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Di�usive Gradients in the PTS System

J. G. Blom and Mark A. Peletier

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

It has recently been conjectured that metabolic pathways with membrane-bound enzymes can give rise to con-

centration gradients in the cytosolic pathway components. We investigate this issue using a theoretical model

for the Phosphoenolpyruvate-dependent Phosphotransferase system in E. coli , for which accurate measure-

ments of the kinetic parameters are available. We show that signi�cant spatial gradients indeed exist, and we

discuss the potential implications of this �nding.
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1. Introduction

Bacteria such as E. coli have relatively little interior structure. The cell contains no interior divisions,
and the cytoplasm is free to move throughout the cell. In combination with the relatively small size of
E. coli this has led to an assumption, which is common in the biochemical literature, that the inside
of the cell behaves as a `well-stirred reactor': i.e., the concentrations of those chemical species that
are not membrane-bound can be assumed to be constant throughout the cell, and to remain so during
any reactions that they may undergo.
While there are many situations in which such an assumption may be justi�ed, we will concentrate

here on an exception to this rule. The Phosphoenolpyruvate-dependent Phosphotransferase system
(PTS), described in detail below, is a pathway that is partly cytoplasmic, partly membrane-bound.
The pathway is dependent on di�usion for the transport between the cytoplasm and the membrane;
this implies that a spatial gradient in the concentration of some of the species is needed to achieve the
necessary pathway ux. Our goal in this paper is to model the PTS system in a comprehensive manner,
taking into account the detailed reaction mechanism of [5, 6], the spatial separation that is created
by binding one of the proteins to the cell membrane, and the di�usion process that is responsible for
the transport to and from the membrane. We will show that the resulting concentration gradients are
signi�cant (in line with the suggestions of [2]) and we shall make some suggestions for an experimental
veri�cation of this fact.

In the next two sections we will describe the PTS system and the assumptions we make for the
model we have investigated. In Sections 4 and 5 we briey describe the numerical methods that
we have used to calculate solutions for this model, and the results that we obtain for various model
experiments. Finally we discuss whether these results are experimentally veri�able.

2. The PTS System

The Phosphoenolpyruvate-dependent Phosphotransferase system (PTS) is an essential element in the
glucose metabolism of E. coli. Its two main functions are to transport extracellular glucose (Glc)
through the membrane and to simultaneously attach to it a phosphoryl group (PO3).
The phosphoryl group is originally derived from phosphoenolpyruvate (PEP), and is passed to the

glucose molecule via a pathway of protein{protein interactions. A simpli�ed reaction mechanism is
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Figure 1: A schematic representation of the PTS system. The ellipses represent proteins, the other
metabolites are smaller molecules.

shown in Figure 1. Each pair of arrows represents a pair of chemical reactions; for instance, the
leftmost reaction, in which PEP passes a phosphoryl group to Enzyme I (EI), creating EI �P and
pyruvate (Pyr), might be written more explicitly

EI + PEP
k1
�
k
�1

EI�P�Pyr
k2
�
k
�2

EI�P+ Pyr (2.1)

Throughout this paper we assume that reaction rates follow the law of mass action, so that (2.1)
also de�nes the reaction rates as k1[EI][PEP] � k

�1[EI�P�Pyr] and k2[EI�P�Pyr] � k
�2[EI�P][Pyr].

Similarly, the other reactions, involving HPr, domain A of Enzyme II (IIA), and domains B-C of
Enzyme II (IICB), have the explicit form

EI�P+HPr
k3
�
k
�3

EI�P�HPr
k4
�
k
�4

EI + HPr�P (2.2)

HPr�P+ IIA
k5
�
k
�5

HPr�P�IIA
k6
�
k
�6

HPr + IIA�P (2.3)

IIA�P+ IICB
k7
�
k
�7

IIA�P�IICB
k8
�
k
�8

IIA + IICB�P (2.4)

IICB�P+Glc
k9
�
k
�9

IICB�P�Glc
k10
�
k
�10

IICB +Glc�P (2.5)

The geometry of the pathway in the cell is schematically indicated in Figure 1:

1. The proteins IICB (and its alternative forms, IICB�P, IIA�P�IICB, and IICB�P�Glc) are �xed
to the cell membrane;

2. All species to the left of IICB/IICB �P in (1) (i.e., PEP, Pyr, EI, HPr, IIA, and their various
combinations and alternative forms) are con�ned to the interior of the cell;

3. Glucose is transported from outside to inside, so Glc is supposed only to be present outside of
the cell, while Glc�P is con�ned to the inside.

This spatial separation between EI, HPr, and IIA on one hand and IICB on the other hand implies
that an element of spatial transport is necessary to bring reacting species into contact with each other.
In this paper we shall assume that this transport is e�ectuated by (passive) di�usion.



2. The PTS System 3

Remark 2.1 In what follows we implicitly adopt the continuum hypothesis, i.e., we assume that the
behaviour of the set of molecules in the cell can be modelled by considering a continuous representation
(a concentration). That this is possible is not completely trivial, and depends simply stated on the
number of molecules that are present in the cell. For a spherical cell of radius 1�m, each �M of
concentration is equivalent to 2500 molecules inside a single cell. With the concentrations that we use
here (Table 4) the cytosolic species are counted in tens of thousands. The membrane concentration
of IICB of 3:33�M�m corresponds to 25000 molecules. We conclude that the continuum hypothesis
is a reasonable assumption.

Thus we model the time variation of each of the interior unknown species by equations of the form

@A

@t
�r(DA:rA) = RA for (x; t) 2 
� (0;1); (2.6)

where A is the volume concentration of any one of the species EI; EI�P�Pyr; EI�P, EI�P�HPr; HPr,
HPr�P; HPr�P�IIA; IIA; and IIA�P. The coeÆcients DA are the corresponding di�usion rates, to
which we shall return later, and the reaction rates are given by

REI = J4 � J1 REI�P�HPr = J3 � J4 RHPr�P�IIA = J5 � J6

REI�P�Pyr = J1 � J2 RHPr = J6 � J3 RIIA = �J5

REI�P = J2 � J3 RHPr�P = J4 � J5 RIIA�P = J6 (2.7)

Each of the Ji refers to the total reaction rate in equation i, including both forward and backward
reactions. For reference we list them explicitly:

J1 = k1[EI][PEP]� k
�1[EI�P�Pyr] J4 = k4[EI�P�HPr]� k

�4[EI][HPr�P]

J2 = k2[EI�P�Pyr]� k
�2[EI�P][Pyr] J5 = k5[HPr�P][IIA]� k

�5[HPr�P�IIA]

J3 = k3[EI�P][HPr]� k
�3[EI�P�HPr] J6 = k6[HPr�P�IIA]� k

�6[HPr][IIA�P] (2.8)

The species IICB, IIA�P�IICB, IICB�P, and IICB�P�Glc, which are con�ned to the cell membrane,
are modelled by surface concentrations de�ned on the boundary of the domain, @
. They are also
assumed to undergo di�usion, as well as reaction:

@B

@t
�r(DB :rB) = RB ; for (x; t) 2 @
� (0;1), (2.9)

where the reaction rate RB is given by

RIICB = J10 � J7 RIICB�P = J8 � J9

RIIA�P�IICB = J7 � J8 RIICB�P�Glc = J9 � J10 (2.10)

Here the relevant reaction rates are given by

J7 = k7[IIA�P][IICB]� k
�7[IIA�P�IICB] J9 = k9[IICB�P][Glc]� k

�9[IICB�P�Glc]

J8 = k8[IIA�P�IICB]� k
�8[IIA][IICB�P] J10 = k10[IICB�P�Glc]� k

�10[IICB][Glc�P]
(2.11)

Note that since the concentrations [IICB], [IIA�P�IICB], [IICB�P], and [IICB�P�Glc] are surface
concentrations (L�2) rather than volume concentrations (L�3), the rates J7{J10 are also per unit
surface. In these expressions [IIA], [IIA�P], [Glc], and [Glc�P] are interpreted as the values of the
volume concentrations at the location of the boundary.
For the mass balance of the interior species the reaction at the boundary represents a source/sink

term. The corresponding boundary condition is obtained by equating the source/sink with the local



3. Questions of symmetry 4

ux at the boundary:

DA
@

@�
A = 0; A = EI; EI�P�Pyr; EI�P; EI�P�HPr; HPr;HPr�P; HPr�P�IIA;

DIIA
@

@�
[IIA] = J8; DIIA�P

@

@�
[IIA�P] = �J7

(2.12)

Note that the di�erence in dimensions between J7-J10 and the other rates implies that such a boundary
condition is dimensionally correct. If the local (thermal) di�usion of the species is unchanged by the
�xture to the membrane, then the same rate coeÆcients ki and k

�i apply as in a voluminal context.
The concentrations of PEP, Pyr, Glc, and Glc �P are held constant, and we will treat these as

parameters in the sequel. If we supplement (2.6)-(2.12) with initial conditions for all species, then the
system has a unique solution that remains bounded for all time t > 0. In this paper, however, we are
interested in stationary states. We conjecture that the system (2.6)-(2.12) has a unique stationary
state, which is globally attracting; all our numerical results support this conjecture.

3. Questions of symmetry

The cell will be taken to be three-dimensional and spherical. All concentrations of cytoplasmic species
are considered to be functions of the spatial variable, and the membrane-bound species are de�ned on
the boundary of the sphere.
In the more general of our simulations, no symmetry was pre-imposed on the solutions. However,

provided all parameters respected the radial symmetry, we found no evidence of symmetry-breaking:
all solutions were radially symmetric (note, however, that if a parameter such as Glc is non-symmetric,
then solutions of the equations will also be non-symmetric). In the following sections we will therefore
describe the problem and the results completely in terms of the radial variable.

One might speculate on modi�cations of the model that would allow for symmetry breaking. The
�rst was mentioned above: if any of the data of the problem is non-symmetric, then the solution will
not be radially symmetric either. A di�erent example of a similar phenomenon would be if one of the
species (e.g. IIA) would play a role in a di�erent reaction mechanism, and if this other mechanism
itself would be non-symmetrically distributed throughout the cell.
In yeast a phenomenon is observed in which membrane-bound proteins spread over the membrane

while they are active, (i.e., while the ux is non-zero), but coagulate when they become inactive,
even leading to large clumps that are degraded by the cell. A phenomenon of this type might lead to
interesting (time-dependent) behaviour.

4. Numerical Methods

In spherical symmetry equations (2.6) reduce to the following one-dimensional system of reaction-
di�usion equations in the interior of the cell:

@c

@t
= Rc +

1

r2
@

@r
(r2Dc(r)

@c

@r
); for (r; t) 2 (0;R)� (0;1), (4.1)

for the species c = EI; EI�P�Pyr; EI�P;EI�P�HPr; HPr;HPr�P; HPr�P�IIA; IIA; IIA�P, where Rc

is given by (2.7) and (2.8). The boundary conditions are a symmetry condition in the center,

@c

@r
= 0; for r = 0; (4.2)

and equation (2.12) at the membrane.
In the cell membrane the system of di�usion-reaction PDEs (2.9) translates for the radially sym-

metric case to a system of ODEs

@b

@t
= Rb; for t 2 (0;1), (4.3)
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where b = IICB; IIA�P�IICB; IICB�P; IICB�P�Glc (which is now a scalar function of time only),
and Rb is given by (2.10) and (2.11).
We solve system (4.1)-(4.3) using the Method of Lines: the spatial derivatives are discretized on

a computational grid, and the resulting system of ODEs is integrated in time. The variables of the
ODEs are the protein concentrations. Positivity and mass conservation are characteristic properties
of the continuous variables and should thus be mimicked by the computational solution.
The discretization in space is straightforward: The spatial interval is divided into N equal subin-

tervals of length �r = R
N , and in each subinterval the solutions are taken constant. We approximate

the di�usion term in (4.1) by

1

r2i

r2i+1=2Fc(ri+1=2)� r2i�1=2Fc(ri�1=2)

�r
: (4.4)

For computational cell boundaries ri+1=2 in the interior of the cell the di�usive ux over the boundary
is given by

Fc(ri+1=2) = Dc(ri+1=2)
ci+1 � ci

�r
; for i = 1; :::; N � 1, (4.5)

and at the boundaries of the computational domain the ux is given by (cf. (4.2))

Fc(r1=2) = 0

and (cf. (2.12))

Fc(rN+1=2) = 0; for all species except IIA and IIA�P,
FIIA(rN+1=2) = J8 = k8[IIA�P�IICB]� k

�8[IIA]N [IICB]; and
FIIA�P(rN+1=2) = �J7 = �(k7[IIA�P]N [IICB]� k

�7[IIA�P�IICB]):

For the choice of a time integrator it is important to realize that the system of ODEs obtained after
semi-discretization is moderately sti�. Eigenvalues of the reaction system range between �107 and 0
for the wild-type in vivo concentration values and the kinetic rate constants given in [6]. If one would
integrate such a sti� system in time with an explicit scheme this would lead to time steps in the order
of 10�7, even when the solution is close to steady-state. Therefore it is necessary to use an implicit
time-integrator, in our case the o�-the-shelf solver DASSL[1, 3]. DASSL is a variable-step variable-
order BDF method. When the order is restricted to one it results in the familiar Backward-Euler
method, which is the only known implicit method which combines positivity and mass conservation.
In our experiments we also allowed higher order BDF schemes; negative concentrations did not occur.

5. Experiments

In [5, 6] PTS model experiments are described in a `stirred-tank' setting, i.e. di�usion is neglected,
there is no spatial separation, and all reactants are assumed to be spread homogeneously in space.
In this paper we are interested in the more general setup described above, with an emphasis on
the inuence of di�usive transport on the steady-state pathway ux. In this section we describe a
number of numerical experiments in which we vary the di�usion coeÆcients. We not only consider
the spatial gradients in the species concentration and the distribution over the various protein forms
(unphosphorylated, phosphorylated, complex), but also the inuence on the uptake of glucose, viz.
the ux through the membrane given by (2.11), and the ux-response coeÆcients. The latter describe
the dependence of the ux on the various protein concentrations and di�usion coeÆcients and are
de�ned by

RJ
p =

@ ln jJ j

@ ln p
; (5.1)
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where J is the membrane ux in steady-state and p the dependence parameter.
For the geometry of the cell we assume a sphere with a radius of 1�m. The total protein concen-

trations and the kinetic parameters are those of [6, for the concentrations the in vivo values]. For the
membrane-bound protein IICB a translation has to be made, since in [6] this protein was represented
by a bulk concentration (10�M). We calculate the boundary (surface) concentration by multiplying
the bulk concentration by the volume-surface ratio (4=3)�r3=4�r2. As mentioned above, the kinetic
constants related to boundary metabolites, which where determined for bulk concentrations in [6],
apply unchanged when one of the metabolites in the reaction is �xed to the membrane. For the sake
of completeness the parameter values are listed in Table 4 in the Appendix. In all our experiments
we used a uniform grid of 1000 cells. Fifty cells would in fact be suÆcient for a good indication of
the spatial distribution of the concentrations; however, the values of the ux and the ux-response
coeÆcients are very sensitive to the gradient of the solution near the boundary, and an accurate
computation of these quantities therefore requires a dense spatial discretization near the boundary.
As is to be expected, in the limit Dc ! 1 the protein concentrations show no spatial gradients,

and the simulated concentration values as well as the ux and ux-response coeÆcients equal those
of [6].

In the �rst model experiment, marked A in the sequel, the di�usion parameter Dc is constant in
space and equal for all protein species to 60�m2 min�1 (cf. [4]). As can be seen in Figure 2 the protein
concentrations show gradients, but the total protein concentration for each of the three cytosolic types
EI; HPr, and IIA (e.g., in the �rst diagram the combination EI + EI�P+ EI�P�Pyr + EI�P�HPr), is
constant in space. This can be explained by the fact that the PDE for the sum, which is obtained by
adding the 4 PDEs for the various subspecies, has the form

@c

@t
�r(Dc:rc) = 0;

since Dc = D is independent of the subspecies, and since the reaction terms Rc cancel each other
(conservation of the protein). With the accompanying boundary conditions the only steady states for
this equation are constants.
In experiment B the e�ect is shown of a space dependency of Dc. The cell is divided (conceptually)

into two parts, an inner region (0 � r � 0:5�m) and an outer region (0:5�m � r � 1�m). The
di�usion coeÆcient in the outer region is equal to the value above, and in the inner region we adopted
a value that is lower by a factor of 50. This assumption is inspired by the higher concentration of DNA
in the inner region, which creates an environment in which globular particles di�use more slowly. The
results can be found in Figure 3.
The e�ects of varying the di�usion coeÆcients among the di�erent subspecies is clearly seen in

Figure 4, where we assume that complexes di�use at a lower rate than uncomplexed proteins. The
di�usion coeÆcient for uncomplexed proteins is the same as in experiment A while the coeÆcient for
complexes is taken a factor 1000 lower. Now the summed concentrations of the various subspecies
(e.g., EI + EI�P+ EI�P�Pyr + EI�P�HPr) also show clear spatial gradients.
The factor of 1000 has the merit of clearly demonstrating the e�ect of variation among subspecies,

but it does not provide a meaningful comparison to the actual system. For an estimate of realistic
values of the various di�usion coeÆcients we make the following assumptions:

� proteins (and complexes) are spheres,

� D varies linearly with the inverse of the radius of that sphere (as in the Stokes-Einstein rela-
tionship),

� the volume of the sphere varies linearly with the mass of the protein species, and

� the mass of the phosphoryl group and of pyruvate is negligible (M(EI) = 63:5kDa, M(HPr) =
9:1kDa, M(IIA) = 18:2kDa).
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This leads to the following values of Dc:

DEI = 1=1:91 �DHPr DHPr = 60�m2 min�1 DIIA = 1=1:26 �DHPr

DEI�P�Pyr = DEI DEI�P�HPr = 1=2:00 �DHPr DHPr�P�IIA = 1=1:44 �DHPr

DEI�P = DEI DHPr�P = DHPr DIIA�P = DIIA (5.2)

The result of this choice for the di�usion coeÆcients is shown in Figure 5.
One can also mimic the situation where a large label is attached to one of the smaller proteins

such as HPr or IIA. In our experiments we enlarged the mass of the speci�c protein by a factor of 10
and changed the di�usion coeÆcients accordingly. The result can be seen in Figures 6 and 7 for the
proteins HPr and IIA.
For all these model experiments we give the distribution of the membrane protein species in Table 1

and the steady-state properties (the ux and the ux-response coeÆcients) of the model in Table 2.
For comparison with the `stirred-tank' in vivo experiment of [6] we list for Dc = 105 �m2 min�1 the
intracellular species distribution in Table 3, the membrane species values in Table 1 and the ux and
ux-response coeÆcients in Table 2.

Although the distribution over the protein species, when averaged over space, is roughly the same as
in the experiments of Rohwer et al., we see from Table 2 that the ux in a situation without gradients,
the stirred-tank approximation or `in�nite' di�usion, is signi�cantly higher than in any of the other
experiments, all giving rise to more or less large gradients of the protein species. And where the
stirred-tank approximation leads to the conclusion that the ux is merely dependent on [IICB]total
a model with di�usion makes the uptake of glucose also dependent on [EI]total and even more on
[IIA]total. The actual values of the various di�usion coeÆcients seem to be of less importance. Only
in a few cases this is also of inuence on the uptake values (ux and ux-response coeÆcients). E.g.,
if we look at the ux values in Table 2 a spatial dependence of D (exp. B) is of no inuence, but
the assumption that complexes are `immobile' compared to uncomplexed proteins (exp. C) leads to a
much larger ux. This choice gives rise to the largest gradients, also in the total concentrations, and
to the largest ux. Interesting from an experimental point of view are E and F. In E we have the
situation that attaching a large label to HPr gives rise to a noticeable gradient in [IIA]total without
changing the up-take values too much. In F, where a large label is attached to IIA, we predict a much
smaller ux.

6. Discussion

In this paper we discuss the e�ects of extending the kinetic PTS model of [5, 6] with spatial transport
modelled by di�usion. Experiments with this model show that, in line with the assertions of [2],
di�usion gives rise to large gradients in the concentrations of the various protein species and to a
di�erent prediction for the uptake of glucose compared with the results in [6].
In [2] the authors state that `Large cellular gradients of the phosphorylated and unphosphorylated

form of proteins would have very important implications for cell signalling'. While we intend to
leave this point to a later and more comprehensive discussion, a �rst remark can already be made
on the basis of Table 2. In the well-stirred case the ux control is overwhelmingly localized in the
concentration of IICB; the addition of di�usion transfers part of this control to EI and IIA, thus more
than doubling the ux-response coeÆcient for both proteins.
Turning towards a comparison with experimental data, a �rst interesting question arises in conjunc-

tion with the in vivo experimental data of [6]. The observed values of the pathway ux were higher
than those calculated in the model experiments in [6], which in turn are higher than those that are
predicted by the current model. The fact that addition of di�usion to the model takes us further from
experimental data is intriguing, and this issue remains to be resolved.
An independent question is whether it is possible to �nd experimental proof that such concentration

gradients as discussed above exist in vivo. The simplest experiment to measure gradients would
consist of labeling a protein such as IIA; with such an experiment one would measure the sum of the
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four subspecies, i.e., IIA + IIA�P + HPr�P�IIA + IIA�P�IICB. The thick line in Figure 5 shows the
concentration of this combination. While there is a slight variation in space, it does not seem strong
enough to be detected among a signi�cant amount of noise.
By labeling two proteins by di�erent uorescent labels, and detecting energy transfer from one to

the other, one can (theoretically) detect complexes of these two proteins. If this technique could be
applied to, for instance, HPr �P �IIA, then the resulting response would be strong enough to persist
through perturbations (see Figure 5). This is an avenue that is currently being explored.
A third possibility would be not to measure the gradients directly but at least prove their existence

in an indirect manner. The existence of a concentration gradient is mathematically equivalent to
a non-zero ux-response coeÆcient with respect to the di�usion coeÆcient for that species. The
approach would be to greatly increase the size of one of the proteins, in order to obtain a signi�cant
decrease in the di�usion coeÆcient for that protein. The resulting change in the total pathway
ux is an indication of the ux-response coeÆcient for that di�usion coeÆcient, and therefore of
the concentration gradient. A major diÆculty in this approach is, however, that the reaction rate
constants are expected to change, and would have to be determined anew.
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Model experiments

A Dc = 60�m2 min�1 for all intracellular protein species and uniform in space.

B More crowding in cell-center.
Dc(r) = 60=50�m2 min�1 for 0 <= r <= 0:5 and Dc(r) = 60�m2 min�1 for 0:5 <= r <= 1 for
all protein species.

C Di�usion of complexes much slower.
Dc = 60�m2 min�1 for all uncomplexed proteins, and Dc = 0:06�m2 min�1 for all complexes.

D Di�usion volume/mass dependent.
Dc =

3

p
M(HPr)=M(c) �60�m2 min�1, whereM(c) is the mass of the protein species (cf. (5.2)).

E `Large' label attached to HPr.
M(HPr) � 10.

F `Large' label attached to IIA.
M(IIA) � 10.

A B C D E F Dc = 105

IICB 0.74 0.75 0.53 0.79 0.75 1.04 0.47

IIA�P�IICB 1.66 1.65 1.80 1.63 1.65 1.47 1.82

IICB�P 0.04 0.04 0.04 0.03 0.04 0.03 0.04

IICB�P�Glc 0.90 0.90 0.96 0.88 0.89 0.79 1.00

Table 1: Distribution of membrane protein species1.

A B C D E F Dc = 105

J 54173 54091 58173 53236 53740 47924 60206

RJ
EI 0.11 0.11 0.07 0.12 0.12 0.15 0.05

RJ
HPr -0.03 -0.03 0.00 -0.03 -0.02 -0.04 -0.02

RJ
IIA 0.33 0.33 0.19 0.35 0.32 0.48 0.17

RJ
IICB 0.72 0.72 0.86 0.69 0.71 0.53 0.91

RJ
D(EI) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RJ
D(HPr) -0.02 -0.02 0.00 -0.03 -0.02 -0.06 0.00

RJ
D(IIA) 0.09 0.08 0.02 0.10 0.08 0.17 0.00

Table 2: Steady-state properties of the model.
Flux J1and the ux-response coeÆcients of the four glucose PTS proteins and of the di�usion
coeÆcients.

1Membrane species values are surface concentrations (�M�m). J denotes the (surface) ux per cell
(�M�m3 min�1 = 10�21mol min�1). In [6] both the membrane species and the ux are expressed in �M, i.e. in
volume concentrations. To compare our values with the ones in [6] the surface concentrations should be multiplied by
3=r and the ux divided by 4=3�r3, r = 1�m.
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EI 0.27 EI�P�HPr 0.49 HPr�P�IIA 18.45

EI�P�Pyr 3.05 HPr 1.28 IIA 0.64

EI�P 1.19 HPr�P 29.78 IIA�P 15.43

Table 3: Distribution of intracellular protein species for Dc = 105 �m2 min�1.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

EI

EI.P

EI.P.Pyr

EI.P.HPr

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

HPr

HPr.P

EI.P.HPr

HPr.P.IIA

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

IIA

IIA.P

HPr.P.IIA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

EI

EI.P.HPr

HPr

IIA

Figure 2: Experiment A: Dc = 60�m2 min�1 for all protein species and uniform in space.

The fat line shows the total concentration for the speci�c protein, i.e., the sum of all other lines in
the plot. Along the horizontal axis the distance from the center is given (�m), along the vertical axis
the concentration values in �M.
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Figure 3: Experiment B: More crowding in cell-center.

The fat line shows the total concentration for the speci�c protein, i.e., the sum of all other lines in
the plot. Along the horizontal axis the distance from the center is given (�m), along the vertical axis
the concentration values in �M.
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Figure 4: Experiment C: Di�usion of complexes much slower.

The fat line shows the total concentration for the speci�c protein, i.e., the sum of all other lines in
the plot. Along the horizontal axis the distance from the center is given (�m), along the vertical axis
the concentration values in �M.
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Figure 5: Experiment D: Di�usion volume/mass dependent.

The fat line shows the total concentration for the speci�c protein, i.e., the sum of all other lines in
the plot. Along the horizontal axis the distance from the center is given (�m), along the vertical axis
the concentration values in �M.
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Figure 6: Experiment E: `Large' label attached to HPr.

The fat line shows the total concentration for the speci�c protein, i.e., the sum of all other lines in
the plot. Along the horizontal axis the distance from the center is given (�m), along the vertical axis
the concentration values in �M.
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Figure 7: Experiment F: `Large' label attached to IIA.

The fat line shows the total concentration for the speci�c protein, i.e., the sum of all other lines in
the plot. Along the horizontal axis the distance from the center is given (�m), along the vertical axis
the concentration values in �M.
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Appendix

Parameter Unit Value Parameter Unit Value

PTS protein concentrations Boundary metabolite concentrations

[EI]total �M 5 PEP �M 2800

[HPr]total �M 50 Pyr �M 900

[IIA]total �M 40 Glc �M 500

[IICB]total
2 �M �m 3.33 Glc�P �M 50

Rate constants (PTS step in parentheses)

k1 (PEP to EI) �M�1min�1 1960 k
�1 (PEP to EI) min�1 480000

k2 (PEP to EI) min�1 108000 k
�2 (PEP to EI) �M�1min�1 294

k3 (EI to HPr) �M�1min�1 14000 k
�3 (EI to HPr) min�1 14000

k4 (EI to HPr) min�1 84000 k
�4 (EI to HPr) �M�1min�1 3360

k5 (HPr to IIA) �M�1min�1 21960 k
�5 (HPr to IIA) min�1 21960

k6 (HPr to IIA) min�1 4392 k
�6 (HPr to IIA) �M�1min�1 3384

k7 (IIA to IICB) �M�1min�1 880 k
�7 (IIA to IICB) min�1 880

k8 (IIA to IICB) min�1 2640 k
�8 (IIA to IICB) �M�1min�1 960

k9 (IICB to Glc) �M�1min�1 260 k
�9 (IICB to Glc) min�1 389

k10 (IICB to Glc) min�1 4800 k
�10 (IICB to Glc) �M�1min�1 5:4 � 10�3

Table 4: Parameters of the kinetic model

2Membrane species values are surface concentrations (�M�m). In [6] [IICB]total is expressed in �M, i.e., in volume
concentration. To compare our values with the ones in [6] the surface concentration should be multiplied by 3=r,
r = 1�m.
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