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ABSTRACT
We motivate and describe techniques that allow to detect an
“emergent” relational schema from RDF data. We show that
on a wide variety of datasets, the found structure explains
well over 90% of the RDF triples. Further, we also describe
technical solutions to the semantic challenge to give short
names that humans find logical to these emergent tables,
columns and relationships between tables. Our techniques
can be exploited in many ways, e.g., to improve the effi-
ciency of SPARQL systems, or to use existing SQL-based
applications on top of any RDF dataset using a RDBMS.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Miscellaneous
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1. INTRODUCTION
RDF is the data model for the Semantic Web and Linked

Open Data. It represents data as collection of <subject,
property, object> triples. By providing flexibility for users
to represent and evolve data without the need for a prior
schema – sometimes called the “schema last” approach –
and identifying properties and (references to) subjects uni-
formly using URIs, RDF has been gaining ground as the
standard for global data exchange and interoperability, re-
cently through the popularization of micro-formats such as
RDFa, which are increasingly used embedded in web pages.
This creates a need for database technologies that can query
large amounts of RDF efficiently with SPARQL or SQL.

SQL-speaking relational database systems (RDBMS’s) re-
quire to declare a schema upfront (“schema first”) and can
only store and query data that conforms to this schema.
RDF systems typically rely on a “triple-store” architecture,
which store all data in a single table containing S, P and
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O (subject, property, object) columns1. SQL systems tend
to be more efficient than triple stores, because the latter
need query plans with many self-joins – one per SPARQL
triple pattern. Not only are these extra joins expensive, but
because the complexity of query optimization is exponen-
tial in the amount of joins, SPARQL query optimization is
much more complex than SQL query optimization. As a
result, large SPARQL queries often execute with a subop-
timal plan, to much performance detriment. RDBMS’s can
further store data efficiently e.g. using advanced techniques
such as column-wise compression, table partitioning, mate-
rialized views and multi-dimensional data clustering. These
techniques require insight in the (tabular) structure of the
dataset and have so far not been applicable to RDF stores.

Semantic Web technology has its roots in Artificial In-
telligence and knowledge representation, and we think it
is seldom realized that its notion of “schema” in the term
“schema last” differs from the corresponding “schema” no-
tion in “schema first” for relational technology. Semantic
Web schemas – ontologies and vocabularies – are intended
to allow diverse organizations to consistently denote certain
concepts in a variety of contexts. In contrast, relational
schemas describe the structure of one database (=dataset),
designed without regard for reuse in other databases.

Our work shows that actual RDF datasets exhibit (i) a
very partial use of ontology classes and (ii) subjects share
triples with properties from classes defined in multiple on-
tologies. To illustrate, (i) in the crawled WebDataCommons
data there is information on less than a third of the ontol-
ogy class properties in the actual triples, and (ii) we find in
DBpedia that each subject combines information from more
than eight different ontology classes on average. As such,
when analyzing the actual structure of RDF datasets by
observing which combinations of properties typically occur
together with a common subject (called “Characteristic
Sets” of properties [14]), any single ontology class tends to
be a poor descriptor. Knowledge of the actual structure of
a dataset is essential for RDBMS’s to be able to store and
query data efficiently. Our work allows RDF stores to au-
tomatically discover this actual structure, which we call the
emergent relational schema. The emergent relational
schema enables to internally store RDF data more like rela-
tional tables, allowing SPARQL query execution to use less
self-joins, which also reduces the complexity of query opti-

1With “triple-store” we mean RDF or graph stores that use
any data structure, be it a graph edge-list, B-tree, hash map,
etc. that stores individual triples (or quads), or graph edges
without exploiting their connection structure.



mization [10]. Note that not all triples in a RDF dataset
need to conform to this relational schema for these tech-
niques to be effective, as long as the great majority does.
Hence, RDF remains as flexible as ever in emergent rela-
tional schema aware systems.

There is also a usability advantage if the actual structure
of an RDF dataset would be conveyed to a human user.
A common problem when posing SPARQL queries is that
queries come back empty if properties that one expects to
occur given ontology knowledge, turn out not to be present
in the data. Or, one may lack any ontology knowledge and
thus have little to go by when querying. However, automat-
ically deriving a human-friendly relational schema from a
RDF dataset introduces additional challenges to recognizing
its structure, since all the schema elements (tables, columns)
should get correct and short labels, and the emergent rela-
tional schema must be compact to be understandable.

Our work presents a self-tuning algorithm that surmounts
this challenge, which we tested on a wide variety of RDF
datasets. We integrated our techniques in two open-source
state-of-the art data management systems: the well-known
RDF store Virtuoso and the MonetDB DBMS. The RDF
bulkload in MonetDB now offers efficient SQL access to any
RDF dataset via its emergent relational schema, allowing
the wealth of SQL-based applications over ODBC and JDBC
(e.g. Business Intelligence tools like Tableau) to be used. By
doing so we are enriching RDBMS’s with web standards, be-
cause these relational tables, columns and foreign key (FK)
constrains are identifiable using ontology-based URIs, and
even the primary key values and foreign key values them-
selves are URIs (RDF subjects resp. non-literal objects).
As such, our work is a bridge between the Semantic Web
and RDBMS’s, enriching both worlds.

Contributions of our work are the following:
1) We identify an important difference between Semantic

Web schema information (describing a knowledge universe)
and relational schemas (describing one dataset), and argue
that both should be available to data stores and their users.

2) We present methods for detecting the basic table struc-
ture and the relationships between them from an RDF dataset,
and propose several approaches to semantically and struc-
turally optimize the relational schema to make it compact.

3) We present techniques to assign human-friendly names
to tables/columns and their FK relationships.

4) Our experiments on a wide variety of RDF datasets
show that (i) over 90% of the triples in these conform to a
compact emergent relational schema, (ii) our algorithms are
efficient and can be executed during RDF bulk load with
little overhead, (iii) RDF stores can improve both query op-
timization and execution by exploiting the emergent rela-
tional schema, and (iv) we illustrate with a user survey that
the short human-readable labels we find have good quality.

2. EMERGING A RELATIONAL SCHEMA
The five steps of our emergent relational schema algorithm

detect something akin to a UML class diagram by analyzing
Characteristic Sets (CS’s) [14] in an RDF input dataset:
1. Basic CS Discovery. We discover all occurring CS’s
from a bulk-loaded SPO table and count their frequencies.
Then, we analyze properties in each CS that are not literals,
i.e. refer to URIs (and hence to other CS’s) in order to
explore the relationships between CS’s.

2. CS Labeling. We assign class, attribute and relation-
ship labels (human-understandable names) to the recognized
CS’s using multiple methods.
3. CS Merging. We merge CS’s that are semantically
or structurally similar to each other, with the purpose of
making the schema more compact. We re-run Steps 2 and
3 iteratively in order to automatically tune the similarity
threshold parameter τsim to the nature of the dataset.
4. Schema Filtering. We filter low frequency CS’s, but
make sure to conserve highly referenced CS’s (akin to re-
lational “dimension tables”). As reference relationships can
be indirect (via via) we use a PageRank-like algorithm to
count how often referenced each CS is. We also filter out CS
properties that are too sparsely populated.
5. Instance Filtering. We filter out instances (rows) to
increase literal type homogeneity, and filter out individual
triples to eliminate erroneously multi-valued attributes, and
to improve foreign-key cardinality homogeneity.

The “class diagram” where each merged-CS that survived
filtering is a class, is represented as a relational schema con-
sisting of tables and foreign key relationships. Each class
becomes one table, and its properties its columns, but re-
lationships and multi-valued attributes lead to additional
tables. Properties for which multiple literal types occur fre-
quently, are represented by multiple table columns. The
<10% triples that do not fit this schema remain stored in a
separate SPO table. We now discuss the five steps in detail.

2.1 Basic CS Discovery
Given an RDF dataset R, the Characteristic Set of a sub-

ject s is defined as cs(s) = {p|∃o : (s, p, o) ∈ R} [14].
We first identify the basic set of CS’s by analyzing all

triples stored in an RDF table in SPO order. Such table is
produced by a standard bulk load employed by triple stores.
While loading the triples into this representation, the URIs
get encoded in a dictionary, such that columns S, P and O are
not URI strings, but integers called object identifiers (OIDs)
pointing into this dictionary. This is a standard technique.
These integer OIDs form a dense domain starting at 0.

We now make a single pass through the SPO table and fill
a hash map where the key is the set of OIDs of properties
that co-occur for each subject. Note that due to the SPO
ordering these are easily found as the P’s of consecutive SPO
triples with equal S. The key of the hash map is the offset
in the SPO table where the CS first occurs. Its hash is com-
puted by XOR-ing the hashes of all P’s (which are OIDs).
The insert-order in the hash table (starting at 1) provides us
with a dense numeric OID for each CS. Further, we remem-
ber in an array indexed by S which stores such CS-OIDs,
to which CS each subject belongs (this array is part of the
URI dictionary). Note that not all URIs in the dictionary
may occur as a subject in the SPO table, for which case this
array is initialized with zeros. After making the single pass
over the SPO table, we will have all occurring basic CS-s in
the hash map, and we also keep an occurrence count there.

Further we make a second pass over the SPO table, where
we look at type information. For each triple with a literal
object, we maintain a histogram of literal-type occurrences
per property in a second hash map with key [P,type] and
a count value. For each triple that is a non-literal, on the
other hand, we look up to which CS its subject belongs
(srcCS) and to which its object (dstCS) – this can be done
efficiently using the array mentioned before. If there is a



Figure 1: CS Frequency (light blue) vs. Cumulative number of covered triples (dark red)
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Figure 2: Example of basic CS’s and their relationships

dstCS, we maintain another histogram stored in a third hash
map with as key [srcCS,P,dstCS] and a count value. This
histogram records how often basic-CS’s refer to each other
and over which property (relationship statistics).

These algorithms are all simple and obviously linear in
average-case complexity, therefore we omit a listing or fur-
ther analysis. Figure 2 shows an example of the found basic
CS and their relationships after the exploration process.

Diversity of the basic CS’s. Table 1 shows statistics on
the basic CS’s and their properties for the synthetic RDF
benchmark datasets LUBM2, SP2B3,and BSBM4, the origi-
nally relational datasets converted to RDF MusicBrainz5,
EuroStat6, and DBLP7, PubMed8 and the native RDF
datasets WebDataCommons9 (“WebData.”) and DBpedia10.
The number of basic CS’s can vary significantly regardless
the number of input triples. If one would naively propose
to store RDF data using a separate relational table for each

2swat.cse.lehigh.edu/projects/lubm/
3dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
4wifo5-03.informatik.uni-mannheim.de/bizer/
berlinsparqlbenchmark/
5linkedbrainz.c4dmpresents.org/data/
musicbrainz ngs dump.rdf.ttl.gz
6eurostat.linked-statistics.org
7gaia.infor.uva.es/hdt/dblp-2012-11-28.hdt.gz
8www.ncbi.nlm.nih.gov/pubmed
9A 100M triple file of webdatacommons.org

10dbpedia.org - we used v3.9

Datasets #triples* #CS’s
#CS’s to Avg. #multi-type

cover 90% #prop. properties

LUBM 100M 17 7 5.71 0

BSBM 100M 49 14 12.61 0

SP2Bench 100M 554 7 9.8 0

synthetic data created by benchmark data generator

MusicBrainz 179M 27 10 4.7 0

EuroStat 70K 44 8 7.77 0

DBLP 56M 249 8 13.70 0

PubMed 1.82B 3340 35 19.27 0

relational RDF data from a relational database dump

WebData. 90M 13354 930 7.94 551

DBpedia 404M 439629 85922 24.36 1507

native real data originating as RDF

Table 1: Statistics on basic CS’s.
(*: Number of triples after removing all duplicates)

basic CS, we now see that a complex RDF dataset like DB-
pedia would lead to an unacceptable number of small tables.
As we can also see that while most of the datasets have a
single literal type for each CS property, DBpedia and Web-
DataCommons have many properties with more than one
literal type in its object values (i.e., multi-type properties),
so native datasets appear to be both complex and “dirty”.

Data coverage by basic CS’s. Figure 1 shows the fre-
quencies and the cumulative number of triples covered by
the basic CS’s sorted by their frequencies, for one of each
kind of dataset (synthetic, relational, native). In this figure,
the number of CS’s needed for covering a large portion of
the triples (e.g., 90%) can be significantly different between
the datasets. We show for reference in Table 1, that 90% of
the synthetic benchmark datasets can be covered by using a
small number of CS’s (e.g., 7 for SP2Bench). Many Linked
Open Data datasets originate from existing sources whose
data is kept in relational databases. We see that in such
datasets a few CS’s can cover almost all data. However, for
complex datasets originally created as RDF (native), in or-
der to cover 90% of the triples, many CS’s are needed, in
case of DBpedia more than 85,000.

2.2 CS Labeling
When presenting humans with a relational schema, short

labels should be used as aliases for machine-readable and
unique URIs for naming tables, columns and relationships
between tables. For assigning labels to CS’s, we exploit se-
mantic information (ontologies) as well as structural infor-
mation. Because not all ontologies follow the same structure,
we developed a simple vocabulary to standardize minimal
aspects of an ontology, namely classes and their properties,
relationships between classes, their labels, as well as the sub-
class hierarchy. We expressed a large set of common ontolo-



mixed partial

number of %ontology

ontology class

classes properties

dataset used per CS used per CS

LUBM 1.94 37%

BSBM 3.96 3%

SP2Bench 4.94 4%

MusicBrainz 3.93 1%

EuroStat 3.14 84%

DBLP 6.58 8%

PubMed 4.94 -

WebData. 2.27 33%

DBpedia 8.35 5%

Ontologies in DBpedia dataset

dc

dcterms

rdf

rdfsskosowl
geo

foaf

dbpedia-owl

dbpprop
no ontology

Ontologies in WebDataCommons dataset

fbml

fbml (https)
dc

dcterms
gr

ogp

rdf

rdfs
skos

vcard2006

ogp (alt)

cc siocfoaf
ctag

no ontology

Figure 3: Partial & mixed ontology class usage in CS’s (table–left), Ontologies used in native RDF datasets (graphs–right)

label of subjects

rdf:type CS % all %

Thing 100 83

Organization 100 7

RadioStation 97 0.2

Company 1 4
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Figure 4: Choosing a CS label from explicit RDF type an-
notations that refer to ontology classes in a hierarchy.

gies in this vocabulary. Our proposed system is extensible,
as new ontology information can easily be added.

Figure 3 shows ontology class usage in the CS’s and the
percentage of triples corresponding to each ontology in sev-
eral datasets. As shown in the graphs, each dataset contains
a mix of multiple ontologies where even the most popular on-
tology covers less than 56% of the data. The first column in
the table shows that properties from within a single CS typ-
ically stem from a number of different ontologies, e.g., the
average number of ontologies used in each CS in DBpedia is
8.35. We also looked at the percentage of properties of each
ontology class when used in a CS. Since an ontology class
may be used in multiple CS’s, we compute a weighted aver-
age (where the number of subjects in a CS is the weight).
The second column in the table shows this percentage to be
less than 10% in most of the datasets. In other words, the
datasets make only very partial usage of the properties of
each ontology class. The partial usage and mixing together
mean that any individual ontology class is a poor descrip-
tor of the structure of the data. Our emergent relational
schema, aims to provide a better description.

Type properties. Certain specific properties explicitly
specify the concept a subject belongs to. The most com-
mon RDF property with this role is rdf:type, where the O

of triples with this property may be the URI identifying an
ontology class. Recall that our first step is to find a good
UML-like class diagram for the RDF dataset, where a CS
roughly corresponds to an UML class, and specifically here
we are trying to find a human-friendly short name (label)
for each CS. Even though we stated above that any individ-
ual ontology class is a poor descriptor for the structure of a
CS, ontologies do provide valuable clues for choosing a label
(name) for the CS. The subjects that are member of a CS
may have different rdf:type object values, this number is
also variable (there can be zero such type annotations, but
also multiple). To choose one, we look at the frequency of
that type annotation. First, we use the global infrequent
threshold τinf (e.g., 5%) to exclude infrequent type annota-
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Figure 5: Example CS vs. Ontology class

tions to be used for finding the CS class label. For the rest,
we count (i) how many subjects in the CS have it, and (ii)
how many subjects in the whole dataset have it. Similar to
TF/IDF [18], dividing (i) by (ii) provides a reasonable rank-
ing to choose an appropriate ontology class. Finally, if the
ontology class has label information (and this information is
typically available), we then use it as the label for the CS.

We should, however, in this ranking also take into ac-
count the class hierarchy information that an ontology pro-
vides. Thus, we account for missing superclass annotations
by inferring them for the purpose of this ranking. In Fig-
ure 4, if a triple in some CS has rdf:type Company, but
not Organization or Thing explicitly, we still include these
annotations in the ranking calculation.

In this example, “RadioStation” is chosen as its coverage
of the subjects in the CS is above τinf (97 > 5) and its
ranking score (97/0.2=485) is the highest.

Discriminative Properties. Even if no type property is
present in the CS, we can still try to match a CS to an on-
tology class. We compare the property set of the CS with
the property sets of ontology classes using the TF/IDF sim-
ilarity score [18]. This method relies on identifying “dis-
criminative” properties, that appear in few ontology classes
only, and whose occurrence in triple data thus gives a strong
hint for the membership of a specific class. An example is
shown in Figure 5. In this example, as cs4 and the class
PriceSpecification of the GoodRelations ontology11 share
discriminative properties like gor:hasUnitOfMeasurement and
gor:valueAddedTaxIncluded, PriceSpecification can be
used as the label of cs4. Detailed computation of the TF/IDF-
based similarity score between a CS and an ontology class
can be found in [17]. An ontology class is considered to be
matching with a CS if their similarity score exceeds the sim-

11purl.org/goodrelations/
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Figure 6: CS’s with assigned labels

ilarity threshold τsim. The ontology class correspondence of
a CS, if found, is also used to find labels for properties of
the CS (both for relationships and literal properties).

Relationships between CS’s. If the previous approaches
do not apply, we can look at which other CS’s refer to a CS,
and then use the URI of the referring property to derive a
label. For example, a CS that is referred as Address indi-
cates that this CS represents instances of an Address class.
We use the most frequent relationship to provide a CS la-
bel. For instance, in WebDataCommons 93532 instances
refer to a CS via property address and only 3 via property
locatedAt. Thus, Address is chosen as the label.

URI shortening. If the above solutions cannot provide
us a link to ontology information for providing attribute
and relationship labels, we resort to a practical fall-back,
based on the observation that often property URI values do
convey a hint of the semantics. That is, for finding labels
of CS properties we shorten URIs (e.g., http://purl.org/
goodrelations/v1#offers becomes offers), by removing
the ontology prefix (e.g., http://purl.org/goodrelations/
v1#), as suggested by [15].

Note that for CS’s without any ontology match or rela-
tionships with other CS’s, we may find no class label candi-
dates, in which case a synthetic default label is used. Labels
are intended to help users comprehend the data, but in any
case should be overridable by manual labeling. A future
approach might be to look for sources on the web, such as
search engines; but for the moment we prefer to keep our
techniques stand-alone, as these are part of RDF bulk-load.

Figure 6 shows the labels assigned to each CS in the ex-
ample dataset by using different labeling methods (e.g., the
label of cs4 is assigned based on the matching between its
property set and that of ontology classes, the label of cs7
is derived from the CS’s relationships, ...). In this example,
cs1 does not have any specific label as there is no sufficient
information for assigning a good label to it.

2.3 CS Merging
After basic exploration, there may be thousands of CS’s,

in case of DBpedia even 100,000. This means the indi-
vidual CS’s have only a few subjects (=rows, in relational
terms) in them, so that storing them in a relational table
would incur overheads (e.g. tables not filling a disk page,
large database catalog, expensive metadata lookup). Fur-
ther, many of these basic CS’s are very similar to each other
(differing only in a few properties) and denote the same con-
cept. When querying for that concept, one would have to
formulate a UNION of many tables, which is cumbersome
and also slows down queries. Finally, a relational schema
with thousands of tables is just very hard to understand for
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Figure 7: Example of merging CS’s

humans. Therefore, the next step is to reduce the number
of tables in the emergent relational schema by merging CS’s,
using either semantic or structural information.
Figure 7 shows an example of merging csi and csj . We

note that all subjects that fall in a basic CS do so because
there exist triples for all properties in that CS, such that a
relational table representing the CS would have no NULL
cells. In this example, csi and csj represent already the re-
sults of merging other CS’s (the merging process is iterative)
. As shown in the figure, the number of NOT-NULL cells
in table tij is equal to the total number of NOT-NULL cells
of the tables ti and tj , however, the number of NULL cells
increases due to properties not in the intersection of the two
CS’s becoming padded with NULLs in the merged CS.

Semantic merging. We can merge two CS’s on semantic
grounds when both CS class labels that we found were based
on ontology information. Obviously, two CS’s whose labels
were taken from the same ontology class URI represent the
same concept, and thus can be merged. If the labels stem
from different ontology classes we can examine the class hi-
erarchy and identify the common concept/class shared by
both CS’s, if any, and then justify whether these CS’s are
similar based on the “generality” of the concept. Here the
“generality” score of a concept is computed by the percent-
age of instances covered by it and its subclasses among all
the instances covered by that ontology (Equation 1).

gscore(Oc) =
#instances coveredby(Os)

#instances coveredby ontology

where Os is Oc or a subclass of Oc

(1)

Figure 4 showed an example of an ontology class hierarchy
from DBpedia. Consider two CS labels such as RadioStation
and TelevisionStation assigned by using ontology class
names. By following the ontology’s class hierarchy, it can be
found that the corresponding classes of these labels share the
same infrequent superclass Broadcaster. Therefore, these
CS’s can be considered as semantically similar, and could
be merged with Broadcaster as new label.
More formally, there are two rules for semantic merging:

Rule 1. If an ontology class URI exists equal to the labels
of both csi and csj then merge csi and csj . (S1)

Rule 2. If there exists an ontology class Oc being an an-
cestor of the labels of csi and csj and gscore(Oc) is less than

1
Ubtbl

then merge csi and csj . (S2)

In S2, 1
Ubtbl

is used as the threshold for the generality

score based on Ubtbl, the upper bound for the number of
tables in the schema – which is one of the only three param-
eters of emergent relational schemas, see Table 2.

Figure 8 demonstrates the modifications to the explored
CS’s of the example dataset and their relationships when se-
quentially applying merging rules S1 and S2. Here, since cs2
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Figure 8: Example of merging CS’s by using rules S1, S2
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Figure 9: Example of merging CS’s by using rules S3, S4

and cs3 both derived their label Offering from the Offering
class of the GoodRelation ontology, according to S1, they
are merged into a new CS (cs11). The references from/to cs2
and cs3 are also updated for cs11. Besides, since the labels
of cs8 and cs9 have Broadcaster as their non-general com-
mon ancestor in the ontology hierarchy, they are merged into
cs12 according to S2. The label of cs12 is assigned by using
the name of the common ancestor ontology class. The full
description about updating the label of a CS after merging
can be found in [17].

Structural merging. While semantic merging is a rela-
tively safe bet, it may not always be applicable or effective
enough to reduce the amount of merged CS’s. Therefore,
we also look at the structure of the CS’s and their rela-
tionships to see if these can be merged. The idea here is
to identify CS’s that denote the same concept based on so-
called “discriminative” properties, which are those with a
high TF/IDF score (see the previous section). If the overlap
between two CS’s contains enough “discriminative” proper-
ties, we can merge them.

Figure 10 shows an example where the overlapping prop-
erties of cs7 and cs10 indicate that these CS’s both origi-
nate from the “Location” entity. Here, the property rdfd:

name is not discriminative since it appears in most of the
CS’s. However, properties rdfd:street-address and rdfd:

region give evidence that both represent a “Location”.
Equations 2 and 3 formally show the detailed computa-

tions for the TF/IDF score of each property in a cs and
the cosine similarity score (simij) between two cs’s (csi and
csj), respectively. In these functions total#CSs is the to-
tal number of CS’s, #containedCSs(p) is the number of CS
having property p in their property list.

tfidf(p, cs) =
1

|Dp(cs)| × log
total#CSs

1 + #containedCSs(p)
(2)

simij =

∑
p∈(csi∩csj)

tfidf(p, csi)× tfidf(p, csj)√ ∑
pi∈csi

tfidf(pi, csi)2 ×
√ ∑

pj∈csj

tfidf(pj , csj)2
(3)

��
�

��������	

�����
��		������	



�����������

������	����

������	�

��
��

��������	

�����
��		������	



�����������

������	����

�������
��
�������	�
�
�	������
��
��������������������

������	
�

��������	

�����
��		������	



�����������

������	����

������	�

�������
��

Figure 10: Merging CS’s based on discriminative properties

In addition to the set of properties in a CS, incoming re-
lationship references from other CS’s can also be used as
an evidence in identifying similar CS’s. Normally, a subject
refers to only one specific entity via a property. For exam-
ple, the property has_author of the subject “Book” always
refers to an“Author” entity. Thus, if one CS, e.g., cs1, refers
to several different CS’s e.g., cs2 and cs3, via a property p,
this hints at cs2 and cs3 being similar.

In summary, two CS’s are considered structurally similar
if they are both referred from the same CS via the same
property (rule S3) or their property sets have a high TF/IDF
similarity score (rule S4). In Rule 3, ref(cs, p, csi) is the
number of references from cs to csi via property p, and τinf

is the infrequent threshold which is used to prevent non-
frequent references from being considered in applying the
rule S3. In Rule 4, τsim is the similarity threshold above
which we decide to merge two CS’s.

Rule 3. If cs and p exist with ref(cs,p,csi)
freq(cs)

and
ref(cs,p,csj)

freq(cs)

greater than τinf then merge csi and csj . (S3)

Rule 4. If the similarity score simij between csi and csj
is greater than τsim then merge csi and csj . (S4)

Figure 9 shows the updates to the CS’s and their relation-
ships when we continue applying the rules S3 and S4. In
this figure, cs5 and cs11 are merged according to the rule S3
as they are both referred by cs1 via the property offers.
Besides, since cs7 and cs10 have high similarity score (as
shown in Figure 10), they are merged into cs14.
We experimentally observed that the best order of apply-

ing the rules for merging CS’s is S1, S3, S2, S4. Further
details can be found in [17].

2.4 Schema Filtering
Our goal is to represent a large portion of the input triples

in a compact, human-friendly, relational schema. After CS
merging, most of these merged classes12 cover a large amount
of triples. However, it may happen that some classes still
cover a limited number of RDF subjects, so if the merged
CS covers < mint (e.g. 1000, see Table 2) subjects, it is
removed from the schema; and we limit the UML class dia-
gram to the merged Ubtbl CS’s with highest frequency. Note
that omitting CS’s with low frequency will only marginally
reduce overall coverage.

Preserving Dimension Tables. However, for this re-
moval of classes (merged CS’s) we make one exception, namely

12At this stage, we also refer surviving merged CS’s as classes,
similar to UML classes.



we conserve CS’s that – although small in terms of covered
subjects – are referred to many times from other tables. The
rationale is that such CS’s thanks to the large amount of
incoming references represent important information of the
dataset that should be part of the schema. This is similar
to a dimension table in a relational data warehouse, which
may be small itself, but is referred to by many millions of
tuples in large fact tables over a foreign key. Thus, combin-
ing the information of basic CS detection and relationship
detection, we preserve CS’s with a high frequency of incom-
ing references. However, detecting dimension tables should
not be handled just based on the number of direct relation-
ship references. The relational analogy here are snowflake
schemas, where a finer-grained dimension table like CITY
refers to an even smaller coarse-grained dimension table
COUNTRY. To find the transitive relationships and their
relative importance, we use the PageRank [16] algorithm on
the graph formed by all CS’s (vertexes) and relationships
(edges, regardless of direction). In each iteration, the score
of a merged CS is computed based on the references from
other merged CS’s and their scores computed in the previous
iteration. Equation 4 shows the formula for each iteration:

IRk(csi) =
∑

csj→csi

IRk−1(csj)× ref(csj , csi)

refsTo(csi)

×ref(csj , csi)

freq(csj)
+ refsTo(csi)

If(IRk(csi) ≥ Ubtbl) → csi is a dimension CS.

(4)

The merged CS’s having a score higher than a threshold
Ubtbl will be selected for inclusion in the schema. in which
IRk(csi) is the indirect-referenced score of csi after k iter-
ations, ref(csj , csi) is the number of references from csj to
csi, freq(csj) is the frequency of csj , and refsTo(csi) is the
total number of direct references to csi.

Specifically, the number of iterations k is set the same as
the diameter of the CS graph. It is because, with that value,
after k iterations, the IRk score of each CS will get computed
from all the CS’s. To compute the diameter of the graph, we
implemented a fast and simple algorithm described by [3].

Minimizing the number of infrequent properties. A
final step of schema filtering considers eliminating CS prop-
erties, which as column in a relational table would have
many NULL values. If the property coverage ratio (see
Equation 5) is less than the infrequent threshold τinf , that
property is infrequent and it gets removed from the CS.

coverageRatio(p, cs) =
freq(p, cs)

freq(cs)
(5)

2.5 Instance Filtering
The output after labeling, merging, and schema filtering

is a compact relational emergent schema. In the instance
filtering phase, all RDF triples are visited again, and either
stored in relational tables (typically > 90% of the triples,
which we consider regular), or (the remainder) separately in
a PSO table. Hence, our final result is a set of relational
tables with foreign keys between them, and a single triple
table in PSO format. In principle, the regular triples are
those belonging to a merged CS (that survived schema fil-
tering). However, not all such triples are considered regular
in the end, as we perform three types of instance filtering,
described next.

Maximizing type homogeneity. Literal object values
corresponding to each property in a CS can have several dif-
ferent types e.g., number, string, dateTime. The relational
model can only store a single type in each column, so in case
of type diversity, a relational system like MonetDB must use
multiple columns for a single property. They contain the
type-cast value of the literal, if possible, and NULL other-
wise. The number of columns needed for representing the
data from a csi hence is

∑
p∈csi

#ofTypes(p). This number
can be large just due to a few triples having the wrong type
(dirty data). To minimize the number of such columns, for
each property, we filter out all the infrequent literal types
(types that appear in < τinf percent of all instances). All
triples of class instances with infrequent types are moved to
the PSO table.

Relationship Filtering. We further filter out infrequent or
“dirty”relationships between classes. A relationship between
csi and csj is infrequent if the number of references from csi
to csj is much smaller than the frequency of csi (i.e., less
than τinf percent of the CS’s frequency). A relationship is
considered dirty if the majority but not all the object values
of the referring class (e.g., csi) refer to the instances of the
referred class (csj). In the former case, we simply remove the
relationship information between two classes. In the latter
case, the triples in csi that do not refer to csj will be filtered
out (placed in the separate PSO table).

We note that in the general case of n-m cardinality rela-
tionships, the relational model requires to create a separate
mapping table that holds just the keys of both relations.
However, in case one of the sides is 0. . . 1, this is generally
avoided by attaching a FK column to the table representing
the other side. We try to optimize for this, by observing
whether a multi-valued relationship is infrequent (< τinf ).
If so, we remove the excess relationship to the separate PSO
table, such that all remaining subjects in the class have max-
imally one relationship destination. Finally, if almost all in-
stances of one class have exactly one match in the other class
but a few (< τinf ) have none, we move all triples with that
subject to the separate PSO table to preserve the exact n-1
cardinality (which keeps the FK column non-NULLable).

Multi-valued attributes. The same subject may have 0,
1 or even multiple triples with the same property, which in
our schema leads to an attribute with cardinality > 1. While
this is allowed in UML class diagrams, direct storage of such
values is not possible in relational databases. Practitioners
handle this by creating a separate table that contains the
primary key (subject OID) and the value (which given lit-
eral type diversity may be multiple columns). The RDF
bulk-loader of MonetDB does this, but only creates such
separate storage if really necessary. That is, we analyze the
mean number of object values (meanp) per property. If the
meanp of a property p is not much greater than 1 (e.g., less
than (1+τinf/100), we consider p as a single-valued prop-
erty and only keep the first value of that property in each
tuple while moving all the triples with other object values of
this property to the non-structured part of the RDF dataset.
Otherwise, we will add a table for storing all the object val-
ues of each multi-valued property.

meanp(p) =
∑

p(k)× k

where p(k) =
#times p has k object values

freq(p)

(6)



Parameter Default Description

Ubtbl 1000 number of tables upper bound

mint 1000 minimum table size

τinf 5% infrequent threshold

Table 2: Emergent Relational Schema Detection Parameters

2.6 Parameter Tuning
An important question that we needed to address is how

the various parameters guiding the recognition process should
be set. Choosing improper parameters might result in a
“bad” final schema with e.g., small data coverage, lots of
NULLs, etc. Further, since each input dataset can have dif-
ferent characteristics, it would be unfeasible to find a fixed
parameter set that works optimally for all datasets.

The most dataset sensitive parameter we found to be the
τsim, used in labeling while matching ontologies using dis-
criminative properties, as well as in the CS merging Rule 4
that determines up until which point merging should con-
tinue. It is a control on the strictness of finding equivalences
between structures and ontologies, at 1 it is very strict while
at 0 it is very lax. We evaluate the quality of the relational
schema on two dimensions, namely (i) the number of tables
(compactness of the schema) and (ii) its precision, which is
the number of NOT-NULL cells, fill(t), divided by the to-
tal number of cells, cap(t), in all tables, as in Equation 7.
There is a clear trade-off between having a compact schema
and higher precision, depending on τsim.

Our auto-tuned algorithm iteratively re-runs the labeling
and merging steps with different values of τsim. In each run,
we measure the number of tables and the precision; we also
compute a delta of these between successive values of τsim.
In Equation 8, k is the total number of runs; nTi (nTnomi)
and preci (prNomi) are the (normalized) number of ta-
bles and the schema precision at the ith run; nTdeltai and
prDeltai are the relative change in the normalized number
of tables and the precision at the ith run, respectively. We
use the lowest value of τsim > 0 where nTdeltai > prDeltai.

prec =

∑
t fill(t)∑
t cap(t)

(7)

nTnomi =
nTi − nT1

nTk − nT1
prNomi =

preci − prec1
preck − prec1

nTdeltai = nTnomi − nTnomi−1

prDeltai = prNomi − prNomi−1

(8)

The left of Figure 11 shows normalized nTi and preci for
WebData Commons as a function of τsim in steps of 0.05,
while the right side shows the deltas between steps. Auto-
tuning chooses the cross-over point of the deltas (τ sim=0.7).

3. EXPERIMENTAL EVALUATION
Metrics. We propose several metrics for evaluating the
quality of the emergent schema. These metrics rely on the
fact that a structure is considered to be good if it is compact
(few and thin tables), precise (few NULLs) and has large
coverage (few triples that have to be moved to separate PSO
storage). Given an RDF dataset R and its total number of
triples |R|, the first performance metric, C, is the percentage
of input triples covered by the schema:

C =

∑n
1 cov(ti)

|R| (9)
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Figure 11: Left: τsim steps on X, #Tables&Precision on Y.
Right: step deltas, auto-tuning selects cross-over (WebData)

labels WebData. DBpedia

top 3 3.6 3.8

final 4.1 4.6

Table 3: Human survey results on Likert scale

Each class in the structure is physically stored in a separate
relational table. We define worth w(ti) of table ti as:

w(ti) =

(I)︷ ︸︸ ︷
cov(ti)∑n
1 cov(ti)

×

(II)︷ ︸︸ ︷(
prec(ti) +

ref(ti)∑n
1 ref(ti)

)

where prec(ti) =
fill(ti)

cap(ti)

(10)

The precision prec(ti) of the table ti is the fraction of non-
NULL values in table ti, cov(ti) is the number of RDF triples
stored in ti; n is the number of tables and ref(ti) is the num-
ber of FK’s referring to ti. Here, (II) sums the precision and
the relative importance of the table considering the relation-
ships between tables, while (I) denotes the contribution of
the table for the coverage of the schema. As the schema
is only compact if n is small, the quality of the explored

structure, Q, is defined as: Q =
∑n

1 w(ti)

n
.

3.1 Experimental Results
Labeling evaluation. We presented the emergent schemas
of the DBpedia and WebDataCommons datasets to 19 hu-
mans and asked them to rate the labels.On a 5-point Likert
scale from 1 (bad) to 5 (excellent) label quality, the top 3
labels of each table were scored by at least 3 persons. As
shown in Table 3, the top 3 label candidates received an aver-
age rating of 3.6 for WebDataCommons and 3.8 for the DB-
pedia dataset. The finally chosen labels (one among the top
3) got better scores (4.1 and 4.6, respectively). We therefore
conclude that the ordering of label candidates created by
our algorithms produces encouraging results, as the chosen
labels get higher ratings than the other candidates. Further-
more, our evaluation shows that 78% (WebDataCommons)
and 90% (DBpedia) of the labels are rated with 4 points or
better, hence are considered “good” labels by the users. The
emergent relational schemas for the nine datasets we tested
are too large to include in this paper, Figure 12 shows Eu-
roStat, one of the simpler schemas.13

Merging/Filtering performance. Figure 13 and Table 4
show the performance of the proposed merging algorithms
and the filtering techniques for detecting a compact rela-
tional emergent schema with high coverage. According to

13See www.cwi.nl/~boncz/emergent for the other datasets.



Figure 12: Final emergent schema for EuroStat – the lighter
a column, the more NULLs (percentage in parentheses).
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Figure 13: Schema quality Q during merging & filtering

Figure 13, the metric Q of the explored structure, except
for WebDataCommons, always increases after the merging
and filtering steps. For WebDataCommons, the value of Q
decreases when merging CS’s using rule S1. This stems from
the fact that in WebDataCommons dataset each CS describ-
ing a certain entity such as Website may have many addi-
tional properties describing application attached to the web-
site, and even use various properties for the same attribute
(e.g., ogp.me/ns#url, opengraphprotocol.org/schema/url,
rdf.data-vocabulary.org/#url for the website’s URL), and
thus, their merged CS’s may contain properties with lots of
NULLs values, causing the decrease of the metric Q. Never-
theless, the filtering step, by refining infrequent properties
in the explored structure, can help addressing this issue and
significantly increases the score of the metric Q. Comparing
to the basic structure, the final schema of each experimental
dataset is several orders of magnitude better in this metric.

Table 4 also shows that after the schema filtering, the
final schema in all cases achieves very high coverage. We
see that synthetic RDF benchmark data (BSBM, SP2B,
LUBM) is fully relational, and also all dataset with non-
RDF roots (PubMed, MusicBrainz, EuroStat) get > 99%
coverage. Most surprisingly, the RDFa data that dominates
WebDataCommons and even DBpedia is more than 90%
regular. Further, a non-complete manual inspection of the
< 10% irregular triples in these datasets appeared to show
mainly mistyped properties, so our suspicion is that much
of this irregularity is in fact data “dirtiness”.

Computational cost. Figure 14 shows that the time for
detecting the emerging schema is negligible compared to
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Figure 14: Building time & database size for single triple
table (SPO) and reorganized relational tables (CS-based)
(normalized by bulk-load time and database size for all six
S,P,O table permutations (ALL)).

Datasets
Number of tables Coverage – Metric C (%)

before after remove remove prune final
merging merging small small infreq. schema

tables tables prop.

LUBM 17 13 12 100 100 100.00

BSBM 49 8 8 100 100 100.00

SP2B 554 13 10 99.99 99.65 99.65

MusicBrainz 27 12 12 100 99.9 99.60

EuroStat 44 10 5 99.73 99.53 99.53

DBLP 249 9 6 100 99.68 99.60

PubMed 3340 14 12 100 99.75 99.73

WebData. 13354 3000 253 98.17 94.37 92.79

DBpedia 439629 542 234 99.12 96.68 95.82

Table 4: #tables and metric C after merging & filtering

bulk-loading time for building a single SPO table as well as
building all the six permutations of S, P, O (marked [ALL]).
Thus, MonetDB integrates emergent schema detection into
its RDF bulk-loading without recognizable delay.

Compression. Figure 14 shows that the database size
stored using relational tables can be two times smaller than
the database size of a single SPO triple table. The reason
is that in the relational representation the S and P columns
effectively get compressed away, only the O columns remain.

Query processing. As a proof that the recognized emer-
gent schema can be easily integrated and boost the perfor-
mance of existing RDF stores, we report on the effort at
OpenLink to integrate emergent relational schema technol-
ogy in one of the state-of-the-art RDF stores, Virtuoso [8]14

It was a few months work to integrate Characteristic Set
based storage, query execution and query optimization in
Virtuoso. We compare a classic Virtuoso RDF quad table
(Virt-Quad) and this CS-based implementation (Virt-CS)
on the BSBM benchmark at 10 billion triples scale.

The experimental results in Table 5 show that exploiting
the emergent relational schema even in this very preliminary
implementation already improves the performance of Virtu-
oso on a number of BSBM Explore queries by up to a factor
of 5.8 (Q3, Hot run). Note that the Cold run is much slower
comparing to the Hot run as most of the time goes in the
statistics gathering, not in the execution. We see less gain
from CS’s in other queries, e.g., Q5, since the first condition
on the BSBM products (on a range of numeric property) is
selective, so the other columns of the CS (or self-joins to

14https://github.com/v7fasttrack/virtuoso-opensource



RDF Store

Q2 Q3 Q5 Q7 Q8

Cold Hot Opt. Cold Hot Opt. Cold Hot Opt. Cold Hot Opt. Cold Hot Opt.

Virt-Quad 11567 7 4.2 4210 53 40.2 3842 1350 18.6 19401 9 5.3 14644 9 4.4

Virt-CS 2485 6 3.5 2965 9 5.4 2130 712 4.2 11642 6 4.5 5370 5 3.3

Table 5: Query time (msecs) w/wo the recognized schema
(Cold: First query runtime after re-starting the server; Hot: Run the query 3 times and get the last runtime; Opt.: Query optimization time)

RDF quads) are done on a small fraction of the subjects of
the first range check. In Q3 more single-valued properties
are accessed per subject, resulting in much more gain.

By collapsing multiple triple patterns into a single ab-
stract CS table, query optimization gets a plan search space
of the same order as for the equivalent SQL. For Q3, the
compilation time drops from 40.2 msecs to 5.4 msecs when
using the recognized schema. In many RDF applications,
e.g. Open PHACTS15, query optimization time dominates
and can run into the tens of seconds. Due to the extreme
search space resulting from triple patterns, there are often
ad hoc restrictions on plans, e.g. no hash join or no joins on
hash build sides. With CS, a more thorough search of the
plan space becomes again practicable and we expect quali-
tatively better plans to result.

4. RELATED WORK
We note that previous work has already proposed build-

ing relational-resembling RDF stores [22, 7, 12, 21, 4]. How-
ever, these proposals either demand the presence of an all-
explaining ontology (which then gets remapped to relational
tables), or ask the database system administrator to create
and maintain “property tables” explicitly. Our approach, in
contrast, does not require any form of explicit schema inges-
tion. Second, since these approaches just use the structure
internally in the SPARQL engine to make things faster, they
do not address the challenge of making the schema under-
standable to humans (compactness, finding short aliases).
For the latter, a related line of work is creating summaries
of the graph structure to aid query formulation [6], yet these
do not focus on making RDF database systems faster, and
typically require a cluster to compute, whereas our approach
is cheap and can piggyback on RDF bulk-loading. Related
to the automatic structure exploration from data is work
on ontology mining [13] which discovers ontologies from un-
structured text on the web. In our approach, we recognize
the emergent structure in RDF data (e.g., mixing of on-
tologies), and do not change the semantics, and focus on
providing a relational view of it.

Frequent itemset mining, which has been studied in many
data mining papers [1, 5, 9], is equivalent to the basic CS
recognition, originally proposed by [14]. We use this tech-
nique but go beyond that by finding a schema graph with
cross-CS relationships, and we employ a host of techniques
to make this schema graph compact and human-friendly
(finding labels).

A recent study on the structure refinement for the RDF
data, [2] proposed an integer linear programming (ILP)-
based algorithm which allows an RDF dataset being par-
titioned into a number of “sorts” where each sort satisfies a
predefined structured-ness fitting threshold. This approach,
relying mainly on the similarity and correlation between the
properties of sorts, may merge subjects describing unrelated
entities but having many common properties into a single
sort (as also shown in their experiment with Drug Com-

15http://www.openphacts.org/

pany and Sultan), while our solution only merges related
CS’s together by exploiting the discriminating properties
and the availability of the semantics/ontologies information.
Besides, no relationship exploration as well as labeling for
the sorts are considered in this work, and thus, no relational
schema is recognized.

Consulting external resources for entity labeling is sug-
gested by [20] in the context of table data reconstruction
as well as by [19] a study on labeling hierarchical clus-
ters. The former study shows that column names and table
names usually cannot be found in table data itself. To re-
construct HTML table data they therefore rely on an exter-
nal database with hyponym information. The latter study
also mentions that documents often do not contain self-
descriptive terms. To overcome this, they suggest using
“anchor texts” as an additional resource in their document
labeling task. Anchor texts are pieces of text on and next
to hyperlinks to a specific document. The relational equiv-
alent of anchor texts are names of foreign key relationships.
In our case we rely on property names that refer to other
tables for name suggestions, supplemented by ontology in-
formation when present.

5. CONCLUSIONS
In this paper, we introduced the notion of – and demon-

strated practical techniques for – discovering an emergent
relational schema in RDF datasets, that recovers a compact
and precise relational schema with high coverage and use-
ful labels as alias for all machine-readable URIs (which it
preserves). The functional benefit of an emergent relational
schema for RDF datasets is both in giving users better un-
derstanding of the structure of an RDF dataset, while also
allowing the often > 90% of regular triples to be queried
from existing SQL applications, which still dominate the IT
industry. Our MonetDB RDF bulk loader enables this. We
think that this also provides impetus to make SQL more
semantic, e.g. stimulating usage of URIs in SQL metadata.

The emergent relational schema can also be used under
the cover of an SPARQL engine as a new storage approach,
where the 90% regular triples are stored in tabular structures
and the rest in SPO format. We think that the knowledge of
an emergent schema gives SPARQL engines just what they
need to close the performance gap with SQL systems. This
we demonstrated in Virtuoso, with gains both in compres-
sion, query execution and query optimization. The tabular
structure opens up many opportunities to improve physical
access patterns using (partial) clustered indexes, zone maps,
table partitioning and even database cracking [11].

Looking ahead, the prospect of people supporting SQL
applications on top of RDF data raises many new questions.
Users will desire to tweak a found emergent schema by hand,
e.g. by manually improving some labels. We propose mak-
ing a found emergent schema explicit using a vocabulary,
and researching techniques to control schema evolution to
preserve schema stability while the emergent schema adapts
over time to changes in the underlying RDF datasets.
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