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Abstract—As living organisms, one of our primary character-
istics is the ability to rapidly process and react to unknown and
unexpected events. To this end, we are able to recognize an event
or a sequence of events and learn to respond properly. Despite
advances in machine learning, current cognitive robotic systems
are not able to rapidly and efficiently respond in the real world:
the challenge is to learn to recognize both what is important, and
also when to act. Reinforcement Learning (RL) is typically used
to solve complex tasks: to learn the how. To respond quickly – to
learn when – the environment has to be sampled often enough. For
“enough”, a programmer has to decide on the step-size as a time-
representation, choosing between a fine-grained representation of
time (many state-transitions; difficult to learn with RL) or to a
coarse temporal resolution (easier to learn with RL but lacking
precise timing). Here, we derive a continuous-time version of
on-policy SARSA-learning in a working-memory neural network
model, AuGMEnT. Using a neural working memory network
resolves the what problem, our when solution is built on the notion
that in the real world, instantaneous actions of duration dt are
actually impossible. We demonstrate how we can decouple action
duration from the internal time-steps in the neural RL model
using an action selection system. The resultant CT-AuGMEnT
successfully learns to react to the events of a continuous-time
task, without any pre-imposed specifications about the duration
of the events or the delays between them.

I. INTRODUCTION

A self-driving car travels along the way when suddenly
a man crosses the street. The car has to stop immediately to
avoid the impact. This is an example of the complexity of
the environment that we live in, where many unknown and
unexpected events have to be recognized and processed rapidly
and continuously. Despite advances in machine learning, cur-
rent robotic systems are not able to rapidly and efficiently
respond in the real world: the challenge is to learn to recognize
both what is important, and also when to act. Reinforcement
Learning (RL) algorithms are commonly used as a learning
paradigm to learn what to respond to in complex environments.
In RL, the agent changes its behavior according to experience
collected during the exploration of the world [1]. In typical
RL tasks however, ad hoc abstractions are used: the actual
relevant events are provided in compact representations. Much
attention has been given recently to learning compact state rep-
resentations from high-dimensional observations, where deep
learning is the most well-known approach for this, including
approaches like Long Short-Term Memory (LSTM) [2], [3],
that capture state from both present and past observations in
memory structures. Memory allows such networks to solve

the what problem as posed by working memory tasks, by
transforming certain classes of partially observable Markov
decision problems (POMDPs) into Markov Decision Problems
(MDPs) [4].

Here, we observe that in standard RL not only the repre-
sentation is abstracted, but also the timing of events that is
sampled in the ordered presentation. State-transitions in RL
are defined in discrete steps and the agent state is updated
every step. Effectively, the agent is given the information on
when a decision has to be taken. To respond quickly however,
the environment has to be sampled often. A programmer has
to decide on the step-size as a time-representation, choosing
between a fine-grained representation of time or to a coarse
temporal resolution. The former corresponds to many state-
action transitions that are difficult to learn, while in the latter
correct action sequences are easier to learn but lack precise
timing. For a learning self-driving car, this means it will either
be very difficult to learn to avoid unexpected obstacles, or it
will respond too late and hit the man. A number of approaches
have been developed to deal with continuous-time in RL.
Baird proposed Advantage Learning [5] as a continuous-time
formalization of Q-learning. An RL neural working memory
approach like [3] is in principle compatible with continuous-
time Advantage Learning. However, like Q-learning, Advan-
tage Learning is an off-policy method, and especially in
tasks where exploration may incur large penalties, on-policy
learning is preferred [1], [6]. Another common approach for
continuous-time RL is based on actor-critic models, e.g. [7].
We find however that for the latter, there is no current work
that includes methods for learning compact working memory
representations, and our own efforts had great difficulty with
reaching convergence when using an actor-critic method.

AuGMEnT (Attention-Gated MEmory Tagging) [8], [9] is
a recent biologically plausible neural network framework, that
is trained with on-policy SARSA. AuGMEnT includes work-
ing memory and shares a number of features with Long Short-
Term Memory (LSTM) [2], [3]. AuGMEnT is not compatible
with Advantage Learning for two reasons: AuGMEnT updates
only those weights that are responsible for the selection of the
winning action, and it does not use information about the not-
selected actions. Here, we propose to solve the fast-responding
self-driving car problem by presenting a continuous-time
model of AuGMEnT. This solution is based on the idea
that in biological brains, instantaneous actions of infinitesimal
duration are actually impossible. Here, we introduce an action
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selection system that controls the action execution, by keeping
active the selected action for the needed time. In biological
brains, an action selection network can be mapped onto specific
neural substrates, including the basal ganglia, as shown in
[10]. Current actions can be interrupted if another is more
important or urgent. Moreover, the exploratory system has
been re-defined allowing enough time for execution and thus
for spatial and temporal credit assignment. The continuous-
time framework changes the way standard RL problems are
presented: it defines time as an intrinsic property of the task,
and it considers unavoidable delays in action selection and
execution. In the next sections, the continuous-time AuGMEnT
model is described including the description of the action
selection network and the exploratory system. Results from
three case studies are presented, which show the ability of
the network to reach convergence within a remarkable short
number of epochs.

II. METHODS

A. Continuous-Time AuGMEnT Model

AuGMEnT [8], [9] is a biologically plausible RL frame-
work for solving discrete-time MDPs that require learnable
working memory to construct Markov states in the hidden layer
of the neural network model. A continuous-time generaliza-
tion of MDPs is known as Semi-Markov Decision Problems
(SMDP’s), as defined in [11]. The following description con-
siders discrete-space continuous-time algorithm in which one
output neuron codes for one discrete action, where we describe
the standard AuGMEnT framework for time-steps of size dt.
By decreasing this time-step we approximate continuous-time,
where we denote the resultant algorithm as CT-AuGMEnT.

B. Feedforward model

The AuGMEnT network is composed of three layers of
units connected by modifiable synapses (see Fig. 1). The
sensory layer represents stimuli with instantaneous and tran-
sient units. Instantaneous units, x(t), are active as long as
the stimuli is present. Transient units represent positive and
negative changes in sensory input:

x+(t) = 1
dt [x(t)− x(t− dt)]+,

x−(t) = 1
dt [x(t− dt)− x(t)]+,

(1)

where [.]+ is a threshold operation that returns 0 for all
negative inputs. Here we assume backward Euler approxi-
mation of the time derivative of ẋ+(t) and ẋ−(t) for small
dt. This approximation will be used for the rest of the text.
Instantaneous units i are fully connected to regular units j in
the association layer, through connections vRij . Activations for
regular units are thus computed as:

inpRj (t) =
∑
i

vRijxi(t), (2)

yRj (t) = σ(inpRj (t)), (3)

σ is the sigmoidal activation function, with derivative:

σ′(inpRj (t)) = yRj (t)(1− yRj (t)). (4)

Transient units l are fully connected to memory units m
through connections vMlm:

inpMm (t) = inpMm (t− dt) +
∑
l v
M
lmx
′
l(t)

yMm (t) = σ(inpMm (t)),
(5)

where x′(t) = [x+(t) x−(t)]. The third (output) layer receives
input from the association layer by the connections wRjk and
wMmk. This layer computes Q-values for every possible action
a in the current state s:

Qπ(s, a) = Eπ[Rt|st = s, at = a],

with Rt =

∫ ∞
t

e−
ζ−t
τ r(s(ζ), a(ζ))dζ, (6)

where Eπ is the expected discounted future reward Rt given a
and s, under action-selection policy π. The action value qk(t)
is computed as:

qk(t) =
∑
m

wMmky
M
m (t) +

∑
j

wRjky
R
j (t). (7)

C. Action selection

In AuGMEnT, as defined in [8], action selection follows
a policy π known as Max-Boltzmann rule to ensure a good
balance between exploration and exploitation. It selects the
greedy action (highest qk(t)) with probability 1 − ε, and,
with a small probability ε, a random action sampled from the
Boltzmann distribution [12].

When we consider discrete-size time steps dt, any explo-
ration rate εdt implies that, potentially, a new action can be
selected every dt, lasting also only for a duration of dt. Baird
in 1993 [5] demonstrated that for standard RL algorithms like
Q-learning, reduction of the time-step duration in tasks affects
convergence rate. The difficulty in learning the corresponding
many state-action transitions can be explained intuitively: the
shorter the time-step duration, the less is the effect of that
action on the final reward. In principle, for instantaneous
actions no effect can be seen at the end, and it becomes
impossible to assign the right credit to the right action. This is
exacerbated when state-approximators are used, like artificial
neural networks, as they introduce their own imprecision in
the computed Q-values. To resolve this problem, we observe
that real-world actions have a typical duration: they take
some time to execute from start to finish, and our everyday
experience is that this execution is to some degree (at least
initially) non-interruptible. Such action-duration behavior can
be implemented as an action selection mechanism, for example
as the basal ganglia model described in [10]. This is achieved
by connecting the Z-layer to the Q-layer with off-center on-
surround connectivity: each neuron in the Q-layer transmits its
value qi to all output neurons but sends inhibition to only one
output neuron (see the connections between the two layers in
Fig. 1). The input to the Z-layer neuron is:

ui(t) = −w−qi(t) + w+
n∑
j 6=i

qj(t), (8)

where the balance between inhibition and excitation has been
chosen as ν = w−/w+ = 3. Then, the activity of the neuron
can be modeled as a leaky integrator:

ȧi(t) = −ρ(ai(t)− ui(t)), (9)
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Fig. 1: Continuous-Time AuGMEnT network with the winner-take-all neural implementation in the Z-layer for action selection, implementing
off-center on-surround in the action space. The dynamics of the network are illustrated in the inset: while the Q-values in the Q-layer can vary
over time, the action selection mechanism in the Z-layer ensures a clean switching of actions with minimum action-duration. The corresponding
δ TD-error are computed continuously.

where ρ is a rate constant which determines the speed at which
the activity reaches the equilibrium (with ρ = 1 the activity is
instantaneous). Finally, the output activation of the Z-layer is
bounded using the same sigmoidal activation function used in
Eq. (3):

yi(t) = σ(ai(t)). (10)

Winner-take-all is guaranteed if the minimum activation is
selected at every dt, thus the actions are selected continuously.
In this case the Q-layer determines the degree of inhibition
in the action space, which means that all the actions that
are not selected are inhibited, and the action that is selected
receives less inhibition. Fig. 1 (up-right) shows an example of
the selection system: while the Q-values are free to change
continuously, only one action is selected at a time. The action
selection system responses on the basis of the mutual distance
between the Q-values. Farther Q-values yield to a faster shift.
The reaction time is controlled by the model parameters and
mimic the accumulation of evidences before taking a decision.
When exploration takes place, an external current is added to
the explorative action in eq. (8). Note that such exploration
does not change the computed Q-values, but only the input to
the action selection system. The external current follows an
exponentially decay function such that it does not have a fixed
duration, and the duration of activation depends on the current
Q-values. For an exploratory action ei, Eq. (8) is modified as:

uei(t) = −w−(qei(t) + Iexe
−τexdt) + w+

n∑
j 6=ei

qj(t). (11)

Where Iex is the magnitude of the extra inhibition (we chose
5) and τex is the time constant of the decay which determines
the effective duration of the exploration (here we set to 0.01).

D. Feedback model

During learning, two factors modulate the network plas-
ticity: a global neuromodulatory signal and an attentional
feedback signal. Once an action is selected, the unit that codes

the winning action a feeds back to earlier processing levels to
create synaptic Tags (equivalent to eligibility traces) on the
responsible synapses. The decaying Tag update for Tags k is
defined as:

TagJk(t+ dt) = (1− dt

φ
)TagJk(t) + dt[yJ(t)zk(t)]. (12)

With zk = 1 for the selected action, zk = 0 elsewhere, and J
stands either for j or m indexes. Thus, the association units
that provided strong input to the winning action a also receive
strongest feedback. Equivalently, Tags on connections between
regular units and instantaneous units are computed as:

Tagij(t+ dt) = (1− dt

φ
)Tagij(t) + dt[xi(t)σ

′(inpRj (t))w′aj ]

(13)
(note that feedback connections w′aj and feedforward connec-
tions wja have the same strength, as in [13]). Synaptic traces
between sensory units and memory cells are used for learning
working memory:

sTracelm(t+ dt) = sTracelm(t) + dt[x′l(t)]

Taglm(t+ dt) =(1− dt

φ
)Taglm(t)

+ dt[sTracelm(t)σ′(inpMm (t))w′am]. (14)

With the SARSA temporal difference learning rule, the
network compares the predicted outcome qa(T −1) to the sum
of the reward r(t) and the discounted action-value qa′(T ) of
the unit a′ that wins the subsequent competition:

δ(T ) = r + γqa′(T )− qa(T − 1), (15)

where T is the time-step defined in standard compound defini-
tion of RL algorithms. However, in the case of continuous-time
TD learning, the estimate of the predicted outcome is defined
as in [7]:

Q̇π(s, a) =
1

τ
Qπ(s, a)− r(t). (16)



If the equivalence in (16) is not satisfied, the prediction should
be adjusted to decrease the inconsistency:

δ(t) = r(t)− 1

τ
qa′(t) + q̇a(t). (17)

Using the backwards Euler approximation for dt [7] gives the
following discrete TD update:

δ(t) = r(t) +
1

dt

[(
1− dt

τ

)
qa′(t)− qa(t− dt)

]
. (18)

In this case we consider the discount factor γ = 1− dt
τ and the

Q-values have been rescaled as qa(T ) = 1
dtqa(t). Moreover, to

be consistent with the previous representation of AuGMEnT
which defines the Tag decay as α = (1 − λγ), we have:

λ =
1− dtφ
1− dtτ

; the reward r(t) also has to be rescaled as r(t)/dt.
Note that by defining dt = 1 we obtain the same equations of
AuGMEnT.

Finally, the plasticity of all synapses (either R or M units)
is defined as:

vij(t+ dt) = vij(t) + dt[βδ(t)Tagij(t)]

wjk(t+ dt) = wjk(t) + dt[βδ(t)Tagjk(t)].
(19)

It is worth mentioning that the Tags and synaptic weights are
updated every dt and that the order of updating is important for
the correct execution of the algorithm. In this sense, every time
step, a new error δ is computed (eq. (15)) and the synapses are
updated consequently with eq. (19). Then, traces and Tags are
updated through eq. (12), (13), and (14). At the end of a trial,
the activity of memory units, traces, Tags, and Q-values are set
to zero, after updating of the weights with a δ that reflects the
transition to the terminal state (the expected reward is null).

III. RESULTS

In this section, we demonstrate the continuous-time model
of AuGMEnT outlined above. Firstly, we show that our
continuous-time formalization of AuGMEnT minimizes the
temporal difference error by stochastic gradient decent as in
the standard implementation [8], [9]. Then, we demonstrate the
method in three case studies. The first one shows the ability
of the continuous-time model to learn to react to the input
even in case of fast updates. The second is an extension of
the previous task in which working memory units are used to
remember a specific input and to select the right answer at the
end of the trial. The third one is a task used in neuroscience
useful to demonstrate the ability of the network to represent
contextual information and to remember previously seen input.

A. Continuous-Time AuGMEnT stochastically minimizes the
reward-prediction error (RPE)

We can show that the continuous-time formulation of
AuGMEnT outlined above reduces the reward-prediction error
(RPE) as the original AuGMEnT formulation. The objective
function is defined as:

E(t) =
1

2

∣∣δ(t)2∣∣ . (20)

Given (20) and (17), the gradient of the objective function with
respect to the weights wRja becomes:

∂E(t)

∂wRja
= δ(t)

∂

∂wRja

[
r(t)− 1

τ
qa′(t) + q̇a(t)

]
= δ(t)

[
−1

τ

∂qa′(t)

∂wRja
+
∂q̇a(t)

∂wRja

]
. (21)

Since the boundary condition for the Q-function, defined in
(6), is given at t → ∞, it is more appropriate to update the
past estimates without affecting the future estimates [7]. Thus,
recalling (18) and discretizing (21), a reduction of the gradient
is guaranteed if:

−∂E(t)

∂wRja
=δ(t)

∂qa(t− dt)
∂wRja

=δ(t)yRj (t− dt), (22)

which is consistent with the trace update in (12) for a = 1.
The same can be shown for the synapses between memory
units M and Q-values:

−∂E(t)

∂wMma
= δ(t)yMm (t− dt). (23)

Note that in the latter equations the update of the synapses
has to be consistent with the neuron activity at the previous
dt, which is stored in the Tags (see (12) and (13)). Thus, Tags
have to be updated after the weights. Gradient decent for the
weights vRij is similarly computed:

−∂E(t)

∂vRij
=δ(t)

∂qa(t− dt)
∂vRij

=δ(t)
∂qa(t− dt)
∂yRj (t− dt)

∂yRj (t− dt)
∂inpRj (t− dt)

∂inpRj (t− dt)
∂vRij

=δ(t)w′Rajσ
′(inpRj (t− dt))xi(t− dt) (24)

and for vMlm:

−∂E(t)

∂vMlm
= δ(t)

∂qa(t− dt)
∂vMlm

= δ(t)
∂qa(t− dt)
∂yMm (t− dt)

∂yMm (t− dt)
∂inpMm (t− dt)

∂inpMm (t− dt)
∂vMlm

=δ(t)w′Mamσ
′(inpMm (t− dt))sTracelm(t− dt), (25)

where we assume for simplicity that the strength of the
feedback from the motor layer back to the association layer
w′Raj is equal to wRja and, analogously, w′Mam = wMma.

B. L-maze task

The L-Maze task is a simple fast-response scenario that
mimics the case where a self-driving car has to stop as soon
as a man appears in front of it. In the task, the agent has to
move in a corridor and turn right as quickly as possible at
the end of it. The agent has actions N,E, S,W to move in
all compass directions. When the agent remains in the same
place (e.g. by moving into a wall), it receives a negative reward
(-0.1). The correct decision at the end of the maze is worth
4, and the wrong decision -1. The task also has a time-out
condition: after 1.5N + 2 time-steps we automatically stop
the trial, and start a new one. In the input space a wall is
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Fig. 2: L-Maze task: the agent has to reach the goal at the end of the
corridor. On the left the standard time-step representation (a); in the
middle an increased number of updates reduces the error (b); on the
right the continuous-time version used (c). The gradient in the arrow
illustrates the ease with which the selected action can be interrupted.

encoded as 0 and an empty space as 1. Thus the agent observes
[1, 0] at the beginning of the trial and [0, 1] in the turning
point. Continuous actions do not have a fixed finite duration:
if the network selects the wrong action, only one negative
reward is given in total, at the beginning of the selection. Then
nothing happens until a new decision is made or the time-out is
reached. We define learning to have converged when the model
makes 80% optimal choices over the last 50 examples. For the
simulations we give each network at most 10000 trials to learn
the task. For each condition 10 different networks were tested.
The parameters for the simulation are: β = 0.15; λ = 0.20;
γ = 0.90; ε = 0.025 and Θ = 2.5. Initial synaptic weights are
drawn from a uniform distribution U [−0.25, 0.25].

Rather than the how, here the difficulty of the task is the
when. Suppose we update the network every 1 second and
the agent travels with constant velocity such that it takes 10
seconds to reach the turning point. The turning signal appears
just after that time, and the agent has to wait the next update
to change its direction. It will make an error equal to the
space it covers during that second (see Fig. 2 a). If we want
to reduce this error we can increase the number of updates.
In standard time-step implementations, this is equivalent to a
task with longer corridor length: we tested standard time-step
AuGMEnT with corridor lengths of 10, 20, 40, 100. Standard
time-step AuGMEnT is obtained by setting dt = 1. In contrast
to standard time-step AuGMEnT, in CT-AuGMEnT we can
decrease the dt size to update the network more often without
affecting the duration of actions (Fig. 2). To compare with
the previous example we chose dt = 0.5, 0.25, 0.1. This is
true since the number of updates (or decisions) required to
cross the corridor is the same. Furthermore, we also tested for
dt = 0.05, 0.02, 0.01, 0.005, which correspond to a corridor
length of 200, 500, 1000, 2000 respectively (for these corridor
lengths standard AuGMEnT does not reach the convergence
criterium).

Fig. 3 shows the results of the simulations for different
lengths of the maze and equivalently reduced dt. The figure
shows the median and the standard deviation of the median for
the number of trial to reach convergence for 10 networks for
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Fig. 4: T-Maze task. On the left the standard time-step representation,
while on the right the continuous-time version used. The road-sign
(red) is presented for 1 second at the beginning of the trial.

every point in the graph. In standard AuGMEnT the number of
trials needed to reach convergence increases with the corridor
length (note the log-scale of the x-axis). Instead, with CT-
AuGMEnT the opposite is true: increasing the number of
updates in the corridor does not affect the time required to
reach convergence. The estimate of the Q-values in the corridor
state actually becomes more precise leading to a decrease in
convergence-time. Of course this effect is mainly due to the
simplicity of the task, but it demonstrates that CT-AuGMEnT
can reach convergence even with a large number of updates.

C. T-maze task

The T-Maze task is a working memory task based on [3]
and [14]. Information presented at the beginning of the maze
has to be remembered to make optimal decisions at the end
of the corridor. As for the L-Maze, the agent has actions
N,E, S,W to move in all compass directions; task difficulty is
scaled by increasing the corridor length N (see Figure 4). The
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same reward and time-out conditions as in the L-Maze were
applied. With respect to [14], we increased the time limit (from
1.2N + 2 to 1.5N + 2), because the new exploration system
could lead to longer time to reach the end of the corridor. Also,
compared to [14], a different input representation is used: a
wall is encoded as 0, a road-sign as 2 and an empty space
as 1. Thus the agent observes [2, 1, 0] or [0, 1, 2] for the first
second. For the simulations, we gave each network at most
50000 trials to learn the task. Convergence was determined by
checking at 80% optimal choices as in [3] and [14] for each
condition.

Fig. 5 shows the results of the simulations for different
lengths of the maze and (corresponding) dt. For every corridor
length, 10 networks were tested. The figure also shows the
standard deviation of the number of epochs for every length in
order to give an idea about the distribution of the results. Stan-
dard AuGMEnT is a version of continuous-time AuGMEnT in
which dt = 1 and the action selection mechanism is not active.
As in the L-Maze task we need to consider the same number
of updates for each implementation. This means that a corridor
length of 10 for CT-AuGMEnT with dt = 0.1 corresponds to
a standard AuGMEnT with a corridor of 100 (see Fig. 6 for a
direct comparison with respect the number of updates).

D. Saccade/antisaccade task

We also apply CT-AuGMEnT to the working memory
saccade/anti-saccade task as in [8]. This task introduces the
effect of context in selecting a specific strategy to follow Fig.
7. In this case, the agent has to learn that the color of the
a fixation mark determines the strategy. The sequence of time
events in this task is shown in Figure 8. Every trial started with
an empty screen, shown for one second. Then a fixation mark
was shown that was either black or white, indicating that a pro-
or anti-saccade would be required. The model had to fixate
within ten seconds, otherwise the trial was terminated without
reward. If the model fixated for two consecutive seconds, we
presented a cue on the left or the right side of the screen for one
second and gave the fixation reward rfix. This was followed
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Fig. 6: Mean and standard deviation of the mean of the trials to
convergence for the number of updates: standard AuGMEnT, blue,
dt = 1, CT-AuGMEnT, red, dt = 0.1

by a memory delay of two seconds during which only the
fixation point was visible. At the end of the memory delay
the fixation mark turned off. To collect the final reward rfin
in the pro-saccade condition, the model had to make an eye-
movement to the remembered location of the cue and to the
opposite location on anti-saccade trials. The trial was aborted if
the model failed to respond within eight seconds. With respect
to the standard implementation of AuGMEnT [8], we kept
the same temporal sequence of the events, while the update
(time-steps) of the network can be done independently at an
increased rate: in Fig. 8 the time-steps have been substituted
with seconds and the network update has been chosen 1, 0.5
and 0.1 (respectively 2 and 10 times the original update). For
all tasks we used rfix = 0.2 and rfin = 1.5.

Fig. 9a-c shows the distribution of the trials needed to
reach convergence for each dt. These results are based on
runs with 100 randomly initialized networks. The convergence
criterium has been chosen as in [8]. We defined that learning

Fig. 7: Standard Saccade/antisaccade task with all the possible
conditions: Prosaccade Left and Right; Antisaccade Left and Right.
Picture from [9]
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Fig. 9: Distribution of the number of trials needed to reach convergence in saccade/antisaccade task for different dt’s.

was complete when the model made 90% optimal choices
for each of the four possible conditions over the last 50
examples of each. Every network had 2.5× 104 trials to learn
the task. We obtained a convergence rate of 100%, 97% and
98% respectively. The mean of the convergence rate for the
standard AuGMEnT was 4120. Also in this task decreasing
the dt duration helps the time-to-convergence: for dt = 0.5,
CT-AuGMEnT needed on average 3400 trials, and for dt = 0.1
it required 2490 (Fig. 9d).

IV. CONCLUSION

We derived a continuous-time version of SARSA-learning
in a working-memory neural network model, AuGMEnT. Our
main contribution is that we decouple action duration from the
internal time-steps of the model. An action-selection mecha-
nisms was defined, inspired by modern models of the brain’s
basal ganglia. This action-selection mechanism enforces a
minimum temporal duration of a selection action by inhibiting
other action-units in the network. As this inhibition decays
with time, the selected action is effectively interruptible when
novel and urgent inputs are encountered. A continuous-time
SARSA-learning algorithm has potential applications when
learning fast responses using RL, as the interruptible action
selection effectively keeps the time-action space compact.
Moreover, as AuGMEnT is considered biologically plausible
[9], the continuous-time equivalent presented here allows us to
directly compare unit activations in the network with electro-
physiological measurements. CT-AuGMEnT solves the credit-
assignment problem with the same ‘attentional’ feedback

mechanisms described in the standard version [9]. Feedback
connections form the output layer to the earlier levels Tag the
relevant synapses that were responsible for the action selection
[13]. AuGMEnT thus provides a biological explanation of
the eligibility traces toward the Tag mechanisms [15], which
permits learning if time passes between the action and the
reward-prediction error [16].

In this work, we show that the derived algorithm, CT-
AuGMEnT, computes the same stochastic gradient as the orig-
inal serial-compound model. In experiments, we further show
that it performs well on the continuous-time representation
of a simple fast-response tasks and two standard (and hard)
working-memory tasks. We show that the algorithm reaches
convergence with a similar number of trials with respect to
standard AuGMEnT, where in the simple fast-response task,
the more precise estimation of the Q-values actually improves
the time-to-convergence. Consequently, this model can suc-
cessfully be applied to non-linear continuous-time problems
without significant losses in terms of convergence rate and/or
speed of learning: CT-AuGMEnT successfully learns to react
to the events of a continuous-time task, without any pre-
imposed specifications about the duration of the events or
the delays between them. Remarkably, the AuGMEnT model
computes a function approximator that learns non-linear map-
pings between inputs and Q-values in a single neural network
model. Neural network function approximators for Q-learning
in general are held to be unstable, and various algorithmic
variations have been developed to deal with this [17]; an



actor-critic version of AuGMEnT exhibited similar stability
problems. In contrast, we find no such instability for SARSA-
based AuGMEnT and the continuous-time version presented
here, at least for the presented tasks.

It is worth noting that, while the rapid alternation of
forward and feedback activity every dt in the network seems
biologically implausible, we can see from the update equa-
tions that in principle, a separate feedback network can be
constructed to carry the feedback signal, similar to [18]. This
leaves unresolved the issue that in real networks, both forward
and feedback activations take time. Such delays will introduce
a fixed offset between forward and feedback signals. One
solution we can envision here is to have neurons match this
delays through delayed plasticity windows, similar to what is
observed in cerebellum [19]. Whit respect to other approaches,
CT-AuGMEnT provides a continuous-time on-policy neural
reinforcement learning network with working memory. Recent
works based on actor-critic architecture emphasize the role
of basal ganglia in action selection with spiking neurons in
continuous-time [20], [21]. These models are based on the
Doya’s work [7]. However, these approaches do not include
working memory, and thus do not have the ability to keep track
of past events. A remarkable approach of working memory
units in continuous-time is shown in [22] and [23] based
on LSTM; this somewhat related working-memory approach
however does not consider action selection.

It is important to note that we show here that a continuous-
time representation changes the way in which we define the
task for the network. For example, in the standard time-
step representation a new action can be selected every time-
step, exactly during specific changes in the task. The time-
step representation requires the network to give an answer
at specific moments of the trial. This is even more impor-
tant in the case of explorative actions: here actions can be
interrupted in every dt due to a change of the inputs or an
explorative action. The action selection system we introduce
here accounts for the fact that before deciding on an action,
especially when sampling often and in a noisy environment, the
optimal decision requires accumulation of evidence [24]. The
action-selection mechanism we implemented adheres to this
notion: for large relative changes in computed Q-values, the
mechanism quickly switches to a new action. For small relative
changes this process is slower, and may even be reversed
before switching actions when the computed Q-values change
back again, as could be the case for noisy observations.

Taken together, CT-AuGMEnT is able to learn how to solve
complex non-linear working memory tasks, thus making an
actual step into a more realistic representation of learning.
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