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THE NUMERICAL SOLUTION OF NONUNEAR VOLTERRA 
INTEGRAL EQUATIONS OF THE SECOND KIND BY 

COLLOCATION AND ITERATED COLLOCATION METHODS* 

J. G. BLOMt AND H. BRUNNER:): 

Abstract. The subject of this paper is a variable stepsize one-step method of collocation type for solving 
general nonlinear second kind Volterra integral equations. We extend the iterated collocation method 
corresponding to polynomial spline collocation to nonlinear Volterra integral equations of the second kind. 
The resulting superconvergence properties of either the collocation approximation or the iterated collocation 
approximation are used to obtain (local and global) error estimates which in tum form the basis of a variable 
stepsize code. The performance of this code is illustrated by means of numerous test problems. 
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0. Introduction. Most of the work on the numerical solution of Volterra integral 
equations of the second kind done to date deals with fixed-step methods. Recently, 
some automatic codes have been published. Some of these employ fixed stepsizes and 
make use of extrapolation tableaux to control the global error (VOLCON [13], 
IVRKX(C) [19]). Others use variable stepsizes based on local error controlling tech
niques (VOLTEX [14], RKVIEP [12], INTSOL [16], ORION [3], [17]). 

The variable stepsize method we propose offers the user the choice to control the 
global or the local error, with the possibility to control also the uniform error, as 
suggested by Arndt [2]. 

It is believed by the authors that iterated collocation is a very robust and not too 
expensive method to control the global error. Since there exists a class of problems to 
which this method cannot be applied, some other combinations of collocation methods 
are investigated. The performance of these methods was considerably improved by 
using uniform error control. 

The variable stepsize collocation methods described below have been implemented 
in a FORTRAN code COLVI2 (see [4]). 

1. Polynomial spline collocation. 
1.1. Exact collocation equations. Consider the nonlinear second kind Volterra 

integral equation, 

(1.1.1) y(t) = g(t) + L k(t, s, y(s)) ds, t EI:= (0, T], 

where g and k are given continuous functions on I and on S x IR (with S := 
{ ( t, s): 0 ~ s ~ t-;;?. T} ), respectively, and where k is such that ( 1.1.1) possesses a unique 
solution y E C(I) (compare, e.g., Miller [18], or Brunner and van der Houwen [10]). 

In order to discretize ( 1.1.1) let 

I1 N: 0 = t0 < t 1 < · · · < t N = T ( N?;;. 1) 
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denote a partition (or: mesh) for the given interval I, and set 

(n = 0, · · ·, N -1), 

(n = 1, · · ·, N -1), 

ZN := {tn: n = 1, ... , N -1} (the set of interior mesh points), 

and 

ZN := ZN u {T}. 

In the following analysis it will always be assumed that the mesh sequence {IlN} 

(NE N) is quasi-uniform; i.e., 

max(n) (hn) 
-~~-::; ')' < 00 
min(n) (hn) -

uniformly for NE N (for ease of notation we have suppressed the superscript N in 

t~Nl, h~NJ, indicating the dependence of these quantities on N). In the following 

h := maX(n) (hn) denotes the diameter Of the mesh flN• 
The exact solution y of ( 1.1.1) will be approximated in the polynomial spline space 

(1.1.2) 

whose elements reduce, on each subinterval <Tn, to (real) polynomials of degree not 

exceeding m -1 and which, in general, possess (finite) discontinuities at their knots 

ZN. Here, the value m = 1 yields, of course, the space of step functions having knots ZN. 

Let { cJ, with 0 ~ c1 < · · · < cm~ 1, be a given set of parameters, and define the sets 

( l.1.3a) 

and 

(l.1.3b) 

(n = 0, · · ·, N -1), 

N-1 

X(N) := U Xn. 
n=O 

The desired approximation u E S~2i (ZN) will be determined by requiring that u satisfy 

the integral equation (l.1.1) on the finite set X(N) ("collocation" on X(N)): 

u(t)=g(t)+ f k(t,s,u(s))ds for all tEX(N). 

This collocation equation may also be written as 

Un(t) = g( t) + L k( t, s, Un (s)) ds + ~~~ L+' k(t, s, uh)) ds, 

(1.1.4) t E Xn (n = 0, · · ·, N -1), 

thus explicitly exhibiting its recursive character. Note that if the collocation parameters 

{cj} are such that c1 = 0 and cm= 1, then the approximation defined by (1.1.4) will be 

continuous on I; i.e., we then have 

u E s~~1(ZN) := s~2iczN) n C(I). 

For the subsequent analysis we introduce the integrals 

if o~ i ~ n -1, 

(j=l,···,m). 
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With this notation the collocation equation (1.1.4) becomes 

n-1 
Un(tn)=g(tn,j)+hn<l>~~[un]+ L hi<l>~/[ui], 

i==O 

( 1.1.6) j = 1, · · ·, m (n = 0, · · ·, N -1). 

Setting 
m 

(1.1.7) Un (tn + Thn) = L Li( T) Yn,1, 
l=l 

with Yn,1 := un(tn,1), and where the polynomials 

L1(T):= fi (T-C") 
"=1 (c1-c,J 

represent the Lagrange canonical polynomials for the collocation parameters {ci}, we 
see that ( 1.1.6) represents, for each n = 0, · · · , N -1, a nonlinear system in Rm for the 
vector Yn := ( Yn, 1 , • • ·, Yn,m)T. Once Yn has been determined, the approximation u on 
the subinterval an is given by (1.1.7). 

1.2. Discretization of the collocation equations. In most applications the integrals 
(l.1.5) occurring in the collocation equation (1.1.6) cannot be evaluated analytically, 
and one is forced to resort to employing suitable quadrature formulas for their 
approximation. In the following we shall use m-point interpolatory quadrature formulas 
of the form 

(1.2.1) 
m 

~~l[u;] := I W1k(tn,j• t~1, ui(t~1)) if o~ i ~ n -1; 
1=1 

for the approximation of <l>~~[u,,] we shall employ either 

(1.2.2a) 
m 

ci>~~[un] :=I W1k(tnJ• tn,i. Un(tn,1)), 
1=1 

or 

(1.2.2b) 
m 

~~~[un]:= L Wj,1k(t,,,j> t,,+cjc1hn, Un(tn+cjc1hn)). 
l=l 

Here, the quadrature weights are given by 

W1 := L1 
L1( T) dT, 

and by 

(j, I= 1, · · ·, m). 

Note that when using the quadrature approximation (1.2.2a) we need kernel values 
k( t, s, · ) at points ( t, s) no longer contained in S (since tn,i > tn.i for l > j), while (1.2.2b) 
is based on the abscissas tn + cic1hn ~ t,,,i (i.e., the affine images of tn,l in [tn, tn.i]). 

The resulting fully discretized collocation equations are thus given by, respectively, 

n-1 

- ( ) - ( ) h Jf..(j) [ - ] ~ h ~(j)[ - ] Un tnJ - g ln,j + n'Vn,n U., + t.,, i'Vn,i U; , 

(1.2.3a) 
i=O 

j=l, · · ·,m (n = 0, · · ·, N -1); 



COLLOCATION METHODS FOR VOLTERRA INTEGRAL EQUATIONS 809 

and 

(1.2.3b) 
j= 1, · · ·, m (n=O,·· ·,N-1); 

they yield approximations ii and u in s;;;-2i(ZN) (whose restrictions to the subinterval 
crn are given by interpolation formulas analogous to (l.1.7)). These approximations 
will, in general, be different from the "exact" collocation approximation u defined by 
(1.1.6); due to the differing quadrature errors associated with (l.2.2a) and (l.2.2b) we 
have also ii -:;e u. However, the approximations u, ii, and u all exhibit the same order 
of (global and local) convergence; in particular, we have the following results (see, 
e.g., Brunner and van der Houwen [10]; compare also de Hoog and Weiss [15], Brunner 
[7] and Brunner and N0rsett [11]). 

THEOREM 1.1. Let g and k be smooth functions, such that (1.1.l) has a unique 
solution y which is sufficiently many times continuously differentiable on I, and let u, ii, 
U E s;;;-!.i (ZN) denote, respectively, the collocation approximations determined by ( 1.1.6), 
(1.2.3a), and (l.2.3b). 

Moreover, let p, p and p be the largest integers satisfying 

max IY(tn)- u(tn)I = O(N-p), 
lnEZN 

max IY(tn)- ii(tn)I = O(N-i>) 
tneZN 

and 

max IY(tn)- u(tn)I = O(N-fi) (as N ~ oo, with Nh;;;, yT fixed). 
tne.ZN 

(a) If the collocation parameters { cj} are given by the zeros of the Legendre poly
nomials Pm(2s -1) (i.e., the Gauss points for (0, 1)), then 

( l.2.4a) p=p=p=m. 

(b) If the {cj} are the zeros of Pm_ 1(2s-l)-Pm(2s-1) (i.e., the Radau II points 
for (0, 1]), then 

(l.2.4b) p=p=p=2m-l. 

(c) If the {cJ are the zeros of s(s-l)P;,,_ 1(2s-1) (i.e., the Lobatto points for 
[O, l]), then 

(1.2.4c) p = p = p = 2m -2. 

Note that jj attains the indicated values only if the kernel k( t, s, · ) is smooth not 
only for (t,s)ES but also for (t,s)ES':={(t,s): O~s;;;t+8}nixl, for some 8>0. 
This is, of course, a consequence of the special form of the quadrature approximation 
(l.2.2a). 

We also recall that the order of global convergence on I of these three spline 
approximations equals m. Hence, while collocation at the Radau II points or at the 
Lobatto points leads to a higher order of convergence on ZN ("local superconver
gence"), collocation using the Gauss points does not have this local superconvergence 
property (in contrast to polynomial spline collocation applied to initial-value problems 
for ordinary differential equations). 
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In order to prepare the ground for the convergence analysis for iterated collocation 
(§ 2) we consider a somewhat different discretization of the collocation equation (1.1.6). 
To be precise, let z E s;; 1)(ZN) be determined by the (exact) collocation equation 

n-1 

(1.2.5) Zn(tn) = g(tn,J) + hn<l>~~[zn] + L hi<l>~)[zi], 
i=O 

where now j = 1, · · · , m + 1, tnJ := tn + c1h"' with 0 ~ c1 < · · ·<cm< Cm+!= 1. Here, the 
integrals et>~! are as in (1.1.5) (except that now j varies between 1 and m + 1). These 
integrals are approximated by m-point (instead of (m + 1)-point!) interpolatory quad
rature formulas using abscissas based on the first m of them+ 1 collocation parameters; 
i.e., we employ again the quadrature approximations (l.2.1), (l.2.2a), (l.2.2b), with z 
replacing u, and with j ranging from 1 to m + 1. Accordingly, the two possible 
discretizations of (1.2.5) are given by 

n-1 
- ( ) - ( ) h ,i..(j) [ ~ ] " h ..$..(})[-] Zn tn,j - g tn,j + n '*' n,n Zn + I... i'*' n,i Zj , 

i=O 

(l.2.6a) 
j = 1, · · ·, m+l (n=O,-··,N-1), 

and 

n-1 
" ( ) - ( ) h ,$..(j) [ .. ] " h ,$..(j)[ .. ] Zn ln,j - g ln,j + n '*' n,n Zn + I... i'*' n,i Z; , 

i=O 

(1.2.6b) 
j=l,-··,m+l (n=O,···,N-1); 

these equations yield, respectively, approximations z and z in the space s~- 1 >(zN ). In 
analogy to (1.1.7) we set, e.g., 

m+l 
{1.2.7) Zn(tn + Thn) = L L1( T)Zn,1' 

I=! 

with Zn,1 == z., ( tn, 1 ), and with Lt ( T) denoting the Ith Lagrange canonfoal polynomial 
(of degree m) with respect to c 1 , • • • , cm+I • 

Consider first (1.2.6a): it follows from the quadrature approximation (1.2.2a) and 
from (1.2.7) that 

j = 1, · · ·, m + 1 

(note that L!+1(c1) = 0 for l = 1,- · -, m). Hence, the first m equations of (1.2.6a) 
(corresponding toJ = 1, · · ·, m) constitute a nonlinearsystem in 11.r for z ... i. · . ·, zn.m; 
t~e last equation (j = m + 1) then determines, in an explicit way, the approximation 
Zn,m+1 which, by Cm+1=1, equals Zn(t .. + 1) and thus approximates y(tn+ 1). 

Turning to the discretization (1.2.6b), we observe that now, by (1.2.2b), 

J=l,···,m+l, 

depends not only on z ... i. ... '~n,m, but also on Zn,m+I; hence, (1.2.6b) represents a 
nonlinear system in IRm+i, with Zn,m+i approximating y(t .. +1). 

The following theorem shows that the approximations generated by the discretiz
ations (1.2.6a) and (1.2.6b) exhibit the same order of convergence. 
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THEOREM 1.2. Let g and k be smooth functions, such that the integral equation 

( 1.1. l) possesses a unique solution y which is sufficiently many times continuously differenti

able on I, and let z, z, z E S~ 1 l(zN) denote, respectively, the collocation approximations 

determined by ( 1.2.5), ( 1.2.6a), and ( l.2.6b ). If p, fi and pare the largest integers satisfying 

ffi3:_X ly(tn)-z(tn)l=O(N-p), 
t11 eZN 

ma_x IY(U- z(tn)I = O(N-fi) 
t11 EZN 

and 

ffi3:_X ly(tn)-z(tn)l=O(N-fi), 
tnEZN 

and if the first m collocation parameters c1 , • • • , cm are the zeros of Pm (2s -1) (Gauss 
points for (0, 1) ), while Cm+I = 1, then 

(1.2.8) p =fi= p=2m. 

The assertion fi = 2m will hold only if the kernel k( t, s, · ) can be extended smoothly to 

the domain S' := {(t, s): 0 ;;;,is ;;;,it+ 8} n Ix I, where 8 > 0 is suitably chosen. 

A proof of this result may be found in Brunner [7], or in Brunner and van der 

Houwen [10]. 
We mention in passing that the discretized collocation equation ( l.2.6a) represents 

an m-stage implicit Volterra-Runge-Kutta method of Pouzet type (cf. Brunner, Hairer 
and Nj21rsett [9]). It will be shown in the next section (Theorem 2.1) that this method 

is equivalent to a certain discretized version of an iterated collocation method, in the 

sense that they both produce identical approximations to y on ZN. 

2. Iterated collocation approximations. 
2.1. Exact iterated collocation. Suppose that the collocation approximation u E 

S~2\(ZN) (defined by (1.1.6)) has been computed. The (exact) iterated collocation 

approximation u 1 corresponding to u is then defined by 

(2.1.l) u 1 (t):=g(t)+ I k(t,s,u(s))ds, t E J. 

(Compare also Brunner [8] and the references cited there for some background and 

history of iterated approximations for (linear) Fredholm and Volterra integral 

equations.) It is readily verified that u1 has the following properties: 
(i) u 1 E C(J) (while u is, in general, not continuous on I); 

(ii) ur (t) = u(t) for all t E X(N). 
This second property implies, in particular, that if cm= 1 (i.e., if ZN is a subset of the 

set X(N) of collocation points), then u 1 (tn) = u(tn) for all tn E ZN. 
In the following we shall be interested in the values u 1 Ctn ), tn E ZN, in the case 

when cm< 1. Setting 

(2.1.2) ct>n,i[u;]:= L k(tn, t;+rhi, ui(ti+rhJ) dr, O;;;,ii;;;,in-l;;;,iN-1, 

we may write (2.1.1) in the form 

n-1 

(2.1.3) U 1 (tn) = g(tn)+ L hict>n,i[u;], 
i=O 
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2.2. Discretized iterated collocation. The integrals (2.1.2) will, in general, have to 
be approximated by appropriate numerical quadrature; as in § 1.2 we choose m-point 
interpolatory quadrature formulas of the form 

(2.2.1) 
,. m 

<l>n,;[u;]:= L w,k(tn, t~i, U;(t~1)), 
l=l 

with quadrature weights {w1} as in (1.2.1). Moreover, as indicated in § 1.2, we shall 
usually not be able to compute u itself but only either ii E S~!.l(ZN ), or u E S~!.l(ZN) 
(i.e., the solutions of the discretized collocation equations (l.2.3a), (1.2.3b)). Accord
ingly, the discretization of (2.1.3) will be given either by 

(2.2.2a) 
n-1 

1.f(tn):=g(tn)+ L h;ci>n,;[U;], 
i=O 

with U E S~!.l(ZN) defined by (1.2.3a), or by 

(2.2.2b) 
n-1 

u1 (t") := g(t") + I h;ci>n,i[u;], 
i=O 

with ueS~!.i(ZN) given by (l.2.3b). 
In the convergence analysis for y(tn)-u 1 (tn) and y(tn)-u 1 (tn) the following 

result will play an important role. 
LEMMA 2.1. Let the iterated approximations ii1 (tn) and u1 (tn) be given by (2.2.2a) 

and (2.2.2b), and assume that g and k in (1.1.1) satisfy the customary smoothness 
hypotheses. If the collocation parameters {ci} are the zeros of Pm(2s -1) (Gauss points 
for (O, 1)), then 

(2.2.3) max lu 1 (tn)-u 1 (tn)l=O(N-2 m) (asN...-.oo, Nh~yT). 
t,.e.ZN 

Proof Assuming that k(t, s, y) has a bounded partial derivative ak/ay, with L 
denoting an upper bound for its absolute value, we obtain, using (2.2.2a) and (2.2.2b) 
together with (2.2.1), 

n-1 

lii 1 (tn)- u1 (tn)I ;;;! L h;!ci>n,;[ii;]-cl>n,i[u;]j 
i=O 

n-1 m 

~h L L lk(tno t;,1, U;(f~1))-k(tn, ti,lo U;(l;,1))! 
i=O 1=1 

n-1 m 

;;;! hL l: I lii;(t;,i)- u;(t~,)!, 
i=O /=l 

Here, we have used the fact that weights { w1} of the Gaussian quadrature formula are 
all positive and hence bounded by one (since L:;:1 w1 =1). An argument analogous to 
the one used in Brunner [8, pp. 1138-1139], involving the Gauss quadrature errors 
and a discrete Gronwall inequality, yields, observing ( 1.2.3a) and ( l.2.3b), 

iu;(t~,)- u;(t~1)!~ Ch 2 m, 1=1, · · ·, m (i = o, · · ·, N -1), 

with some constant C not depending on N. The estimate (2.2.3) now follows since 
Nh ;;;! -yT for all N EN. 0 

THEOREM 2.1. Let 0 ~ c1 < · · · <Cm< 1. Assume that u E S~!.l (ZN) is the solution 
of the discretized collocation equation (l.2.3a), and let i E S~l)(ZN) be determined by 
the discretized collocation equation (1.2.6a) (m-stage implicit Volterra-Runge-Kutta 
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method of Pouzet type), where the collocation parameters are 0 ~ c1 < · · · <cm < Cm+I = l. 
It then follows that 

(2.2.4) 

i.e., the values of the discretized iterated collocation approximation ii1 determined by 
(2.2.2a) are identical to the approximations i(tn) furnished by the m-stage implicit VRK 
method of Pouzet type (1.2.6a). 

Proof Using 

- m -
u;( t; + rh;) = L L1( T) Y.·,1, t; + rh; E <r;, 

l=l 

with Y;, 1 := u;(t;, 1), we may write (l.2.3a) as 

(2.2.5a) 
j=l,-·-,m (n = 0, · · ·, N -1), 

and (2.2.2a) becomes 

n-1 m 

(2.2.5b) u1 (t")=g(tn)+ I h; I w,k(t", ti/, Yi/), 
i=O l=l , , 

On the other hand, it follows from (l.2.7) that the first m equations of (l.2.6a) 
(j = 1, · · ·, m) assume the form 

n m 

zn.j=g(tn,j)+ I h; I w,k(tn,j• t;,1,Z;,1), 
i=O l=l 

(2.2.6a) 
j= 1, · · ·, m (n=O,···,N-1). 

This nonlinear system (2.2.6a) is identical with the nonlinear system (2.2.5a); hence, 
they possess, for all sufficiently small values of the mesh diameter h, the same solution: 
Yn,j = Zn,j• j = 1, ... ' m (n = 0, ... 'N -1). 

For j = m + 1 in (1.2.6a) we find, using Cm+!= 1 (and hence tn,m+I = tn+i), 

(2.2.6b) z(tn+I) = Zn,m+l = g(ln+l) + I h; I W1k(tn+1, t;,/, Z;,1) (n=O,···,N-1). 
i=O I=! 

Since Z;,1 =Yi.I (I= 1, · · ·, m; i = 0, · · ·, N -1), (2.2.6b) coincides with (2.2.5b) (with 
n replaced by n + 1), thus verifying (2.2.4). 0 

COROLLARY 2.1. Let g and kin (1.1.1) be subject to the smoothness hypotheses of 
Theorem 1.2, and let Ci. · · ·,Cm be the zeros of Pm(2s -1). If iir (tn) is defined by (2.2.2a), 
with ii E S~~i (ZN) denoting the solution of the discretized collocation equation (1.2.3a), 
then we have 

(2.2.7) max ly(t.)-ur (t")I = O(N-2 m) 
tnEZN 

(as N ~oo, with Nh ~ yT). 
Proof The above local superconvergence result follows readily from Theorem 1.2 

and from (2.2.4). 0 
In most applications one will not work with the discretized collocation equation 

(l.2.3a) and the corresponding discretized iterated collocation approximation (2.2.2a), 
since it may not be possible to extend the given kernel smoothly to the domain S'. 
Instead, the pair of discretized equations (l.2.3b), (2.2.2b) will be used: as (1.2.3b) 
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employs only kernel values k(t, s, ·)with (t, s) ES, (l.2.3b) and (~.2.2b) represent the 
natural discretizations of exact collocation and iterated collocat10n for (1.1.1). The 
following local superconvergence result holds. 

THEOREM 2.2. Let g and k in (1.1.1) be subject to the sm~othness hypotheses of 
Theorem 1.2, and let C1, •.• , Cm be the zeros of Pm(2s-1). If a (tn) is determined by 
(2.2.2b ), where U E s;,;-2:(zN) is the solution of the discretized collocation equation ( l.2.3b ), 
then we have 

(2.2.8) max ly(tn)-U. 1 (tn)I = O(N-2m) 
triEZN 

(as N 'co, Nh-;2 yT). 
Proof. The result of Theorem 2.2 can be established in complete analogy to (2.2.7) 

and (2.2.4), using (l.2.6b), (l.2.3b), and (2.2.2b). 
An alternative way to verify (2.2.8) consists of writing 

IYUn)-u 1(t,,)j;;;;;jy(tn)-u 1 (tn)l+lu 1 (tn)-u 1 (tn)I, tnEZN· 

Since the collocation parameters c1 , • • ·,cm are the Gauss points for (0, 1), (2.2.8) 
follows by Corollary 2.1 and by Lemma 2.1. 0 

We note in passing that the "exact" iterated collocation approximation ur defined 
by (2. l.1 ), with u E s;,;-2i (ZN) being the solution of the exact collocation equation 
( 1.1.6), satisfies also 

(2.2.9) max jy(tn)- u 1 (tnll = O(N-2m) 
tnEZN 

(as N' co, Nh;;;;; yT). 
This is an immediate consequence of 

jy( t,,)- u 1 (tnll;;;;; jy( In) - u 1 (tn)I + lu 1 ( tn)- u 1 (tnll 

and of the form of the Gauss quadrature errors determining the order of ar ( tn )- u1 ( tn ). 
Hence, (2.2.9) and (2.2.8) generalize the results of Brunner [8] to nonlinear Volterra 
integral equations. 

As an illustration for the above local superconvergence results, we mention the 
Case of linear polynomial Spline COiiocation (m = 2): if U E s;-I)(ZN) is determined by 
( l.2.3b ), with c1 = (3 -J3)/ 6, c2 = (3 + J3)/6, then the corresponding values u1 ( t11 ) given 
by (2.2.2b) are convergent of order p = 4: max,neZN jy(tn)- u1 (tn)I = 0( N-4 ). 

2.3. Polynomial solutions to (1.1.1). Suppose that the exact solution to ( 1.1.1) is 
a polynomial, y E 7Tm-1 • It is then clear that the (exact) collocation approximation 
u E S~2i (ZN) defined by ( 1.1.6) satisfies u( t) = y( t) for all t E J, since 7Tm-i is a subspace 
Of s;,;-.::(zN ). This no longer holds, however, for the COilocation approximation 
u E S~2~ (ZN) determined by the discretized collocation equation ( l.2.3b ). To see this, 
note first that 

y(t)- u(t) = (y(t)-u(t))+(u(t)-u(t)) 

=u(t)-u(t)= I L1(r)(Yn,1-Yn,1), 
l=I 

Let 

£Ul[u.J := <t>Ul[u.J-<f>U)[u.J n,1 i n,1 1 n,1 1 (i;;;;; n) 

denote the quadrature errors induced by the approximations (1.2.1), (1.2.2b) to the 
integrals (1.1.5). It follows from (1.1.6) and (l.2.3b), invoking a standard argument 
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based on a discrete Gronwall inequality, that the order of the differences Y,, 1 - Y111 is 
given by the order of the quadrature errors E~i[ud. According to the abov~ we thus 
obtain, e.g., 

{
O(N-2 m) if {ci} are the Gauss points; 

ma_x !y(t11 )- u(t11 )I = O(N-<2m-i)) if {ci} are the Radau II points; 
1"EZN O(N-<2 m-2l) if {ci} are the Lobatto points. 

Note in particular that if the collocation parameters { ci} are the zeros of Pm (2s -1) 
(Gauss points), then the errors y(t11 )-u(t11 ) and y(t11 )-u1 (t11 ) (cf. (2.2.8)) exhibit the 
same order of local superconvergence: 

max IY( tn)- u(t,,)i = O(N-2 m), 
tne.ZN 

max iy(t,,)- u1 (t,,)i = O(N-2 m) 
lnEZN 

(as N ~ oo, Nh ;I:. yT). 
This result will have certain implications in connection with global error estimation 

based on collocation at the Gauss points and corresponding iterated collocation (see 
§ 3.2.1). 

3. Variable stepsize method. A one-step method with variable stepsize can be 
separated into three major components: 

-a basic fixed-step method 
-an error estimator 
-a stepsize strategy. 

In this chapter these three components will be discussed. 

3.1. Fixed-step method. The underlying fixed-step method will be a collocation 
method as described in the previous chapters. The integrals will be approximated by 
interpolatory quadrature formulas. For the sake of convenience we give a summary 
of the formulas used to approximate the solution at the point t,,+ 1 ( cf. l.2.3b): 

(3.1.1) 
n-1 s 

F11 (t):= 2: hi 2: w1k(t,ti,1, i\1), j=l,···,m; s=morm-1. 
i=O I=! 

If cm= 1, the approximate solution in t,,+ 1 , 1'11 + 1 equals Yn,m· Otherwise, u,,+ 1 is either 
computed by Lagrange interpolation: 

m 

(3.1.2) Un+I = L L«(l) Y.,,K, 
K=) 

which is the discrete analogue of ( 1.1. 7), or by iterated collocation ( cf. 2.2.2b): 

(3.1.3) 

The free collocation parameters can be used to get a method that combines high 
accuracy with a minimum amount of work involved. The order p of the method is 
assumed to give an indication of the accuracy of the solution. The amount of computa
tional work involved is normally expressed by the number of kernel evaluations needed. 
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For various choices of collocation parameters these values are (see Theorem 1.1, 
Theorem 1.2 and Theorem 2.2): 

(a) Gauss-Legendre points Ci, · · ·,cm; s = m, 

p=m, 

N(N-1) 2 2. 
nkev= 2 m +Nnrm, 

(b) Gauss-Legendre points Ci, ···,Cm-I• Cm= 1; s = m-1, 

p=2m-2, 

N(N -1) 2 ( 2 ) 
nk = (m -m)+Nn1 m -m; ev 2 

(c) Gauss-Legendre points c1 , ···,cm+ Iterated collocation; s = m, 

p=2m, 

N(N-1) 2 2 
nkev= (m +m)+Nm+Nnrm; 

2 

(d) Lobatto points c1 , ···,cm; s = m, 

p=2m-2, 

nkev = N(N -1) (m -1)2+ 2N(m -1)+ Nnr(m -1)2 ; 
2 

(e) Radau II points Ci, ... 'cm; s = m, 

p=2m-1, 

N(N-1) z z 
nkev= 2 m +Nn1m. 

Here, N denotes the number of steps taken and n1 the number of iterations needed 
to solve the (non)linear system for Yn,j; n1 = 1 if the integral equation has a linear 
kernel, and n1 is bounded by a constant for nonlinear kernels. 

Notice the low number of kernel evaluations in the case of Lobatto points as 
compared to the amount needed when using (the same number of) Radau II points. 
This decrease in the number of kernel evaluations is caused by the fact that one can 
make use of the coincidence of the points tn-i + cmhn-i and tn + c1hn and reformulate 
(3.1.1) into: 

(3.1.l') 

Yn,j = g(tn)+ Fn(tn)+hnCjW1k(tn,j• tn, Un) 

+hncj 1t W1k(tn,j, tn+cjclhn, K~l LK(cic1)Yn,K), 

Fn(t) := how1k(t, to, y(to)) 

m 

+ hn-1 L Wik( t, tn-1,/, Yn-1,1). 
1=2 

}=2, · · ·, m, 

From the above, it seems that the method with the best accuracy/ computational work 
ratio will be obtained by using the Lobatto points. 
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3.2. Error estimation. To estimate the error in the approximate solution Un+i in 
the point tn+t one has the choice between global and local error estimation. Both will 
be treated below. 

3.2.1. Global error estimation. The global error in the point tn+i is defined by 
jy(tn+1)- un+1I· It is normally approximated by the difference between Un+i and a 
reference solution that is assumed to have a higher accuracy. We will compute the 
reference solution with a higher-order method using the same stepsize. 

If we consider the possible combinations of methods to approximate the solution 
and to compute the reference solution two of these appear to have the preference with 
respect to reliability and efficiency: Gauss-Legendre for the computation of Un+i 
combined with iterated collocation, using the same collocation points, for the reference 
solution, and Lobatto combined with a Lobatto method of the next higher order. 

If the error in un+i is O(N-2
K ), then the number of kernel evaluations for these 

two variants is approximately: 

Gauss2K +iterated collocation: 

LobattoK+1 + LobattoK+2 : 

(2K 2 +K)N2, 

2K 2 +2K + l 2 
2 N. 

For each method the index denotes the number of collocation points needed in order 
to obtain the desired order. 

Note, that Gauss+ (cm= 1), respectively Radau II combinations, need roughly the 
same number of kernel evaluations as the Lobatto method, and can be expected to be 
equally robust. 

Although the Gauss method seems obviously less efficient, it has some additional 
advantages. Its implementation is straightforward and it needs considerably less over
head. Besides, the order of accuracy not only of the reference solution but also of the 
quadrature part of the approximation doubles the order of u( t) in the steppoints, 
which makes it more robust for a variable stepsize method (see also § 3.3). However, 
as mentioned in § 2.3, it has one drawback. If the solution of the integral equation is 
a polynomial of degree <m, u(t) has an error of O(N-2m) not only in the collocation 
points but also in the steppoints. Since the reference solution is equally accurate this 
results in a very unreliable error estimate. It is however possible to detect this failure 
automatically and switch to another method whenever this undesired superconvergence 
in the steppoints occurs (see § 4.2). 

3.2.2. Local error estimation. In analogy to what is common practice in the theory 
of initial-value problems for ordinary differential equations, we define the local error 
as the error resulting from a single step of the approximating method, not taking into 
account the errors inherited from previous steps. So, the local error in the point tn+i 

is defined by: 

(3.2.2.1) 

with 

(3.2.2.2) Yn(t):=g(t)+Fn(t)+ L k(t,s,yn(s))ds 

(cf. Arndt [1]). 
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An estimation of the local error is obtained by approximating the integral by a 
higher-order method using the same stepsize, i.e., 

f '•+t k(tn+l> s, Yn(s)) ds = hn f W1k(tn+I • tn + C1hn, Yn,1), 
tn l=l 

(3.2.2.3) 

where 

Yn,j = g(tn + 0hJ + Fn(tn + Shn) 

(3.2.2.4) 
+ hn0 f w,k(tn + 0hn, tn + scihn, I i.«cii) Yn,tc)· 

l=l tc=l 
Note that it is assumed that c,;:, = 1. 

3.3. Stepsize strategy. Having an estimation of the error, we will now discuss how 
to determine the stepsize to limit this error to a user specified tolerance. 

The stepsize strategy consists of advancing the solution with a trial stepsize, then 
accept or reject the result and repeating the process with as trial stepsize a modification 
of the previous stepsize. This modification should account for the (lack of) accuracy 
in the accepted or rejected trial solution. It should result in as large a stepsize as 
possible while still providing an accuracy that satisfies the specified tolerance. 

The control of the global error in a steppoint, say tn+t •is a straightforward process 
if a global error estimation is available. A trial solution will then be accepted if the 
global error estimation is less than the specified error tolerance, i.e., 

(3.3.1) GEEn+t ~ TOL. 

The modification of the stepsize reads: 

(3.3.2) ( 
TOL )i;p 

hnew = hn GEBn+I • 

Here, p is the order of the underlying method, and hnew stands for hn+t if the trial 
solution has been accepted, and otherwise for hn. 

Note that, once a certain point tn+t has been reached, we cannot control the error 
in the lag term part any more, since the approximating solution for that part of the 
interval has already been accepted. This means that it is defensible to control only the 
local error and assume that the global error in the endpoint will be more or less equal 
to the sum of the local errors. 

In this case one accepts a trial solution only if 

(3.3.3) 
TOL· h" 

LEEn+t~ , 
tn+I 

and modifies the stepsize by: 

( TOL · hn )i;q 
(3.3.4) hnew = hn , 

tn+I • LEBn+I 

where q is the order of the quadrature formula to approximate the integral. 
So far, the stepsize strategy is completely analogous to the strategy used in variable 

stepsize methods for ordinary differential equations. However, the intention is to limit 
the global error over the whole interval to the user-defined tolerance, i.e., to have 

jy(t)-u(t)j~TOL forO~t~T. 
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'"The disadvantage of proceeding in the same way as in the case of OD Es is, as Arndt 
([1], [2]) points out, that the consequence of accepting the approximated solution to 

f~ture quadrature computations is not taken into account. This means that the assump
t:1on tha~ the sum of the local errors equals the global error in the endpoint is not 
necessanly valid. 

To obviate the problem of the possibly large errors in future lag term computations, 
once tn+1 has been reached, one has to demand that: 

!y(t)-u(t)j ~ TOL for all t E [tn+1> T]. 

This reads in discretized form: 

(3.3.5) 
for t1 = T, T- H, · · ·, tn+ 1, with H some fixed number. 

Let 

(3.3.6) EE~+ 1 = L+1 k(t1, s, y(s)) ds - hi i
1 

wjk(t1, ti,J• ¥;,J). 

Then (3.3.5) is satisfied when 

jI IEE~+1I+ '~~~ EE:+ll ~ TOL. 

In this way one gets, as Arndt suggests, a modified stepsize strategy that strives for a 
uniform control of the error, i.e., let 

(3.3.7) 

Accept the trial solution in tn+i if 

(3.3.8) EEn+i~ TOL. 

The modification of the stepsize is 

(3.3.9) hnew = hn ( TQL )l/q' 
EEn+I 

with q the order of the quadrature formula. 
Note that although global error control does not lead to an erroneous error estimate 

in the endpoint, it is certainly possible that by allowing too large a stepsize at the start, 
it will be impossible to meet the tolerance as the integration advances, due to an 
unacceptably large error in the lag term. Therefore, to avoid problems later on, it seems 
advisable to use the global error control without the uniform error control only if p « q, 

which is the case for the Gauss collocation method combined with iterated collocation 
to estimate the global error. 

4. Implementation. For the miscellaneous programming matters and heuristics, 
e.g., stepsize constraints, the solution of nonlinear systems, etc., we refer to Blom and 
Brunner [ 4]. Here, we consider two more general topics. 

4.1. Approximation of the lag term. The lion's share of the computational work 
in all methods is the approximation of the lag term by some quadrature rule. Moreover, 
for all methods except the iterated collocation method the additional storage space 

needed for all Yn,j is substantial. 
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However, the number of kernel evaluations needed to compute the reference 
solution can be significantly reduced by approximating the lag term by Lagrangian 
interpolation instead of using a quadrature formula. Interpolation over m points yields 

( 4.1.1) 

and adds an additional interpolation error of O(h;), unless the kernel satisfies k E TTm- 2 · 

So, in general, this interpolation gives rise to a reference solution of O(h:;'), which is 
not adequate. 

However, one can also interpolate over 2m points 

( 4.1.2) 

where 

m=2m 

and 

j= 1, · · ·, m, 

_ hn-1 + C1hn 
C·= 
J hn-1 + hn' 

j=m-m+l,···,m; l=j+m-m, 

and where the £" denote the Lagrange canonical polynomials corresponding to the 
0· This interpolation introduces an error of O((hn_ 1+hn)'"), unless kE 11'm_2 , which 
is small enough to preserve the legitimacy of the reference solution in case the 
approximating method is based on Gauss collocation. 

For all other methods that are mentioned in § 3.1 this kind of approximation of 
the lag term cannot be used when computing the global error estimation, since the 
error in the A will always be a spoiling factor, no matter how accurate the interpolation 
will be. However, since local error estimation needs only the values of Fn in some 
intermediate points, one can use the interpolation formula (4.1.2) which is sufficiently 
accurate for all methods described. 

Note that for Lobatto collocation the value of m is 2m -1 instead of 2m, due to 
the coincidence of tn-l + Cmh,,_ 1 and tn + c1hn. 

4.2. Detection of a polynomial solution when using Gauss collocation. As mentioned 
in § 2.3 the Gauss method yields an error of 0( N-2m) in the steppoints if the solution 
is an element of 11'm-t • If the reference solution is equally or less accurate, then this 
results in an unrelia~le global error estimate. One can detect this error by computing 
the approximations Y,,,j toy( tn + cjhn/2) and use Lagrangian interpolation to compute 
the solution at some point of the interval [tn, t,, + hn/2], say tn, both with these 
approximations and with the Ynj· If y~11'm-1o then e1 =ly(rn)-unl=O(h;) and 
e2 = ly(t,,)- zlnl = O((h,,/2)m). So, if e1/ e2 = zm, the order of the Gauss method is as 
expected. 

To avoid the computation of the quadrature of the lag term, we use Lagrange 
interpolatipn over the polnts 0.0, cj, 1.0. No additional kernel evaluations are needed, 
since the F,,(t,,) and the Fn(tn+ 1) already have been calculated during the computation 
of the reference solution in tn, respectively tn+t · Now, if e1/ e2 « 2m, then it is almost 
certain that y E 1T m-1 • 
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Note that if bothy E 7Tm-i and J~" k(t, s, y(s)) ds E 7rm+l •then it is not clear what 
"the value of the ratio e1/ e2 will be. But in this case the approximation of both the lag 
"term and the solution is "exact'', which means that the only problem that can arise is 
an unjustifiable rejection of the current combination of methods for approximating 
t:he solution and the reference solution. 

5. Numerical performance. The ideas presented in the preceding sections have 
resulted in a FORTRAN code named COLV12; compare Blom and Brunner [ 4], where 
a description of this code and its usage is given. 

To show some properties of the code, we tested it on the six problems that were 
used by Schlichte [19] to compare his method, IVRKX, with the codes ORION of 
Bader and Kunkel [3], VOLTEX of Hock (14], and VOLCON of Hairer, Lubich and 
Schlichte [13]. The performance data of these codes for the six problems are listed in 
t:he Appendix. We also added the results of VEl of Bownds and Appelbaum [6], [5] 
and of INTSOL of Jones and McKee [16], insofar as we could find these results in 
the literature. (See Tables Al and A2.) 

The tests were performed on a CDC CYBER-750, in single precision (a machine 
precision of approximately 14 digits). 

The problems are: 
{l) (problem 4 from Schlichte) 

( 1 2 • I· ( t - s )2 
s • ( ) d [ 1 yt)=-te-+ --e-·ys s fortE0,5 

2 0 2 

with solution: 

y(t) = ~( 1- e-~· [cos G tv'3) +vJ sin G tv'3) ]} 
(2) (problem 15 from Schlichte) 

y(t) = 1 +(sin (t))2 - L 3 sin (t-s) · y2(s) ds for tE[O, 5] 

with solution: 

y(t) =cos (t); 

(3) (problem 19 from Schlichte) 

It 2 
y(t)=cos(t)- 2 ·(y(s)+y3(s))ds 

0 (t-s+2) 

with solution: 

y{40) = -0.65013110133344; 

(4) (problem 20 from Schlichte) 

for t E [0, 40) 

f' 3 s-r Y4(s) d f t [O 10] 
y(t)=l+ 

0 
(t-s) (4-t+s) e · 1+ 2y2(s)+ 2y4(s) s or E , 

with solution: 

y(lO) = 1.2599558233723; 

(5) {problem 16 from Schlichte) 

y(t)=e-•+ L e•-'[y(s)+e-y(s)]ds fortE[0,40] 
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with solution: 

y ( t) = ln ( t + e); 

(6) (problem 21 from Schlichte) 

y(t)=t-l+(l+t2)e-'2 + L t 2 e-'5 ·y(s)ds fortE[0,5] 

with solution: 

y(t) = t. 

The following combinations of methods for the approximation of the solution, respec
tively the reference solution, have been used: 

Gm+IG 
lGm + lG(m + 1) 

Lm+L(m+l) 
Rm+R(m+l) 

m points Gauss+ iterated collocation, 
m -1 Gauss points+ (cm= 1), together with 
m Gauss points+(cm+i = 1), 
m, combined with m + 1 points Lobatto collocation, 
m, together with m + 1 points Radau collocation. 

As stepsize strategies we used global error estimate/ global error control ( G ), and, if 
applicable, local error estimate/local error control (L). In the latter the lag term needed 
for the reference solution has been approximated by interpolation (cf. 4.1.2). 

The meaning of the headers in the tables is: 

sd number of significant digits: - 10log ly(T)-u(T)l/max (1.0, jy(T)I); 
EE/GE ratio between the global error estimate in T and the real global error. 

Note: if the local error is uniformly controlled, the global error in T is 
estimated by: r.:~ 1 EE:+1> with t1 = T (cf. 3.3.6); 

N number of intervals used; 
#Ftot number of failed steps in total; 
# F 0 number of failed steps at the start in t = 0.0; 
#kev total number of kernel evaluations needed. 

Table 5.1 gives the results that are obtained when no special care has been taken. 
For example, for the (iterated) Gauss method, no testing on polynomial solutions has 
been done, and for the other methods, the error is not uniformly controlled. 

For all experiments the initial stepsize was 1.0; the maximal stepsize allowed was 
5.0, which was actually used in problem 5. 

All failures in Table 5.1 were due to a rejection of a step with the minimum 
allowed stepsize, which was 5 E-3. 

As was expected, problem 6, with solution y = t, resulted in a bad performance 
for the Iterated Gauss method; but problem 5, with solution y =In (t+ e), also seemed 
to suffer from a bad error estimate. Both problems were rerun with the polynomial 
test on and with an automatic escape to a local error estimate and uniform local error 
control Gaussm, Gaussm+I + (cm+2 =1) combination. The escape was made after two 
consecutive occurrences of polynomial behavior, and the last three steps were discarded. 
As can be seen in Table 5.2, in most cases an escape was needed. 

In Table 5.3 the results are listed that were obtained by using a uniform error 
control, or rather an error control in discrete points spaced 1.0. Here, if a step was 
rejected which already had a minimum size, the tolerance was relaxed by a factor 4 
and the computation was resumed. 

Recall that when using iterated Gauss collocation to compute the reference solution 
there is no need to employ a uniform error control (see § 3.3). 
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TABLE 5.1 

Results for method combinations, without special features. 

Prob.1 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd EE/GE N 
#F 

#kev sd 
#F 

#kev EE/GE N 
tot 0 tot 0 

G G4+1G 5.2 1 8 2 2 760 9.3 I 33 5 3 12100 
G 1G4+1G5 4.6 1 4 0 0 320 7.1 1 12 2 1 2592 
G L4+L5 4.5 1 4 0 0 278 7.1 1 12 2 I 2123 
G R3+R4 4.5 1 5 1 0 425 --- - - - - ---
G G8+1G 7.4 1 3 0 0 432 9.8 1 4 0 0 720 
G IG6+1G7 8.2 1 3 0 0 432 8.2 1 3 0 0 432 
G L6+L7 8.5 1 3 0 0 399 8.1 I 4 0 0 654 
G R5+R6 6.8 I 3 0 0 366 8.0 I 4 0 0 610 
L IG4+1G5 4.6 4 0 0 276 7.1 11 2 I 1311 
L L4+L5 4.5 4 0 0 282 7.1 II 2 I 1213 
L R3+R4 5.6 6 2 0 472 4.9 20 2 0 2612 
L 1G6+1G7 8.2 3 0 0 429 8.2 3 0 0 429 
L L6+L7 8.5 3 0 0 438 8.1 4 0 0 634 
L R5+R6 6.8 3 0 0 366 8.0 4 0 0 538 

Prob. 2 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd EE/GE 
#F 

#kev sd EE/GE 
#F 

#kev N N 
tot 0 tot 0 

G G4+1G 6.0 SE-I 9 3 I 1596 8.4 1 43 5 2 21988 

G 1G4+1G5 --- - -- - -- --- -- - - ---
G L4+L5 --- - -- - --- -- - - - --
G R3+R4 --- - -- - -- --- - -- - - --
G G8+1G 6.2 I 3 0 0 1136 8.4 IE-1 4 I 0 2152 

G 1G6+1G7 5.2 IE-1 3 0 0 1224 -- -- - - --
G L6+L7 4.1 I 3 0 0 1070 --- - -- - - ---
G R5+R6 --- - -- - --- --- - -- ---
L IG4+1G5 1.5 7 1 0 1396 4.9 22 5 I 6429 

L L4+L5 1.3 8 2 0 1535 4.6 23 4 1 5425 

L R3+R4 2.8 12 4 I 2251 5.6 45 8 2 14730 

L 1G6+1G7 5.2 3 0 0 1221 6.3 5 I 0 2490 

L L6+L7 4.1 3 0 0 1109 5.9 5 I 0 2246 

L R5+R6 2.9 4 I 0 1672 5.4 7 I I 2740 

Prob. 3 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd 
#F 

#kev sd 
#F 

#kev EE/GE N EE/GE N 
0 tot 0 tot 

G G4+1G 4.2 I 70 31 2 75696 8.7 I 366 72 4 1615392 

G IG4+1G5 5.6 2 34 14 0 31552 7.9 I 98 41 2 231828 

G L4+L5 4.7 I 43 20 0 38350 8.6 I 104 50 2 214553 

G R3+R4 4.5 1 44 18 0 39759 7.3 1 175 52 2 513900 

G G8+IG 6.2 I 27 13 0 48824 7.1 1 54 19 2 154616 

G IG6+1G7 5.3 1 15 2 0 14832 7.2 1 33 9 0 61242 

G L6+L7 5.3 I 17 I 0 13679 7.9 I 39 12 I 73395 

G R5+R6 5.0 1 28 7 0 37235 7.8 I 45 JO I 88511 

L 1G4+1G5 6.1 54 21 0 34093 9.5 176 45 2 262811 

L L4+L5 7.2 57 13 0 26104 9.9 190 47 2 226241 

L R3+R4 6.3 90 30 0 58567 9.2 358 68 2 714682 

L IG6+1G7 7.3 26 5 0 21167 9.2 50 18 0 72508 

L L6+L7 6.8 28 s 0 21113 9.3 so II 1 55681 

L R5+R6 6.8 28 3 0 18805 9.8 61 24 I 87408 
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TABLE 5.1. (Continued) 

Prob. 4 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

#F #kev sd N 
#F 

#kev Method sd EE/GE N EE/GE 
tot 0 tot 0 

G G4+1G 4.5 I II 5 I 2224 7.7 I 50 9 3 29588 

G IG4+1G5 4.9 1 10 0 0 2368 7.5 I 32 3 2 19168 

G L4+L5 4.8 I 10 0 0 1920 7.4 I 33 3 2 16102 

G R3+R4 5.2 I 15 2 I 3841 7.3 I 60 2 2 48541 

G GS+IG 7.5 I 4 0 0 1360 8.8 I 7 I 1 3240 

G IG6+1G7 5.7 I 5 0 0 1872 7.5 I 7 0 0 3240 

G L6+L7 5.6 I 5 0 0 1641 7.1 1 7 0 0 2761 

G R5+R6 6.0 I 5 0 0 1525 8.0 I 9 0 0 3843 

L IG4+1G5 6.1 12 I 0 2255 8.1 42 3 2 15303 

L L4+L5 6.3 13 I 0 2168 8.1 44 3 2 13338 

L R3+R4 4.7 21 2 I 3749 7.6 90 3 2 42831 

L IG6+1G7 5.7 5 0 0 1657 8.3 8 0 0 2896 

L L6+L7 5.6 5 0 0 1526 8.4 8 I 0 3001 

L R5+R6 5.5 6 0 0 1689 7.8 IQ I 0 3709 

Prob. 5 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd 
#F 

#kev sd 
#F 

#kev EE/GE N EE/GE N 
tot 0 tot 0 

G G4+1G 3.2 -5E-3 II 0 0 1672 5.8 -6E-3 39 2 2 16984 

G IG4+1G5 4.3 I 29 0 0 15776 7.3 I 93 I I 146048 

G L4+L5 4.3 I 30 0 0 13335 7.3 I 98 I I 127043 

G R3+R4 4.2 I 51 1 0 35325 7.3 1 227 3 2 658650 

G G8+IG 9.2 5E-5 10 0 0 5432 9.3 4E-4 II 0 0 6672 

G IG6+1G7 5.0 1 JO 0 0 5616 7.5 I 17 0 0 13968 

G L6+L7 4.9 1 JO 0 0 4868 7.5 1 18 0 0 13252 

G R5+R6 4.3 I 11 0 0 5551 7.5 1 24 0 0 21594 
L 1G4+ IG5 4.2 27 0 0 7349 7.3 92 I 1 61043 
L L4+L5 4.6 33 I 0 8367 7.4 99 I I 54443 
L R3+R4 4.1 47 0 0 13581 7.2 208 2 2 212869 
L IG6+ 107 5.3 11 0 0 4693 7.0 15 3 0 8856 
L L6+L7 5.5 II 1 0 4538 8.0 19 0 0 9258 
L R5+R6 4.9 12 I 0 4791 7.0 20 I 0 9826 

Prob. 6 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd EE/GE N 
#F 

#kev sd #F 
EE/GE N #kev 

tot 0 tot 0 

G G4+1G 3.9 -7E-3 3 0 0 120 3.9 -3E-5 5 2 0 400 
G IG4+1G5 -- -- - - ---- --- - -- - ----
G L4+L5 -- - - ---- --- -- - ----
G R3+R4 -- -- - - ---- -- -- - ----
G G8+1G 10.4 -4E-4 3 0 0 432 10.4 -4E-4 3 0 0 432 
G IG6+1G7 5.5 I 3 0 0 432 -- - -- - - ----
G L6+L7 5.4 I 3 0 0 399 --- -- - ---
G R5+R6 4.7 I 3 0 0 366 --- -- - ---
L IG4+IG5 2.5 4 I 0 327 3.8 9 3 I 1044 
L L4+L5 2.4 4 I 0 332 3.8 9 3 I 987 
L R3+R4 1.9 5 I 0 336 3.3 14 5 I 1679 
L IG6+ IG7 5.5 3 0 0 429 5.5 4 1 0 745 
L L6+L7 5.4 3 0 0 438 5.5 4 I 0 744 
L R5+R6 4.7 3 0 0 366 4.7 4 I 0 635 
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TABLE 5.2 
Results for Iterated Gauss; esc. to Gaussm + Gaussm+i + (cm+2 =1), local error control. 

Prob. 5 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd EE/GE N 
#F 

#kev sd 
#F 

EE/GE N #kev 
tot 0 tot 0 

G 04+IG escape at t - 2.3 escape at t = 3.2 
L 04+106 4.5 6E-2 14 6 0 8604 6.2 IE-3 33 9 2 21541 

0 Gs+IG escape at t - 21.0 escape at t = 2.7 

L GS+lGIO 9.2 -IE-1 10 3 0 11537 9.3 -3E-2 11 2 0 16360 

Prob. 6 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd EE/GE N 
#F 

#kev sd 
#F 

#kev EE/GE N 
tot 0 tot 0 

G G4+1G escape at t - 2.8 escape at t 5 1.8 

L 04+106 7.3 1 7 4 2 1417 9.6 1 II 5 2 2436 

G Gs+IG 10.4 -4E-4 3 0 0 624 10.4 -4E-4 3 0 0 624 

L GS+IGIO 

The failures in Table 5.3 were caused by a lack of working storage, which occurred, 
depending on the method used, after about 200-350 successful steps. 

Furthermore, we tried for one problem what the influence is if only the stepsize 
is adjusted according to the estimated error, but if no steps are rejected. Although in 
most cases this results in fewer kernel evaluations (if the code reaches the endpoint), 
it is by far not as reliable. 

To present a survey of the performance of the code on these six problems a 
-weighted sum has been computed over all (available) "sd"- and ":#=kev"-values. The 
-weights are inversely proportional to the square of the length of the interval on which 
the solution has been computed. 

Table 5.4 contains the figures of the average performance of the different methods. 
For the iterated collocation method the results have been taken from Table 5.1 and 
5.2 for problems 1-4, respectively 5 and 6. For the other methods the "sd"- and 
... :#=kev"-values of Table 5.3 have been used. The results in the first column are the 
average results computed over all problems. The second contains the average values 
"When the "bad ones" are left out, i.e., for the Gauss+ Iterated collocation method 
problems 5 and 6, and for all other methods problem 2. 

To illustrate how the code performs in extreme cases we tried an example with a 
discontinuous solution. We chose for this test the problem: 

with: 

y(t)={:;t 

y(t)=g(t)+J:y(s)ds forte[0,5] 

t;;;;; 2.5 
t>2.5 

{ t- t2/2, 
and g(t)= 1/t-3.125-ln(t)+ln(2.5), 

t;;;;; 2.5, 
t>2.5. 

In Table 5.5 the results are listed that were obtained using the same features as 
in Table 5.4; i.e., in case of the Gauss method the solution was tested on polynomial 
behavior and in all other methods the error was controlled uniformly in discrete points 
spaced 1.0. 

In all tests it was allowed to relax the tolerance. This has been done repeatedly 
in the last point before the discontinuity for all entries in the table where the number 
of failures in 2.5 is greater than 10; for the G8+ IG combination until the tolerance 
reached a value greater than 0.4 and for all other methods until it was greater than 1.6. 
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TABLE 5.3 
Results with uniform error control and tolerance relaxing. 

Prob. 1 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd 
#F 

#kev sd 
#F 

#kev EE/GE N EE/GE N 
tot 0 tot 0 

G IG4+IG5 4.8 I 4 0 0 390 7.2 I JO I I 20I6 
G IA+L5 4.6 I 4 0 0 368 7.2 I 11 I I 2056 
G R3+R4 4.6 I 5 I 0 548 7.2 I I8 2 2 4752 
G IG6+1G7 8.2 I 3 0 0 53I 9.0 I 4 0 0 830 
G L6+L7 8.5 I 3 0 0 516 8.9 I 4 0 0 784 
G R5+R6 6.8 I 3 0 0 465 8.3 I 4 0 0 731 
L IG4+1G5 4.8 SE-I 4 0 0 346 7.3 3E-I II I I 1498 
L IA+Ll 4.7 I 4 0 0 372 7.3 4E-I II I I I478 
L R3+R4 5.7 -I 6 I 0 536 8.2 2E-I 22 3 2 3631 
L IG6+IG7 8.2 I 3 0 0 528 9.0 I 4 0 0 742 
L L6+L7 8.5 -2 3 0 0 555 8.9 I 4 0 0 764 
L R5+R6 6.8 2 3 0 0 465 8.3 I 4 0 0 659 

Prob. 21 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd EE/GE 
#F 

#kev sd 
#F 

#kev N EE/GE N 
tot 0 tot 0 

G 1G4+1G5 3.2 1 53 14 I 5552I 6.6 I 24 I6 2 20762 
G L4+L5 3.1 I 19 16 I 9849 7.4 I 24 16 2 16953 
G R3+R4 4.3 I 70 4 2 65979 6.0 l 54 17 3 50337 
G 1G6+1G7 4.8 l 4 0 0 1766 6.4 I 115 13 I 506569 
G L6+L7 4.1 l 4 0 0 1577 --- - -- - ---
G R5+R6 -- - -- - - --- 6.1 I 8 18 I 12305 
L IG4+1GS 3.5 -IE-1 9 2 1 2204 6.3 -SE-2 26 3 2 8058 
L IA+Ll 3.8 -IE-1 9 2 I 1943 6.3 -5E-2 27 3 2 7345 
L R3+R4 3.1 2E-2 15 5 2 3446 5.7 8E-3 52 4 3 18608 
L IG6+1G7 4.8 2E-1 4 0 0 1678 6.4 -4E-2 6 I I 3026 
L L6+L7 4.1 5E-2 4 0 0 1557 6.3 -3E-2 6 1 I 2776 
L R5+R6 3.0 -5E-3 4 0 0 1452 6.3 -IE-2 8 I I 3481 

Prob. 3 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd EE/GE N 
#F 

#kev sd 
#F 

#kev EE/GE N 
tot 0 tot 0 

G IG4+1G5 5.0 I 33 6 0 30327 7.4 I 105 26 2 252649 
G L4+L5 4.5 I 38 12 0 37036 8.3 I ll3 32 2 242699 
G R3+R4 4.6 1 51 24 0 63912 7.5 I 186 23 2 526699 
G 1G6+1G7 4.8 I 16 0 0 17587 8.3 I 37 8 0 82764 
G L6+L7 6.1 I 18 2 () 21046 8.9 I 40 12 I 90095 
G R5+R6 5.3 I 27 5 0 40615 7.8 1 44 7 1 91051 
L IG4+1G5 6.1 1 55 25 0 47213 9.6 I I77 5I 2 297461 
L L4+L5 6.5 3E-1 60 20 0 44I97 9.9 2 189 44 2 263067 
L R3+R4 6.3 I 89 30 0 73244 9.2 l 359 68 2 769421 
L 1G6+1G7 7.3 -1 26 5 0 28064 9.1 1 48 16 0 80400 
L L6+L7 7.7 6 28 4 0 28346 9.2 1 50 12 1 71930 
L R5+R6 6.9 -6 28 3 0 25616 10.0 2 63 22 I 106765 

1 The tolerance has been relaxed two times in all global methods except for the R3 + R4, the 106 + 107, 
and the L6 + L7 combinations with tolerance 1 E-4. 

The "bad" error estimates for the Gauss method can be explained by the fact that 
the approximation is "exact" until the discontinuity has been reached and therefore 
the code gives no warning that the solution is a polynomial. The step that covers the 
discontinuity results in one warning, but since in the next step the solution is no longer 
a polynomial no escape will be made. 
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TABLE 5.3. (Continued) 

Prob. 4 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd EE/GE N 
#F 

#kev sd 
#F 

#kev EE/GE N 
tot 0 tot 0 

G 1G4+1G5 4.9 I 10 0 0 2697 7.4 1 32 2 2 20422 
G L4+L5 4.8 1 10 0 0 2370 7.5 1 34 2 2 18776 
G R3+R4 5.3 I 15 1 I 4320 7.3 1 60 2 2 51008 
G IG6+1G7 5.8 I 5 0 0 2158 8.8 I 8 I 0 4904 
G L6+L7 5.7 I 5 0 0 1979 8.6 I 8 I 0 4401 
G R5+R6 6.0 I 5 0 0 1822 8.8 1 10 1 0 5818 
L IG4+1G5 6.1 -I 12 1 0 2724 8.1 -3E-l 42 2 2 16896 
L L4+L5 6.3 -5 13 I 0 2816 8.1 -2E-1 44 2 2 15506 
L R3+R4 4.8 -8E-2 21 2 I 4603 7.8 -2E-I 90 2 2 46162 

L IG6+1G7 5.7 -2E+I 5 0 0 1901 8.5 2 8 1 0 3837 

L L6+L7 5.6 -5 5 I 0 2124 8.2 -1 8 0 0 3177 
L R5+R6 6.7 -2E+ I 6 I 0 2310 7.9 I II I 0 4816 

Prob. 5 Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd 
#F 

#kev sd 
#F 

#kev EE/GE N EE/GE N 
tot 0 tot 0 

G IG4+1G5 4.3 l 29 0 0 19535 7.3 I 92 I I 155629 

G L4+L5 4.3 I 30 0 0 18375 7.3 1 97 I I 141564 

G R3+R4 4.2 l 51 I 0 42108 7.3 1 225 3 2 678032 

G IG6+ 1G7 5.0 I 10 0 0 7948 7.5 1 17 0 0 17543 

G L6+L7 4.9 I 10 0 0 7624 7.5 1 18 0 0 17555 

G R5+R6 4.3 1 II 0 0 7960 7.5 1 24 0 0 26478 

L IG4+1G5 4.2 3E-2 27 0 0 10898 7.3 2E-2 92 I I 73391 

L L4+L5 4.6 3E-2 33 I 0 14145 7.4 3E-2 100 1 I 72694 

L R3+R4 4.1 2E-2 47 0 0 19580 7.2 2E-2 208 2 2 240743 

L IG6+ IG7 5.3 -IE-2 11 0 0 7102 7.0 -6E-4 15 3 0 13036 

L L6+L7 5.5 1 II I 0 7853 8.0 6E-2 19 0 0 14016 

L R5+R6 4.9 -3E-I 12 1 0 7838 7.0 -6E-3 20 1 0 14468 

Prob. 6 Requested tolerance l E-4 Requested tolerance l E-7 

Method sd 
#F 

#kev sd 
#F 

#kev EE/GE N EE/GE N 
tot 0 tot 0 

G 1G4+1G5 7.7 I 9 2 2 1805 8.7 1 21 3 3 8174 

G L4+L5 7.1 I 9 2 2 1648 8.6 1 21 3 3 6918 

G R3+R4 6.3 1 12 2 2 2392 8.4 I 38 4 4 19892 

G 1G6+1G7 5.6 I 5 0 0 1223 10.I 1 8 2 2 3154 

G L6+L7 5.5 1 5 0 0 1152 JO.I I 8 2 2 2922 

G R5+R6 5.7 I 6 I I 1573 10.2 I 9 2 2 3340 

L IG4+1G5 6.8 1 9 2 2 1277 9.2 I 21 3 3 4401 

L L4+L5 6.9 I 9 2 2 1315 9.1 1 22 3 3 4383 

L R3+R4 6.9 1 12 2 2 1549 8.7 1 40 4 4 10090 

L IG6+1G7 5.6 I 5 0 0 1019 10.0 I 8 2 2 2339 

L L6+L7 5.5 1 5 0 0 1050 9.9 1 8 2 2 2345 

L R5+R6 5.7 1 6 I I 1260 9.7 I 9 2 2 2401 

6. Conclusions. It is clear that, in general, higher order results in a better perfor
mance. 

In most cases local error estimation used in the higher-order methods does not 
seem to yield a significant decrease in the total number of kernel evaluations. Since it 
is less reliable than global error estimate/ control, which moreover supplies a global 
error estimate in the endpoint for free, it seems advisable to use global error control 
in the stepsize strategy. 
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TABLE 5.4 
Average performance. 

All problems Selected problems 

Method Toi. 1 E-4 Toi. 1 E-7 Toi. 1 E-4 Toi. 1 E-7 

sd #kev sd #kev sd #kev sd #kev 

G G4+1G 5.3 941 8.3 11583 5.0 1023 8.5 16681 

0 08+1G 7.8 579 9.0 1162 6.8 667 8.5 1524 

0 1G4+1G5 5.0 9861 7.4 7072 5.3 729 7.6 4334 

G L4+L5 4.7 2220 7.7 6104 5.1 694 7.8 3934 

G R3+R4 4.9 ll942 7.3 17759 5.0 1135 7.5 11243 

0 1G6+1G7 5.7 743 8.4 85557 5.9 538 8.7 l355 

G L6+L7 5.8 697 8.8 1297 6.1 522 8.8 l297 

0 R5+R6 5.6 650 8.1 3277 5.6 650 8.5 1472 

L 1G4+1G5 5.3 902 8.0 3995 5.6 642 8.3 3183 

L L4+L5 55 874 8.0 3721 5.8 660 8.4 2996 
L R3+R4 5.2 1355 7.8 9942 5.6 937 8.2 8209 

L 1G6+1G7 6.2 708 8.3 1421 6.4 514 8.7 1100 
L L6+L7 6.2 709 8.4 1337 6.6 540 8.8 1049 
L R5+R6 5.7 712 8.2 1606 6.2 565 8.6 1231 

TABLE 5.5 

Results for a problem with a discontinuous solution. 

Requested tolerance 1 E-4 Requested tolerance 1 E-7 

Method sd EE/GE 
#F 

#kev sd 
#F 

N EE/GE N 
tot 2.5 tot 2.5 

04+10 0.1 -6E-5 6 3 2 716 1.8 -lE-3 17 22 22 
G8+IG 2.2 SE-12 18 16 16 19728 2.2 5E-12 18 21 21 

104+105 0.1 -8E-5 5 2 2 780 1.9 2 18 22 22 
L4+L5 1.8 I 18 17 17 7770 1.8 1 18 22 22 
R3+R4 0.1 2E-4 7 12 3 2506 3.0 2E+I 18 22 22 

106+107 0.1 5E-9 5 2 2 1660 0.1 5E-9 5 2 2 
L6+L7 1.8 1 20 17 17 20303 1.8 1 20 22 22 
R5+R6 0.1 2E-7 5 2 2 1440 0.1 IE-7 6 2 2 

104+105 0.1 9E-7 6 3 2 841 1.9 2E-1 18 22 22 
L4+L5 1.8 lE-1 18 17 17 4693 1.8 IE-1 18 22 22 
R3+R4 0.1 4E-5 7 3 3 801 3.0 2 18 22 22 

106+107 0.1 -SE-JO 5 2 2 1341 0.1 -SE-10 5 2 2 
L6+L7 1.8 8E-2 18 17 17 10673 1.8 8E-2 18 22 22 
R5+R6 0.1 9E-8 5 2 2 1174 0.1 3E-8 6 2 2 

#kev 

5912 
22248 
10405 
8815 
8305 
1660 

22688 
1817 
5701 
5303 
4587 
1341 

12043 
1407 

If the solution is not polynomial, then the Gauss+ Iterated collocation method is 
the most efficient when both computational time and storage are taken into account, 
especially for tolerances that are not too tight. 

The uniform error control was of great benefit to all other methods. The approxima
tions were more dependable with in most cases only a slight increase in computational 
work. 

Appendix. The results of INTSOL were derived from Kunkel [ 17], all other results, 
except those of VEI, from Schlichte [19]. VElca gives the results of VE! when the 
kernel has been approximated by a Chebyshev series. The number of terms, m, has 
been chosen as the minimal number such that the estimated error, as given by VEI, is 
less than the tolerance_ VElex gives the results when an exact decomposition was 
provided_ In this case no global error estimate can be calculated. 
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Note that for VOLCON and for IVRKXC, "#kev" stands for the total number 
of K- plus /-evaluations where k( t, s, y) is written as K ( t - s) · f( s, y). For VElex, 
"'iFkev" represents the number of evaluations of the right-hand side of the system of 
ODE's, "'iFFev", times the dimension of the system, "DIM", times two. In the case 
of VElca, 'iFkev= 'iFKev+(DIM+2) · 'iFFev, where DIM =2m+ 1. 

Prob Method 

IVRKX 
ORION 
VOLTEX 

1 
INTSOL 
VE lea 
VE I ex 
IVRKXC 
VOLCON 

IVRKX 
ORION 
VOLTEX 

3 VE lea 

IVRKXC 
VOLCON 

IVRKX 
ORION 
VOLTEX 
INTSOL 

5 
VE lea 
VElex 
IVRKXC 
VOLCON 

TABLE A.1 

Results of other published codes. 

Tol. 1 E-4 Tol. 1 E-7 

sd #kev sd 

7.2 510 9.0 
3.5 923 6.5 
5.6 1124 8.7 
4.0 2722 4.8 
4.1 1537 7.6 
5.4 414 8.1 
7.2 359 9.0 
4.7 238 9.6 

5.0 23763 7.6 
6.3 42325 7.8 
5.4 76882 7.6 
2.4 19943 ---
5.0 4237 7.6 
6.6 2230 8.5 

5.2 8625 8.9 
5.6 2647 8.1 
5.2 120752 8.1 
3.6 337332 
3.7 9225 --
4.3 342 6.8 
5.2 2167 8.9 
6.5 2578 8.2 

Method 

IVRKX 
ORION 
VOLTEX 
INTSOL 
VE lea 
VElex 
IVRKXC 
VOLCON 

Prob Method 
#kev 

1712 IVRKX 
1624 PRION 
4110 VOLTEX 

127964 
2 

INTSOL 
5684 VE lea 
630 VElex 
868 IVRKXC 
762 VOLCON 

54320 IVRKX 
182344 ORION 
417014 VOLTEX 

-- 4 VE lea 
VE Jex 

6358 IVRKXC 
5370 VOLCON 

21528 IVRKX 
7114 ORION 

160910 VOLTEX 

6 
INTSOL 

----
730 

3864 
5170 

TABLE A.2 
Average performance. 

Toi. 1 E-4 Toi. 1 E-7 

sd #kev sd #kev 

5.4 738 8.4 2216 
4.7 653 6.9 1643 
4.3 1636 7.4 6101 
2.6 19278 3.4 68857 
4.0 1112 7.9 5420 
4.1 232 6.5 373 
5.5 329 8.1 654 
5.4 333 8.4 787 
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