postsynaptic neuron is also induced to
fire (typically) a single spike. To increase the likelihood of the observed postsynaptic response other
response possibilities must be suppressed.

With presynaptic input preceding the postsynaptic spike, the most likely alternative response is no
output spikes at all. Increasing the synaptic connection weight should then reduce the possibility of
this alternative response. With presynaptic input following the postsynaptic spike, the most likely
alternative response is a second output spike. Decreasing the synaptic connection weight should reduce
the possibility of this alternative response. Because both of these alternatives become less likely as
the lag between pre and post spikes is increased, one would expect that the magnitude of synaptic
plasticity diminishes with the lag, as is observed in the STDP curve.

Our approach to reducing response variability given a particular input pattern involves computing
the gradient of synaptic weights with respect to a differentiable model of spiking neuron behavior.
We use the Spike Response Model (SRM) of Gerstner (2001) with a stochastic threshold, where
the stochastic threshold models fluctuations of the membrane potential or the threshold outside of
experimental control. For the stochastic SRM, the response probability is differentiable with respect
to the synaptic weights, allowing us to calculate the entropy gradient with respect to the weights.
Learning is presumed to take a gradient step to reduce the entropy. In modeling neurophysiological
experiments, we demonstrate that this learning rule yields the typical STDP curve. We can predict the
relationship between the exact shape of the STDP curve and physiologically measurable parameters,
and we show that our results are robust to the choice of the few free parameters of the model.

In parallel with our work, two other groups of authors have proposed explanations of STDP in
terms of neurons maximizing an information-theoretic measure—in their case, the mutual information
between input and output spike trains—for the Spike-Response Model (Bell & Parra, 2005; Toyoizumi
et al., 2005). Toyoizumi et al. (2005) maximize mutual information the input and output between a
pool of presynaptic neurons and a single postsynaptic output neuron whereas Bell and Parra (2005)
maximize information between a pool of (possibly correlated) presynaptic neurons and a pool of
postsynaptic neurons. Bell and Parra (2005) use a deterministic SRM model and do not obtain the
LTD component of STDP. As we will show, obtaining LTD critically depends on a stochastic neural
response. In the derivation of Toyoizumi et al. (2005), LTD is attributed to the refractoriness of the
spiking neuron, where they use questionably strong and enduring refractoriness. In our framework,
refractoriness suppresses noise in the neuron after spiking, and we show that in our simulations strong
refraction in fact diminishes the LTD component of STDP.

Furthermore, the mathematical derivation of Toyoizumi et al. (2005) is valid only for an essentially
constant membrane potential with small fluctuations, a condition which is clearly violated in exper-
imental conditions studied by neurophysiologists. It is unclear whether the derivation would hold
under more realistic conditions.

Neither of these approaches thus far succeeds in quantitatively modeling specific experimental data
with neurobiologically-realistic timing parameters, and neither explains the relative reduction of STDP
as the synaptic efficacy increases as we do. Nonetheless, these models make an interesting contrast to
ours by suggesting a computational principle of optimization of information transmission, as contrasted
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Figure 2: Membrane potential u(t) of a neuron as a sum of weighted excitatory PSP kernels due to
impinging spikes. Arrival of PSP’s marked by arrows; once the membrane potential reaches threshold
it is reset and a reset function η is added to model the recovery effects of the threshold.

with our principle of neural noise reduction. Experimental tests might be devised to distinguish
between these competing theories.

In Section 2 we describe the sSRM, and in Section 3 we derive the minimal entropy gradient. In
Section 4 we describe the STDP experiment which we simulate in Section 5. We conclude with Section
6.

2. The Stochastic Spike Response Model

The Spike Response Model (SRM), defined by Gerstner (2001), is a generic integrate-and-fire model
of a spiking neuron that closely corresponds to the behavior of a biological spiking neuron and is
characterized in terms of a small set of easily interpretable parameters (Jolivet, Lewis, & Gerstner,
2003; Paninski, Pillow, & Simoncelli, 2005). The standard SRM formulation describes the temporal
evolution of the membrane potential based on past neuronal events, specifically as a weighted sum
of postsynaptic potentials (PSP’s) modulated by reset and threshold effects of previous postsynaptic
spiking events. The general idea is depicted in Figure 2; formally (following Gerstner, 2001), the
membrane potential ui(t) of cell i at time t is defined as:

ui(t) =
∑

fi∈Gt
i

η(t − fi) +
∑

j∈Γi

wij

∑

fj∈Gt
j

ε(t|fj ,G
t
i ), (2.1)

where Γi is the set of inputs connected to neuron i, Gt
i is the set of times prior to t that a neuron i has

spiked, with firing times fi ∈ Gt
i ; wij is the synaptic weight from neuron j to neuron i, ε(t|fj ,G

t
i ) is

the PSP in neuron i due to an input spike from neuron j at time fj given postsynaptic firing history
Gt

i , and η(t − fi) is the refractory response due to the postsynaptic spike at time fi.
To model the postsynaptic potential ε in a leaky-integrate-and-fire neuron, a spike of presynaptic

neuron j emitted at time fj generates a postsynaptic current α(t) for a presynaptic spike arriving at
fj for t > fj . In the absence of postsynaptic firing this kernel (following Gerstner and Kistler (2002),
Eqs (4.62)–(4.56), pp. 114–115) can be computed as:
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ε(t|fj) =

∫ t

fj

exp
(

−
s − fj

τm

)

α(s − fj) ds, (2.2)

where τm is the decay time of the postsynaptic neuron’s membrane potential. Consider an exponen-
tially decaying postsynaptic current α(t) of the form

α(t) =
1

τs

exp
(

−
t

τs

)

H(t), (2.3)

(Figure 3a), where τs is the decay time of the current and H(t) is the Heaviside function. In the
absence of postsynaptic firing, this current contributes a postsynaptic potential of the form

ε(t|fj) =
1

1 − τs/τm

[

exp
(

−
(t − fj)

τm

)

− exp
(

−
(t − fj)

τs

) ]

H(t − fj), (2.4)

with current decay time-constant τs and decay time-constant τm.
When the postsynaptic neuron fires after the presynaptic spike arrives— at some time f̂i following

presynaptic spike at time fj— the membrane potential is reset, and only the remaining synaptic

current α(t′) for t′ > f̂i is integrated in Equation (2.2). Following Gerstner, 2001 (Section 4.4,
Equation 1.66), the PSP that takes such postsynaptic firing into account can be written as

ε(t|fj , f̂i) =

{

ε(t|fj) f̂i < fj ,

exp
(

−
(fj−f̂i)

τs

)

ε(t|fj) f̂i > fj .
(2.5)

This function is depicted in Figure 3b, for the cases when a postsynaptic spike occurs both before and
after the presynaptic spike. In principle, this formulation can be expanded to include the postsynaptic
neuron firing more than once after the onset of the postsynaptic potential. However, for fast current
decay times τs, it is only useful to consider the residual current input for the first postsynaptic spike
after onset and assume that any further postsynaptic spiking is modeled by a postsynaptic potential
reset to zero from that point on.

The reset response η(t) models two phenomena. First, a neuron can be in a refractory period: it
simply cannot spike again for about a millisecond after a spiking event. Second, after the emission of
a spike, the threshold of the neuron may initially be elevated and then recover to the original value
(Kandel, Schwartz, & Jessell, 2000). The SRM models this behavior as negative contributions to the

membrane potential (Equation 2.1): with s = t − f̂i denoting the time since the postsynaptic spike,
the refractory reset function is defined as (Gerstner, 2001):

η(s) =

{

Uabs 0 < s < δr

Uabs exp
(

− s+δr

τ
f
r

)

+ Ur exp
(

− s
τs

r

)

s ≥ δr,
(2.6)

where a large negative impulse Uabs models the absolute refractory period, with duration δr; the
absolute refractory contribution smoothly resets via a fast decaying exponential with time constant
τf
r . The term Ur models the slow exponential recovery of the elevated threshold with time constant

τs
r . The function η is depicted in Figure 3c.
We made a minor modification to the SRM described in (Gerstner, 2001) by relaxing the constraint

that τ s
r = τm, and also by smoothing the absolute refractory function (such smoothing is mentioned

in Gerstner (2001) but is not explicitly defined). In all simulations, we use δr = 1ms, τ s
r = 3ms, and

τf
r = 0.25 ms (in line with estimates for biological neurones, Kandel et al. (2000), the smoothing

parameter was chosen to be fast compared to τ s
r ).

The SRM we just described is deterministic. Gerstner (2001) introduces a stochastic variant of the
SRM (sSRM) by incorporating the notion of a stochastic firing threshold: given membrane potential
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Figure 3: (a) α(t) function: synaptic input modeled as exponentially decaying current. (b) Postsy-
naptic potential due to a synaptic input in the absence of postsynaptic firing (solid line), and with
postsynaptic firing once and twice (dotted respectively dashed lines, postsynaptic spikes indicated by
arrow) (c) reset function η(t), (d) spike probability ρ(u) as a function of potential u for different values
of α and β parameters.
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ui(t), the probability of the neuron firing at time t is specified by ρ
(

ui(t)
)

. Herrmann and Gerstner
(2001) find that for a reasonable escape-rate noise model of the integration of current in real neurons,
the probability of firing is small and constant for small potentials, but around a threshold ϑ, the
probability increases linearly with the potential. In our simulations, we use such a function:

ρ(v) =
β

α

{

ln[1 + exp
(

α (ϑ − v)
)

] − α (ϑ − v)
}

, (2.7)

where α determines the abruptness of the constant-to-linear transition in the neighborhood of thresh-
old ϑ, and β determines the slope of the linear increase beyond ϑ. This function is depicted in
Figure 3d for several values of α and β. We remark that we also conducted simulation experiments
with sigmoidal and exponential density functions, and found no qualitative difference in the results.

3. Minimizing Conditional Entropy

We now derive the rule for adjusting the weight from a presynaptic input neuron j to a postsynaptic
neuron i, so as to minimize the entropy of i’s response given a particular spike train from j.

A spike train is described by the set of all times at which a neuron i emitted spikes within some
interval between 0 and T , denoted GT

i . We assume the interval is wide enough that the occurrence
of spikes outside the interval do not influence the state of a neuron within the interval (e.g., through
threshold reset effects). This assumption allows us to treat intervals as independent of each other.
The set of input spikes received by neuron i during this interval is denoted FT

i , which is just the union
of all output spike trains of connected presynaptic neurons j: FT

i =
⋃

GT
j ∀j ∈ Γi.

Given input spikes FT
i , the stochastic nature of neuron i may lead not only to the observed response

GT
i , but a range of other possibilities. Denoting the set of possible responses Ωi, where GT

i ∈ Ωi.
Further, let binary variable σ(t) denote the state of the neuron in the time interval [t, t + ∆t), where
σ(t) = 1 means the neuron spikes and σ(t) = 0 means no spike. A response ξ ∈ Ωi is then equivalent
to [σ(0), σ(∆t), . . . , σ(T )].

Given a probability density g(ξ) over all possible responses ξ, the differential entropy of neuron i’s
response conditional upon input FT

i is then defined as:

h(Ωi|F
T
i ) = −

∫

Ωi

g(ξ) log
(

g(ξ)
)

dξ. (3.1)

According to our hypothesis, a neuron adjusts its weights so as to minimize the conditional dif-
ferential entropy. Such an adjustment is obtained by performing gradient descent on the conditional
entropy with respect to the weights:

∆wij ∝ −
∂h(Ωi|F

T
i )

∂wij

. (3.2)

In this section, we compute the right hand side of Equation (3.2) for an sSRM neuron. Substituting
the entropy definition of Equation (3.1) into Equation (3.2), we obtain:

∂h(Ωi|F
T
i )

∂wij

= −
∂

∂wij

∫

Ω

g(ξ) log(
(

g(ξ)
)

dξ

= −

∫

Ωi

g(ξ)
∂ log

(

g(ξ)
)

∂wij

(

log
(

g(ξ)
)

+ 1
)

dξ. (3.3)

We follow Xie and Seung (2004) to derive
∂ log

(

g(ξ)
)

∂wij
for a differentiable neuron model firing at times

GT
i . First, note that g(ξ) can be factorized:

g(ξ) =

T
∏

t=0

P (σ(t)|{σ(t′),∀t′ < t}), (3.4)
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because the states σ(t) are conditionally independent, and hence the factored probability
P (σ(t)|{σ(t′)}) in the limit for small ∆t is equivalent to the spike probability density of the membrane
potential, ρ

(

ui(t)
)

. (For brevity, we write ρi(t) as shorthand for ρ(ui(t))). Noting further that:

∂ ln(g(ξ))

∂wij

≡
1

g(ξ)

∂g(ξ)

∂wij

and

∂ρi(t)

∂wij

=
∂ρi(t)

∂ui(t)

∂ui(t)

∂wij

, (3.6)

it is straightforward to derive:

∂ log(g(ξ))

∂wij

=

∫ T

t=0

∂ρi(t)

∂ui(t)

∂ui(t)

∂wij

(

∑

fi∈FT
i

δ(t − fi) − ρi(t)
)

ρi(t)
dt,

= −

∫ T

t=0

ρ′i(t) ε(t|fj , fi)dt +
∑

fi∈FT
i

ρ′i(fi)

ρi(fi)
ε(fi|fj , fi), (3.7)

where ρ′i(t) ≡
∂ρi(t)
∂ui(t)

and δ(t − fi) is the Dirac delta, and we use that in the sSRM formulation,

∂ui(t)

∂wij

= ε(t|fj , fi).

The term ρ′i(t) in Equation (3.7) can be computed for any differentiable spike probability function.
In the case of Equation (2.7),

ρ′i(t) =
β

1 + exp(α(ϑ − ui(t))
.

Substituting our model for ρi(t), ρ
′
i(t) from Equation (2.7) into Equation (3.7), we obtain

∂ log(g(ξ))

∂wij

= −β

∫ T

t=0

ε(t|fj , fi)

1 + exp[α(ϑ − ui(t))]
dt+ (3.8)

+
∑

fi∈GT
i

ε(fi|fj , fi)

α
{

ln
(

1 + exp[α (ϑ − ui(fi))]
)

− α (ϑ − ui(fi))
}

(1 + exp[α(ϑ − ui(fi))])
.

Equation (3.8) can be substituted into Equation (3.3), which when integrated provides the gradient-
descent weight update that implements conditional entropy minimization (Equation (3.2)).

The hypothesis under exploration is that this gradient-descent weight update yields STDP. Unfor-
tunately, an analytic solution to Equation (3.3) (and hence Equation (3.2)) is not readily obtained.
Nonetheless, numerical methods can be used to obtain a solution.

We are not suggesting a neuron performs numerical integration of this sort in real time. It would
be preposterous to claim biological realism for an instantaneous integration over all possible responses
ξ ∈ Ωi, as specified by Equation (3.3). Consequently, we have a dilemma: What use is a computational
theory of STDP if the theory demands intensive computations that could not possibly be performed
by a neuron in real time? This dilemma can be circumvented in two ways. First, the resulting learning
rule might be cached in some form through evolution so that the computation is not necessary. That is,
the solution—the STDP curve itself—may be built into a neuron. As such, our computational theory
provides an argument for why neurons have evolved to implement the STDP learning rule. Second,
the specific response produced by a neuron on a single trial might be considered to be a sample from
the distribution g(ξ), and the integration in Equation (3.3) can be performed by a sampling process
over repeated trials; each trial would produce a stochastic gradient step.
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3.1 Numerical Computation
In this section, we describe the procedure for numerically evaluating Equation (3.2) via Simpson’s
integration (Hennion, 1962).

This integration is performed over the set of possible responses Ωi (Equation (3.3)) within the time
interval [0 . . . T ]. The set Ωi can be divided into disjoint subsets Ωn

i which contain exactly n spikes:
Ωi =

⋃

Ωn
i ∀n.

Using this breakdown,

∂h(Ωi|F
T
i )

∂wij

= −

∫

Ωi

g(ξ)
(

log
(

g(ξ)
)

+ 1
)∂ log

(

g(ξ)
)

∂wij

dξ,

= −

n=∞
∑

n=0

∫

Ωn
i

g(ξ)
(

log
(

g(ξ)
)

+ 1
)∂ log

(

g(ξ)
)

∂wij

dξ. (3.10)

In the experimental conditions that we model, the probability of n > 2 spikes is vanishingly small.
(We have verified this claim by computing the probability of n ≤ 2 and only using those simulation
parameters where this probability is larger than 0.999). Thus, we need only compute Equation (3.10)
for n ∈ 0, 1, 2.

It is illustrative to walk through the alternatives. For n = 0, there is only one response given the
input. Assuming the probability of n = 0 spikes is p0, the n = 0 term of Equation (3.10) reads:

∂h(Ωi|F
T
i )

∂wij

= p0

(

log
(

p0

)

+ 1
)

∫ T

t=0

−ρ′i(t) ε(t|fj , fi)dt. (3.11)

The probability p0 is the probability of the neuron not having fired between t = 0 and t = T given
inputs FT

i resulting in membrane potential ui(t) and hence probability of firing at time t of ρ(ui(t)):

p0 = S[0, T ] = exp
(

−

∫ T

t=0

ρ
(

ui(t)
)

dt
)

, (3.12)

which is equal to the survival function S for a non-homogenous Poisson process with probability
density ρ(ui(t)) for t = [0 . . . T ]. (We use the inclusive/exclusive notation for S: S(0,T) computes the
function excluding the endpoints, S[0,T] is inclusive.)

For n = 1, we must consider all responses containing exactly one output spike: GT
i = {f1

i }, f
1
i ∈

[0, T ]. Assuming that neuron i fires only at time f 1
i with probability p1(f

1
i ), the n = 1 term of

Equation (3.10) reads:

∂h(Ωi|F
T
i )

∂wij

=

∫ f1

i =T

f1

i
=0

p1(f
1
i )
(

log
(

p1(f
1
i )
)

+ 1
) [

∫ T

t=0

−ρ′i(t) ε(t|fj , f
1
i )dt+

+
ρ′i(f

1
i )

ρi(f1
i )

ε(f1
i |fj , f

1
i )
]

df1
i . (3.14)

The probability p1(f
1
i ) is computed as:

p1(f
1
i ) = S[0, f1

i ) ρi(f
1
i )S(f1

i , T ], (3.15)

where the membrane potential now incorporates one reset at t = f 1
i :

ui(t) = η(t − f1
i ) +

∑

j∈Γi

wij

∑

fj∈Ft
j

ε(t|fj , f
1
i )

For n = 2, we must consider all responses containing exactly two output spikes: GT
i = {f1

i , f2
i } for

f1
i , f2

i ∈ [0, T ]. Assuming that neuron i fires at f 1
i and f2

i with probability probability p2(f
1
i , f2

i ), the
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Figure 4: Experimental setup of Zhang et al. (1998)

n = 2 term of Equation (3.10) reads:

∂h(Ωi|F
T
i )

∂wij

=

∫ f1

i =T

f1

i
=0

∫ f2

i =T

f2

i
=f1

i

p2(f
1
i , f2

i )
(

log
(

p2(f
1
i , f2

i )
)

+ 1
) [

∫ T

t=0

−ρ′i(t) ε(t|fj , f
1
i , f2

i )dt +

+
ρ′i(f

1
i )

ρi(f1
i )

ε(f1
i |fj , f

1
i , f2

i ) +
ρ′i(f

2
i )

ρi(f2
i )

ε(f2
i |fj , f

1
i , f2

i )
]

df1
i df2

i . (3.16)

The probability p2(f
1
i , f2

i ) can again be expressed in terms of the survival function:

p2(f
1
i , f2

i ) = S[0, f1
i ) ρi(f

1
i )S[f1

i , f2
i ]ρi(f

2
i )S(f2

i , T ], (3.17)

with ui(t) = η(t − f1
i ) + η(t − f2

i ) +
∑

j∈Γi
wij

∑

fj∈Ft
j
ε(t|fj , f

1
i , f2

i ).

In this section, we have replaced an integral over possible spike sequences Ωi with an integral over
the time of two output spikes, f 1

i and f2
i , which we compute numerically.

4. Simulation Methodology

We modeled in detail the experiment of Zhang et al. (1998) involving asynchronous co-stimulation
of convergent inputs. In this experiment, depicted in Figure 4, a postsynaptic neuron is identified
that has two neurons projecting to it, one weak (subthreshold) and one strong (suprathreshold). The
subthreshold input results in depolarization of the postsynaptic neuron, but the depolarization is not
strong enough to cause the postsynaptic neuron to spike. The suprathreshold input is strong enough
to induce a spike in the postsynaptic neuron. Plasticity of the synapse between the subthreshold
input and the postsynaptic neuron is measured as a function of the timing between subthreshold
and postsynaptic neurons’ spikes (∆tpre−post) by varying the intervals between induced spikes in the
subthreshold and the suprathreshold inputs (∆tpre−pre). This measurement yields the well-known
STDP curve (Figure 1b).

In most experimental studies of STDP, the postsynaptic neuron is induced to spike not via a
suprathreshold neuron, but rather by depolarizing current injection directly into the postsynaptic
neuron. To model experiments that induce spiking via current injection, additional assumptions must
be made in the Spike Response Model framework. Because these assumptions are not well established
in the literature, we have focused on the synaptic input technique of Zhang et al. (1998). In Section
5.1, we propose a method for modeling a depolarizing current injection in the spike-response model.
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The Zhang et al. (1998) experiment imposes four constraints on a simulation. (1) The suprathresh-
old input alone causes spiking > 70% of the time. (2) The subthreshold input alone causes spiking
< 10% of the time. (3) Synchronous firing of suprathreshold and/or subthreshold inputs cause LTP
if and only if the postsynaptic neuron fires. (4) The time constants of the excitatory PSPs (EPSPs)
—τs and τm in the sSRM—are in the range of 1–5ms and 7–15ms respectively. These constraints
remove many free parameters from our simulation. We do not explicitly model the two input cells;
instead, we model the EPSPs they produce. The magnitude of these EPSPs are picked to satisfy the
experimental constraints: in most simulations, unless reported otherwise, the suprathreshold EPSP
alone causes a spike in the post on 85% of trials, and the subthreshold EPSP alone causes a spike
on fewer than 0.1% of trials. Free parameters of the simulation are ϑ and β in the spike-probability
function (α can be folded into ϑ), and the magnitude (us

r, uabs) and time constants (τ s
r , τf

r ,∆abs) of the
reset. We can further investigate how the results depend on the exact strengths of the subthreshold
and suprathreshold EPSP’s.

The dependent variable of the simulation is ∆tpre−pre, and we measure the time of the post spike
to determine ∆tpre−post. We estimate the weight update for a given ∆tpre−pre using Equation 3.2 by
approximating the integral by a summation over all time-discretized output responses consisting of
0, 1, or 2 spikes (see Section 3.1). Three or more spikes have a probability that is vanishingly small
(p < 0.001).

5. Results

Figure 5 shows an STDP curve produced by the model, obtained by plotting the estimated weight
update of Equation (3.2) against ∆tpre−post. Specifically, we vary the difference in time between
subthreshold and suprathreshold inputs (a pre-pre pair). For each pre-pre pair, we compute the
expected gradient over all responses of the postsynaptic neuron via Equation (3.2), obtaining in
a value for ∆w for each ∆tpre−pre data point. The corresponding value ∆tpre−post is determined
by calculating for each input pair the average time at which the postsynaptic neuron fires relative
to the subthreshold input. Together, this results in a set of (∆tpre−post,∆w) data points. The
continuous graph is obtained by connecting these points. By our assumption that the weight update
is proportional to the gradient computed in Equation (3.2), the simulation curve is globally scaled to
match the neurophysiological results. For this reason, the units on the y-axis of Figure 5 are arbitrary.

The model produces an excellent fit to the experimental data points (triangles), and robustly obtains
the typical LTP/LTD time windows associated with STDP. The qualitative shape of the STDP curve is
robust to settings of the spiking neuron model’s parameters, as we will illustrate shortly. Additionally,
we found that the type of spike-probability function ρ (exponential, sigmoidal, or linear) is not critical.

Our model accounts for an additional finding that has not been explained by alternative theories:
The relative magnitude of LTP decreases as the efficacy of the synapse between the subthreshold
input and the postsynaptic target neuron increases; in contrast, LTD remains roughly constant (G.-q.
Bi & Poo, 1998), Figure 6a shows this effect in the experiment of Bi and Poo (1998), and Figure 6b
shows the corresponding result from our model. We compute the magnitude of LTP and LTD for the
peak modulation (i.e., ∆tpre−post = −5 for LTP and ∆tpre−post = +5 for LTD) as the amplitude of
the subthreshold EPSP is increased. The model’s explanation for this phenomenon is simple: As the
synaptic weight increases, its effect saturates, and a small change to the weight does little to alter
its influence. Consequently, the gradient of the entropy with respect to the weight goes toward zero.
Similar saturation effects are observed in gradient-based learning methods with nonlinear response
functions, such as back propagation.

As we mentioned earlier, other theories have had difficulty reproducing the LTD component of
STDP. This component arises in our model due to noise in the neural response: suppression is needed
to prevent multiple spikes. To argue for this conclusion, we performed simulations that make our
neuron model less noisy in various ways, and each of these manipulations results in a reduction in
the LTD component of STDP. In Figures 7a and 7b, we make the threshold more deterministic by
increasing the values of α and β in the spike probability density function. In Figure 7c, we increase the
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Figure 5: STDP – experimental data (triangles) and model fit (solid line). STDP data redrawn from
Zhang et al. (1998). Model parameters: τs = 2.5ms, τm = 10ms.

Figure 6: Dependence of LTP and LTD magnitude on efficacy of the subthreshold input. (a) Experi-
mental data redrawn from Bi & Poo (1998); (b) Simulation result.

magnitude of the refractory response η, which will prevent spikes following the initial postsynaptic
response. And finally, in Figure 7d, we increase the efficacy of the suprathreshold input, which
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Figure 7: Dependence of relative LTP and LTD on (a) the parameter α of the stochastic threshold
function, (b) the parameter β of the stochastic threshold function, (c) the magnitude of refraction,
η, and (d) efficacy of the suprathreshold synapse, expressed as p(fire|supra), the probability that
the postsynaptic neuron will fire when receiving only the suprathreshold input. Larger values of
p(fire|supra) correspond to a weaker suprathreshold synapse. In all graphs, the weight gradient for
individual curves is normalized to peak LTP for comparison purposes.

prevents the postsynaptic neuron’s potential from hovering in the region where noise can induce a
spike. Modulation of all of these variables make the threshold more deterministic, and decrease LTD
relative to LTP.

Our simulation results are robust to biologically-realizable variation in the parameters of the sSRM
model. For example, time constants of the EPSPs can be varied with no qualitative effect on the STDP
curves. Figures 8a and 8b show the effect of manipulating the membrane potential decay time τm

and the EPSP rise time τs, respectively. Note that manipulation of these time constants does predict
a systematic effect on STDP curves. Increasing τm increases the duration of both the LTP and LTD
windows, whereas decreasing τs leads to a faster transition from LTP to LTD. Both predictions could
be tested experimentally by correlating time constants of individual neurons studied with the time
course of their STDP curves.
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Figure 8: Influence of time constants of the sSRM model on the shape of the STDP curve. (a) varying
the membrane potential time-constant τm (b) varying the EPSP rise time constant τs. In both figures,
the magnitude of LTP and LTD have been normalized to 1 for each curve to allow for easy examination
of the effect of the manipulation on temporal characteristics of the STDP curves.

5.1 Current Injection
We mentioned earlier that in many STDP experiments, an action potential is induced in the postsy-
naptic neuron not via a suprathreshold presynaptic input, but via a depolarizing current injection. In
order to model experiments using current injection, we must characterize the current function and its
effect on the postsynaptic neuron. In this section, we make such a proposal framed in terms of the
Spike Response Model, and report simulation results using current injection.

We model the injected current I(t) as a rectangular step function:

I(t) = H(t − fI) Ic H(t − [∆I − fI ]), (5.1)

where the current of magnitude Ic is switched on at t = fI and off at t = fI + ∆I . In the Zhang et
al (1998) experiment, ∆I is 2ms, a value we adopted for our simulations as well.

The resulting postsynaptic potential, εc is:

εc(t) =

∫ t

0

exp
(

−
s

τm

)

I(s) ds. (5.2)

In the absence of postsynaptic firing, the membrane potential of an integrate-and-fire neuron in
response to a step current is (Gerstner, 2001):

εc(t|fI) = Ic(1 − exp[−(t − fI)/τm]). (5.3)

In the presence of postsynaptic firing at time f̂i, we assume—as we did previously in Equation (2.5)—a
reset and subsequent integration of the residual current:

εc(t|f̂i) = H(f̂i − t)

∫ t

0

exp
(

−
s

τm

)

I(s) ds +

H(t − f̂i)

∫ t

f̂i

exp
(

−
s

τm

)

I(s) ds. (5.4)
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Figure 9: Voltage response of a spiking neuron for a 2ms current injection in the Spike Response
Model. Solid curve: The postsynaptic neuron produces no spike, and the potential due to the injected
current decays with the membrane time-constant τm. Dotted curve: The postsynaptic neuron spikes
while the current is still being applied. Dashed curve: The postsynaptic neuron spikes after application
of the current has terminated (moment of postsynaptic spiking indicated by arrows).

These εc kernels are depicted in Figure 9 for a postsynaptic spike occurring at various times f̂i. In
our simulations, we chose the current magnitude Ic to be large enough to elicit spiking of the target
neuron with probability greater than 0.7.

Figure 10a shows the STDP curve obtained using the current injection model for the exact same
model parameter settings used to produce the result based on a suprathreshold synaptic input (de-
picted in Figure 5) superimposed on the experimental data STDP obtained by depolarizing current
injection from Zhang et al (1998). Figure 10b additionally superimposes the earlier result on the cur-
rent injection result, and the two curves are difficult to distinguish. As in the earlier result, variation
of model parameters has little appreciable effect on the model’s behavior using the current injection
paradigm, suggesting that current injection vs. synaptic input makes little difference on the nature
of STDP.

6. Discussion

In this paper, we explored a fundamental computational principle, that synapses adapt so as to
minimize the variability of a neuron’s response in the face of noisy inputs, yielding more reliable
neural representations. From this principle—instantiated as entropy minimization—we derived the
STDP learning curve. Importantly, the simulation methodology we used to derive the curve closely
follows the procedure used in neurophysiological experiments (Zhang et al., 1998). Our simulations
obtain an STDP curve that is robust to model parameters and details of the noise distribution.

Our results are critically dependent on the use of Gerstner’s stochastic Spike Response Model, whose
dynamics are a good approximation to those of a biological spiking neuron. The sSRM has the virtue
of being characterized by parameters that are readily related to neural dynamics, and its dynamics
are differentiable such that we can derive a gradient-descent learning rule that minimizes the response
variability of a postsynaptic neuron given a particular set of input spikes.

Our model predicts the shape of the STDP curve and how it relates to properties of a neuron’s
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Figure 10: (a) STDP curve obtained for SRM with current injection (curve with solid circles) com-
pared with experimental data for depolarizing current injection (redrawn from Zhang et al., 1998).
(b) Comparing STDP curves for both current injection (curve with circles) and suprathreshold input
(curve with triangles) models. The same model parameters are used for both curves. Experimen-
tal data redrawn from Zhang et al. (1998) for current injection (circles) and suprathreshold input
(triangles) paradigms are superimposed.

response function. These predictions may be empirically testable if a diverse population of cells can
be studied. The predictions include the following: First, The width of the LTD and LTP windows
depend on the (excitatory) PSP time constants (Figure 7a,b). Second, the strength of LTD relative
to LTP depends on the degree of noise in the neuron’s response; the LTD strength is related to the
noise level.

Our model also can characterize the nature of the learning curve for experimental situations that
deviate from the boundary conditions of Zhang et al. (1998). In Zhang et al., the subthreshold and
suprathreshold inputs produced postsynaptic firing with probability less than .10 and greater than .70,
respectively. Our model can predict the consequences of violating these conditions. For example, when
the subthreshold input is very strong or the suprathreshold input is very weak, our model produces
strictly LTD, i.e., anti-Hebbian learning. The consequence of a strong subthreshold input is shown
in Figure 6b, and the consequence of a weak suprathreshold input is shown in Figure 7d. Intuitively,
this simulation result makes sense because—in the first case— the most likely alternative response of
the postsynaptic neuron is to produce more than one spike, and—in the second case—the most likely
alternative response is no postsynaptic spike at all. In both cases, synaptic depression reduces the
probability of the alternative response. We note that such strictly anti-Hebbian learning has been
reported in relation to STDP-type experiments (Roberts & Bell, 2002).

For very noisy thresholds and for weak suprathreshold inputs, our model produces an LTD “dip”
before LTP (Figure 7d). We find it intriguing that this dip is also observed in the experimental
results of Nishiyama et al. (2000). With careful consideration of experimental conditions and neuron
parameters, it may be possible to reconcile the somewhat discrepant STDP curves obtained in the
literature via our model.

In our model, the transition from LTP to LTD occurs at a slight offset from ∆tpre−post = 0: if
the subthreshold input fires 1–2ms before the postsynaptic neuron fires (on average), then neither
potentiation nor depression occurs. This 1–2ms offset is attributable to the current decay time con-
stant, τs. The neurophysiological data are not sufficiently precise to determine the exact offset of the
LTP/LTD transition in real neurons. Unfortunately, few experimental data points are recorded near
∆tpre−post = 0. However, the STDP curve of our model does pass through the one data point in that
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region (Figure 5), so the offset may actually be a real phenomenon.
The main focus of the simulations in this paper was to replicate the experimental paradigm of

Zhang et al. (1998), in which a suprathreshold presynaptic neuron is used to induce the postsynaptic
neuron to fire. The Zhang et al. (1998) study is exceptional in that most other experimental studies of
STDP use a depolarizing current injection to induce the postsynaptic neuron to fire. We are not aware
of any established model for current injection within the SRM framework. We therefore proposed a
model of current injection within the SRM framework in Section 5.1. The proposed model is an ideal
abstraction of current injection that does not take into account effects like current onset and offset
fluctuations inherent to such experimental methods. Even with these limitations in mind, the current
injection model produced STDP curves very similar to the ones obtained by the simulation of the
suprathreshold input induced postsynaptic firing.

The simulations reported in this paper account for classical STDP experiments in which a single
presynaptic spike is paired with a single postsynaptic spike. The same methodology can be applied to
model experimental paradigms involving multiple presynaptic and/or postsynaptic spikes. However,
the computation involved becomes nontrivial. We are currently engaged in modeling data from the
multi-spike experiments of Froemke and Dan (2002).

To close, we note that one set of simulation results we reported is particularly pertinent for com-
paring and contrasting our model to the related models of Toyoizumi et al. (2005) and Bell and Parra
(2005). The simulations reported in Figure 7 suggest that noise in our model is critical for obtaining
the LTD component of STDP, and that parameters that reduce noise in the neural response also
reduce LTD. First, we found that increasing the strength of neuronal refraction reduces noise and
therefore diminishes the LTD component of STDP. In sharp contrast, Toyoizumi et al. (2005) suggest
that neuronal refraction is responsible for LTD. Because the two models are quite similar, it seems
unlikely that the models make opposite predictions and the discrepancy may be due to Toyoizumi et
al. (2005)’s focus on analytical approximations to solve the mathematical problem at hand, limiting
the validity of comparisons between that model and biological experiments in the process. Second, we
found that altering parameters of the response threshold that cause the neuron to be more determin-
istic also reduce LTD in our derivation. Strikingly, Bell and Parra (2005) use a deterministic SRM
neuron, and are unable to model the LTD component of STDP. Because noise suppression should be
one consideration of a learning rule that adapts synapses so as to maximize mutual information be-
tween input and output—even if only implicitly—we hypothesize that modeling a stochastic threshold
is key to obtaining LTD in Bell and Parra (2005). One key difference between our model and those of
Toyoizumi et al. (2005) and Bell and Parra (2005) is the hypothesized computational objective of a
neuron. We hypothesize reduction of neural response variability whereas the other models hypothesize
mutual information maximization. These two hypotheses should have sufficiently distinct implications
that further empirical studies may garner support for one hypothesis or the other.
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