
The Communication Complexity of Enumeration, Elimination, and
Selection

Andris Ambainis+ Harry Buhrman§ William Gasarch ~
Univ. of MD at College Park Univ. of CA at Berkeley CWI

Bala Kalyanasundaramll
Georgetown Univ.

Abstract

Let f: {O, l}n x {O, l}n-+ {O, l}. Assume Alice has
Xi, ... , Xk E {0, l}n, Bob has Y1, ... , Yk E {0, l}n, and
they want to compute f(xi, Y1) · · · f(xk, Yk) communi­
cating as few bits as possible. The Direct Sum Conjec­
ture of Karchmer, Raz, and Wigderson, states that the
obvious way to compute it (computing j(x1, y1), then
j(x2, Y2), etc.) is, roughly speaking, the best. This con­
jecture arose in the study of circuits since a variant of
it implies NC1 i= NC2 •

We consider three related problems.

Enumeration: Alice and Bob output e ::::; 2k -1 elements
of {O, l}k, one of which is f(x1, Y1) · · · f(xi.:, Yk)-

Elimination: Alice and Bob O'utput an element of
{O, l}k that is not f(x1, Y1) · · · f(xk, Yk)·

Selection: (k = 2) Alice and Bob O'Utput i E {1, 2} such
that if f(x1,Y1) = 1Vf(x2,Y2)=1 then f(xi,Yi) = 1.

We establish lower bounds on ELIM(Jk) for par­
ticular f and connect the complexity of ELIM(Jk),
ENUM(k, Jk), and SELECT(f2) to the direct sum con­
jecture and other conjectures.

+Dept. of C.S., University of CA at Berkeley, Berkeley, CA
94720, U.S.A Supported in part by Berkeley Fellowship for Grad­
uate Studies and in part NSF grant CCR-98-00024. (Email:
ambainis©cs.berkeley.edu)

§cw!, P.O. Box 94709, Amsterdamn, The Netherlands. Sup­
ported in part by the EU fifth framework program project QAIP
IST-1999-11234. (Email: buhrman©cwi.nl.)

"!IDept. of C.S. and Inst. for Adv. Comp. Stud., University
of MD., College Park, MD 20742, U.S.A. Supported in part by
NSF grant CCR-9732692. (Email: gasarcUcs. umd. edu.)

llDept. of C.S. Georgetown University., Washington, DC
20057, U.S.A. Supported in part by NSF Grant CCR-9734927.
(Email: kalyan©cs. georgetown. edu.)

**Dept. of C.S., University of Amsterdam, The Netherlands,
(Email: leen©wins.uva.nl.)

0-7695-0674-7 /00 $10.00 © 2000 IEEE

1

Leen Torenvliet**
Univ. of Amsterdam

1 Introduction

Let f: {O, l}n x {O, l}n-+ {O, l}. Assume Alice has
x E {O, l}n, Bob has y E {O, l}n, and both have un­
limited computational power. They want to compute
f(x, y) transmiting as few bits as possible. Both need
the correct answer at the end of the protocol. Let D (!)
be the minimum number of bits they need to transmit
to compute f. D(f) $ n+ 1 since Alice can transmit x
to Bob, Bob can compute f(x, y) and transmit it to Al­
ice. Communication complexity investigates D(f) and
variants thereof [21, 23, 33].

Let k E N and let Jk(x1. ··Xk,Yl .. "Yk)
f(x1, Y1) · · · f(Xk, y1;;) (where Ix;! = I Yi I = n). Now
Alice has X1, ... , Xk. Bob has Y1, ... , Yk, and they
want to compute Jk(x1, ... ,Xk,y1, ... ,yk). Clearly
D(Jk) ::::; kD(f). Does D(Jk) = kD(f)? There is a
counterexample: For x E {O, l}n let !xii be the num­
ber of l 's in x. Let f(x, y) = 1 iff lxl i + IYli ~ n.
Let n = 2m. One can show D(fj = m + 2. (The
2m+t + 1 inputs in {(li02m_i, 12 -ioi) I 0 ::::; i $
2m} U {(li02m-i, 12m-i-lQi) I 0 $ i ::::; 2m - l}
form a fooling set [21] so there is some branch of
length pog(2m+l + l)l = m + 2). For Jk consider
that Bob need only transmit to Alice k numbers
that are between 0 and n = 2m + 1 (which takes
ilog(2m + l)kl = rklog(2m + 1)1) and Alice then has
to transmit back the answers (using k bits). Hence
D(Jk) $ rklog(2m + 1)1 + k. For m large enough
log(2m+ 1) $ m+ k hence we get D(fk) $ km+k+ 1.
However kD(f) =km+ 2k, so kD(J) - D(Jk) ~ k-1.

Despite the counterexample there is a general notion
that D(Jk) should be close to kD(f). This notion is
refered to as the Direct Sum Conjecture, however the
literature does not seem to have a formal statement.

Convention 1.1 A function f : {O, l}n x {O, l}n -+
{ 0, 1} is actually a family of functions, one for each n.
We think of n as growing.

We take the following formal statement which is im­
plicit in [17] to be the Direct Sum Conjecture:

Direct Sum Conjecture: If f: {O, l}" x {O, l}n---+
{O, l} then D(Jk) = k(D(f) - 0(1)).

This conjecture arose in the study of circuits since
a variant of it implies NC1 -=J NC2 (see [17] for connec­
tions to circuits, and see [21, Pages 42-48] for a more
recent discussion). While there are no counterexam­
ples to this conjecture there is some evidence against
it [12].

What if Alice and Bob scale down their goals? We
consider three such downscalings.

Notation 1.2 The notation x E {{O, l}n}k is used to
emphasize that x is thought of as a concatenation of
k strings of length n. The notation x = x 1x2 ... Xk is
understood to imply that lx1I = lx2I = · · · = lxkl = n.
Similar conventions hold for { {O, l}n}i, { {O, l}n-l}i,
and {{O, l}n}k-i.

Def 1.3 Let f : {O, l}n x {O, l}n---+ {O, l}. Let e be
the set of nonempty subsets of {O, l}k of size ::; e.

1. Enumeration: Alice and Bob output e $ 2k - 1
possibilities, one of which is the answer. Formally
let ENUM(e, Jk) i;;;; {{O, l}"}k x { {O, l}n}k x e be
defined by (x, y, E) E ENUM(e, jk) iff fk (x, y) E

E.

2. Elimination: Alice and Bob output a vector that
is not the answer. Formally let ELIM(Jk) i;;;;
{{O,l}n}k x {{O,l}n}k x {O,l}k be defined by
(x,y,b) E ELIM(jk) iff fk(x,y) -=fa b.

3. Selection: (k = 2) Alice and Bob output i E

{l, 2} such that if f(x1, Y1) = 1 V f(x2, Y2) = 1
then f(x;, y;) = 1. Formally let SELECT(J2) i;;;;
{{O,l}n}2 x {{0,1}"}2 x {1,2} be defined by
(x1x2,Y1Y2,i) E SELECT(f2) iff (f(x1,y1) = 1 V
f(x2, Y2) = 1) ~ f(x;, Y;) = 1.

Let i $ k. Clearly D(ENUM(2k-i, fk)) $ iD(f):
Alice and Bob can transmit iD(f) bits to com­
pute bib2 · · · b; =Ji (x1x2 · · · x;, Y1Y2 ···Yi) and output
b1b2 · · -bi{O, l}k-i as the set of possibilities. We state
(for the first time) the following conjecture which gen­
eralizes the Direct Sum Conjecture.

Enum. Conjecture: If f : {O, 1}11 x {O, l}n ---+
{O, l} and i $ k then D(ENUM(2k-i - 1,fk))
(i + l)(D(f) - 0(1)).
Elim. Conjecture: If f : {O, 1 }n x {O, 1 }n ---+ {O, 1}
then D(ELIM(jk)) = D(f) - 0(1).

One approach to the Direct Sum Conjecture would
be to prove the Enumeration Conjecture by induction
on i, with the Elimination Conjecture as base case.

0-7695-0674-7 /00 $10.00 © 2000 IEEE

2

2 Definitions, Results, and Lemmas

In the following definition a protocol is a decision
tree where, at each node, one of the players uses the
knowledge of the string he has and the bits he has seen
to transmit one bit to the other player. See [21] for
details.

Def 2.1 Let Si;;;; X x Y x Z such that, (Vx E X,y E
Y)(3z E Z)[S(x,y,z)]. Let 0E1.

1. D(S) $ t if there is a t-bit deterministic protocol
that will, on input (x, y), output some z such that
S(x, y, z).

2. N(S) $ t if there is at-bit non-deterministic pro­
tocol such that on input (x, y) some leaf outputs
a z such that S(x, y, z). Different leaves could
output different correct answers, and some leaves
may output I DON'T KNOW. The leaves that
do not output I DON'T KNOW are called real
leaves. The nondeterministic moves are binary
and cost 1-bit of communication each. This def­
inition is equivalent to saying that there exists
sets X 1 , ... , X 2 t i;;;; X, and Y1 , .•. , Y2, i;;;; Y, and

2'
Z1, ... ' Z; E z such that (1) x xY ~ ui=l X; xY;,
and (2) (V'i)(Vx E X;)(Vy E Yi)[S(x, y, z;)]. The
collection X 1 x Y1, ... , X 2, x Y2, is called a cov­
ering.

3. Rfub(S) $ t if there is at-bit protocol such that
(1) There exists N such that Alice and Bob get
to observe N coin flips of a referee without be­
ing charged any bits for the privilege, and (2) the
probability that the protocol outputs some z with
•S(x, y, z) is $ i:.

We state a subset of our results in weak form for
readability.

Def 2.2

1. EQ: {O,l}n x {O,l}n---+ {0,1} is defined by

- { 1 if x = y;
EQ(x, y) - 0 if x -=J y.

2. NE: {O, l}n x n---+ {0, l} is defined by NE(x,y) =
1-EQ(x,y).

3. IP : {O, l}n x {O, l}n ---+ {O, l} is defined by
IP(x, y) = x · y (mod 2). (Inner Prod mod 2.)

4. We can view x E {O, l}n as a bit vector represen­
tation of a subset of { 1, ... , n}. With this in mind

{ 1 if xn y = 0;
DISJ(x, y) = o if x n y -I 0.

5. INTER(x, y) = 1 - DISJ(x, y).

For f = EQ, NE, IP, DISJ and INTER it is known
that D(f) = n + 1 (see [21]).
Results about Particular Functions

1. D(ELIM(EQk)) :;::: n and D(ELIM(NEk)) :;::: n
(Theorem 3.3 and Corollary 3.4).

2. D(ELTh1(DISi")) :;::: n - O(logn) and
D(ELTh1(INTERk)) ?: n-O(logn). (Theorem 3.5
and Corollary 3.6).

3. D(ELIM(IPk)) ?: n. (Theorem 5.4)

4. For several graph properties f, D(f) ~ O(nlogn)
and D(ELIM(Jk)) :;::: O(n) (Theorem 4.8,4.9).
Note- n is not length of input, it is the number
of vertices. Length of input is (;).

5. If k is constant then any randomized (public coin)
protocol for ELIM(INTERk) or ELIM(IPk) with
error < .,]:. must transmit nc (log log(n))(log(n))) bits.
(Theorems 6.4 and 6.5)

These results establish the Elimination Conjecture
for f = EQ, NE , DISJ, INTER and IP. Result 4
can be restated as follows: for several graph properties
f, D (Jk) :;::: n(10~b'ln) , which is a weak form of the
Elimination Conjecture. Hence results 1,2,3 and 4 can
be seen as evidence for the conjecture in that it holds
or almost holds for several natural functions.
Results about General Functions

1. Assume that computing fm but allowing one mis­
take requires TD(!) bits for some (even) m. Then
D(ELTh1(J2)) = n(D(f)) bits. (Corollary 7.10)

2. N(SELECT(J2)) ?: N(f) - log(n) - 1. (Theo­
rem 10.1)

3. If the Direct Sum Conjecture is true then
D(SELECT(J2)) ?: 0 Vl - 0(1). (Corollary 10.4)

4. If the Direct Sum Conjecture is true then
D(ENUM(k, Jk)) ?: D(f) - 0(1).

These results link the Elimination Conjecture (and
variants) to other conjectures that seem reasonable,
and thus also provides evidence for its truth.

The complexity of doing k instances of a problem has
been looked at in a variety of fields including decision
trees [6, 25], computability [5, 13], complexity [2, 7, 19],
straightline programs [10], and circuits [28].

Lemma 2.3 Let f : {O, l}n x {O, l}n --+ {O, l}. Let
C ~ { {O, l}n}k x {{O, l}n}k. IJN(ELIM(!k)) ~ t then
there is A ~ { {O, 1 }n}k and B ~ { {O, 1 }n}k such that

0-7695-0674-7 /00 $10.00 © 2000 IEEE

3

1. ICn (Ax B)I?: ICl/2t, and

2. (3b E {O, l}k)(ldx E A)('dy E B)[fk(x,y) =f. bj.

Pr: Since N(ELIM(fk)) ~ t we can cover
{{O, l}n}k x{{O, l}n}k with a set of2t sets of the form
Ax B (which may overlap). These sets also cover C
(and of course may also cover points outside of C).
Since every element of C is covered, some set must
cover ICl/2t elements of C. I

Lemma 2.4 Let f : {O, l}n x {O, l}n --+ {O, 1}, let
g = 1 - j, and let k E N. Then D(ELIM(fk)) =
D(ELIM(gk)).

3 ELIM(EQk) and ELIM(DISJk)

Lemma3.1 Let A,B ~ {{O,l}n}i be such that
('dx1 .. ·X; E A)(ldy1 "'Yi E B)(3j)[EQ(xi,Yi) = l].
Then IAllBI S: 22n(i-l)_

Lemma 3.2 If D ~ {{O, l}n}k and IDI > 2<k-l)n
then ('db E {O, I}k)(3x,y E D)[EQk(x,y) = b].

Pr: By reordering the components of both b and
the strings in D we need only consider b = 1 k-ioi for
0 ~ i ~ k. Fix such an i, and hence such a b.

For each z E {{O, l}n}k-i let Dz = z{ {O, l}n}i nD.
Since IDI > 2(k-I)n and the Dz 's partition D into at
most 2(k-i)n parts, there exists z such that IDzl >
2<i-l)n. Let A = {w E {{O, l}n}i : zw E D}. Note
that IAI = IDzl > 2(i-l)n. By (the contrapositive of)
Lemma 3.1 (3x', y' E A)(ldj)[EQ(xj, yj) = O]. Clearly
EQk(zx'. zy') = ik-iQi. I

Thm 3.3 For all k,n EN, N(ELIM(EQk))?: n.

Pr: Assume, by way of contradiction, that
N(ELIM(EQk)) = t < n via protocol P.

Let C = {(x,x) Ix E {{O,l}n}k}. By Lemma 2.3
there exists A ~ {{0, l}n}k and B ~ { {0, l}n}k such
that (1) IC n (Ax B)I ?: 2-tlCI = 2kn-t and (2) there
is a real leaf L such that for all (x, y) E A x B there
is a nondeterministic computation path of P(x, y) that
terminates at L. Let the label of L be b E {O, l}k.
Hence we know that ('dx E A)('dy E B)[EQk(x, y) =f. b].

Let D = An B. Note that IDI = IC n (D x D)I =
IC n (A x B)I :;::: 2kn-t > 2kn-n = 2n(k-l), We
can now apply Lemma 3.2 to obtain that (3x, y E

D)[EQk(x, y) = b]. This is a contradiction. I

Cor 3.4 For all k, n EN, D(ELIM(NEk)) 2 n.

Thm 3.5 For all k, n E N, N(ELIM(DISJk)) 2 n -
O(logn).

Pr: Let L = \log((ln~/ 21) l ~ n - O(logn). Let

ELIM(EQt) be ELIM(EQk) on k-tuples of { 0, 1 }L.
By Theorem :3.3 N(ELIM(EQI)) 2 L. We show that
N(ELIM(EQI))::; N(ELIM(DISJk)).

There are (r n'f:ll) subsets of { l, ... , n} of size

I~ l · Each one can be represented as a string
in {O, l}L. Let F map {0, l}L to {0, l}n by
mapping a represenation of an I~ 1-sized subset of
{ 1, ... , n} to its bit vector form. Let G(x) be
the complement of F(x). Note that EQ(x, y) iff
DISJ(F(x), G(y)). Hence EQk(xi · · <tk. Yi··· Yk) -/- b
iff DISJk (F(x1) · · · F(:rk), G(y1) · · · G(yk)) -/- b.

The following protocol for N(eleqL)
transmits N(ELIM(DISJk)) bits, and hence shows
that N(ELIM(EQ7J) ::; N(ELIM(DISJk)) . On in­
put (x1X2 .. ·Xk, Y1Y2 ... Yk) E { {O, l}L}k x { {O, l}L}k
Alice and Bob run a protocol for ELIM(DISJk) on
(F(x1)···F(xk),G(yi)···G(y1c)), and output its re­
sult. I

Cor 3.6 For all k, n E N, D(ELIM(INTERk)) 2 n -
O(logn).

4 Graph Properties

Notation 4.1 In this section n is not the length of
the input; it is the number of vertices. Formally Alice
and Bob will both be given graphs on {l, ... , n} and
they will try to determine if some property holds of the
union of the two graphs.

Def 4.2 If H and G are graphs then H is a minor of
G if one can obtain H from G by removing vertices,
removing edges, or contracting an edge (removing the
edge and merging the two endpoints). We denote this
by H ::S G.

Def 4.3 Let TRIV a,b be the graph that is a isolated
vertices unioned with b disjoint edges.

We will show graph properties are hard by reduc­
tion. We first need to define reduction formally.

0-7695-0674-7 JOO $10.00 © 2000 IEEE

4

Def4.4 [3] Let fn: {0,1}" x {0,1}"-> {0,1} and
g,, : {O, l}" x {O, l}" -> {O, l} be infinite families of
functions. f S::cc g means that there are functions
T1, T2 and L such that L: N -> N, L(n) :::; 2polylog n,

and T1, T2 : { 0, 1}" -> {O, 1 }L(n) such that f (x, y) = 1
iff g(T1 (x), Tz(y)) = 1. If L(n) = O(n) then L we say
that f Sec g via a linear reduction.

The following lemma we leave to the reader.

Lemma 4.5 If f Sec g by a linear reduction
then (1) D(g) = n(D(f)), (2) N(g) = O(N(f)),
(3) D(ELIM(gk)) O(D(ELIM(fk)), and (4)
N(ELIM(gk)) = n(N(ELIM(Jk)).

Notation 4.6 Let V (G) be the set of vertices in G
and E(G) be the set of edges in G.

Using a theorem of Mader ([24] but see [8, Chapter
7, Theorem 1.16]) we can proof the following.

Lemma 4. 7 If f is a property of graphs closed under
minors then for all G such that f(G) = 1, IE(G)I =
O(IV(G)j).

Thm 4.8 Let f be a prnperty of graphs closed under
minors. If (\la,b)[f(TRIVa,b) = 1] then the following
occur. Let g = 1 - f.

1. D(f):::; O(nlogn).

2. DIS.J Sec f by a linear reduction.

3. N(f) 2 n(N(DISJ)) = O(n).

4. N(ELIM(Jk)) 2:: n(N(ELIM(DISJk))) = n(n).

5. D(g):::; O(nlogn).

6. INTER Sec g by a linear reduct'ion.

7. D(g) 2 n(N(DISJ)) = n(n).

8. D(ELIM(gk)) 2:: n(N(ELIM(INTERk))) = il(n).

Pr: We show D(f) ::; O(nlogn). By Lemma 4.7
there exists a constant c such that any graph with
f(G) = 1 has::; en edges.

Here is the protocol: Alice looks at how many edges
she has. If she has more than en edges then she sends
Bob a 0, and they both know f(G) = 0. If not she sends
Bob a 1 and then sends him a list of the edges she has.
Since each edge takes 2 log n bits to send and there are
only en edges, this takes 2cnlogn = O(nlogn) bits.

We show that DISJ Sec f by a reduction that maps
a pair of n-bit strings to an O(n)-node graph. For any
splitting of the graph the reduction works.

By the Graph Minor Theorem [30] there exists
graphs H1, ... , Hk such that f(G) = 0 iff (:Ji)[H; ::5 G].
Note that the H;'s could be disconnected; however,
none of the H/s can be TRIV a.b·

Let H 1 be the graph that has the smallest largest
component, where we measure size by number-of-edges.
We view H 1 as being in two parts: TRIV a,b U A where
A does not share any edges or vertices with TRIV a,b·

It is possible a = 0 or b = 0 or both. The graph A
must have a component with ;::: 2 edges in it. Break
up the edge set of A into two disjoint sets such that
every connected graph of A with ;::: 2 edges is broken
up. Call these two parts A1 and A2.

We define T1 (respectively T2). On input
T1(x1 · · ·Xn) (respectively T2(Y1 ·· ·Yn)) is defined as
follows:

1. Put TRIV a,b on the first a + 2b vertices. (Same
with T2). Break up the remaining vertices into n
groups of jV(A)I vertices each. (Same with T2.)

2. For all i E {1, ... , n} do the following. If x; = 1
then put A1 on the ith group of vertices. If X; = 0
then do not put those edges in. (If y; = 1 then
put A2 on the ith group of vertices. If y; = 0 then
do not put those edges in.)

If DISJ(x1 · · · Xn, Y1 · · · Yn) = 0 then there exists i
such that x; = y; = 1. Hence G will have TRIV a,b U
A= H1 as a minor so f(G) = 0.

If DISJ(x1 · · · Xn, Y1 · · · Yn) = 1 then there is no such
i. G will be TRIV a,b unioned with graphs all of whose
components are smaller than the smallest largest com­
ponent of a forbidden minor. Hence G cannot have any
of Hi, ... , Hk as minors, so f(G) = 1.

Items 3 and 4 follow from item 2, Theorem 3.5, and
Lemma 4.5. Items 5,6, and 7 are easy consequences of
items 1,2,3. Item 8 follows from item 4, Corollary 3.6,
and Lemma 2.4. I

Thm 4.9 Let f be a property of graphs. Assume that,
for all n, there exists a graph G = Gn such that (1)
G has n vertices, (2) f(G) = 1, (3) for every proper
subgraph H of G f(H) = 0, and (4) IE(G)I ;::: n. Let
g = 1- f.

1. DISJ :5cc J by a linear reduction.

2. N(f) ;::: O(N(DISJ)) = !l(n).

3. N(ELIM(Jk)) ;::: O(N(ELIM(DISJk))) = n(n).

4. INTER :5cc g by a linear reduction.

5. D(g) 2': O(N(DISJ)) = !l(n).

6. D(ELIM(gk));::: O(N(ELIM(DISJk))) = !l(n).

0-7695-0674-7 JOO $10.00 © 2000 IEEE

5

5 The Complexity of ELIM(IPk)

Lemma 5.1 Let A, B <;;; {O, l}n - on and let i E
{1, ... , n + 1}. If IAI 2': 2i and IBI 2': 2n-i-l then
(:Jx E A)(3y E B)[IP(x,y) = 1].

Pr: Let A' be the linear SU bspace of { 0, 1} n spanned
by A. Then, IA'I ;::: IAI + 1 ;::: 2i + 1 because A<;;; A'
and on E A' - A. Therefore, the dimension of A' is at
least i + 1. This means that the dimension of (A').l. is
at most n-i- land l(A').l.-Onl:::; 2n-i-1-1. Hence,
there is an x E Band Y1, ... , Yk EA such that x and
.L:=l y; E A' are not perpendicular. Hence there must
be an i such that IP(x, y;) = 1. I

Lemma 5.2 Let A, B <;;; {O, l}n - on and let i E
{1, ... , n + 1}. If IAI 2': 2i-2 + 1 and IBI 2: 2n-i + 1
then (::ix E A)(:3y E B)[IP(x, y) =OJ.

Pr: Assume, by way of contradiction, that for every
x E A and y E B we have IP(x, y) = 1. Fix xo E A
and yo E B. Let A' = { x - xo I x E A} and B' =
{y - Yo I y E B}. For every y E B, IP(x - xo,y) =
IP(x, y) - IP(xo, y) = 1 - 1 = 0 and IP(x - Xo, y -
Yo) = IP(x - xo, y) - IP(x - Xo, Yo) = 0. Therefore,
A' and B" =BUB' are perpendicular. Moreover, the
subspaces spanned by A' and B" are perpendicular.

The sets B and B' do not overlap: if y E B and
y - Yo E B then IP(xo, y - Yo) = 1, so IP(xo, y) -
IP(xo, yo) = 1, and since IP(xo, yo) = 1 we get
IP(x0 , y) = 0. The sets B and B' are the same size
since the function y ---> y - Yo is a bijection between
them.

The dimension of the subspace spanned by A' is at
least ·i-1 because IA'I = IAI 2: 2i-2+1. The dimension
of the subspace spanned by B" is at least n - i + 2 be­
cause IB"I = IBI + IB'I = 2IBI = 2n-Hl + 2. The sum
of these two dimensions is at least (i - 1) + (n - i + 2) =
n + 1. However, if two subspaces are perpendicular, the
sum of their dimensions is at most n. This is a contra­
diction. I

Lemma 5.3 Let A, B <;;; { {O, l}n - on}k be such that
IAllBI > pH2k wherep = 2n1:_4 and H = 2n- l. Then,
for any z E {O, l}k, there are x EA, y E B such that
IPk(x, y) = z.

Proof sketch: By induction. The base case is k =
1: A,B <;;; {{O, l}n-on}. and IAllBI > pH2 2: 2n. By
Lemmas 5.1and5.2, this implies that there are x 1, x2 E

A, Y1, Y2 E B with f (x1, Y1) = 0 and f (x2, Y2) = 1.
For the induction step there are two cases: Zk = 0

and Zk = 1.

I) What if Zk = O? Assume k > 1. Let A1
be {x1 · · ·Xk-1 I x1 · · ·Xk E A for;::: 1 xk}. For i E
{2, . . .,n + 1} let A; be {x1 ···Xk-1 I x1 ···Xk E
A for ;::: 2i-2 + 1 Xk}.

The sets B; are defined similarly.
We consider two cases:

Case 1: IA;llBn+2-;[> pH2(k-l) for some i E
{l, ... , n + l}. Then, by inductive assumption, there
are X1 · · ·Xk-1 EA; and Y1 · ··Yk-1 E Bn-i such that
IP(x1,Y1) = z1, ... , IP(xk-i.Yk-1) = Zk-1· We fix
X1,y1, ... ,Xk-1,yk-1 with this property. LetC= {xk I
X1 · · ·Xk E A;}, D = {Yk I Y1 · · ·Yk E Bn-d· Then,
ICI ;::: 2i-2 + 1 and IDI ;::: 2n-i + 1. By Lemma 5.2,
this means that there are Xk E C, Yk E D such that
IP(xk, Yk) = 0 = Zk·
Case 2: For all i E {l, .. ., n + l}, IA;l!Bn+2-;[~
pH2(k-l)_ We will show that this implies [Al[BI ~
pH2k, and hence cannot occur.

Note that A1 ;;;:? A2 ;;;:? • • • 2 An+l· For every
X1···Xk EA we know that X1···Xk-l is either in
A1 - A2 or A2 - Ag or · · · or An - An+l or An+l·
For 1 :s; i :s; n, for every x1 · · · Xk-1 E A; - Ai+1 there
are at most 2i-l extensions of it that are in A (by the
definition of A;+1). For every X1 · · · Xk-1 E An+1 there
are at most 2n - 1 extensions of it that are in A since
there are only 2n - 1 elements in {O, l}n - on. Clever
algebra, which we omit, shows this cannot occur.

II) What if Zk = 1? Similar to the Zk = 0 case. I

Thm 5.4 For all k, for all n;::: 4, N(ELIM(IPk)) ;::: n.

Pr: Let p and H be as in Lemma 5.3. Assume that
N(ELIM(IPk)) = t. Let C = ({O, l}n-on)k x ({O, l}n­
on)k. Note that ICI = H 2k. By Lemma 2.3 there is
an A ~ { {O, l}n}k, a B ~ {{O, l}n}k, and a vector
b E {O, l}k, such that IC n (Ax B)I ;::: IHl 2k /2t and
(Vx E A)(Vy E B)[IPk(x, y) =f. b]. By the nature of C
we can assume A,B ~ ({O, l}n - on)k. By Lemma 5.3
if IA[!BI > pH2k then (3x E A)(:Jy E B)[IPk(x, y) =
b]. Since bis eliminated from being IPk(x,y) we have

IAl!B[< pH2k. Therefore H 2
k < pH2k l < 2t and - ""'2'- 'p- ,

2n - 4 :s; 2t. Since n ::'.'.: 4 we have t ;::: n. I

6 Lower Bounds on Rand. Protocols

Amplfiying probabilities in randomized communica­
tion complexity protocols is non-trivial since repeat­
ing a protocol n times (which is standard for random­
ized poly time) multplies complexity by n which is very
large in this context. The next lemma shows how to
amplify, though at a cost.

0-7695-0674-7 /00 $10.00 © 2000 IEEE

6

Lemma 6.1 Let k and E < f. be constants. Let
S be a relation on {O, l}n x {O, l}n x Z such
that (\ix)(Vy)(3z)[S(x, y, z)]. If Rrub(S) ~ t then
Ri/~ogn(S) ~ O(tloglogn).

The next lemma applies a techniques from [1, The­
orem 3.5][7, Lemma 4.3][26, Theorem 5.1] in a novel
way.

Lemma 6.2 Letx1, .. .,X2k_1,y1,. . .,y2k_1 E {0,1}*
s'uch that (Vi)[jx;I = IY;[]. Let X = x1 · · ·X2k_ 1
and Y = Y1 ···y2k_ 1• For i = l, .. .,k let
X; (Yi) be the concatenation of all Xj {yj) such
that the ith bit of j is 1. For example X1 =
X1X3X5 .. ·X2k-1 and X2 = X2X3X6X1 . .. X2n-2X2n-1.
Assume INTERk(XkXk-1···X1,YkYk-1···Yi.) -:/= b
and b i= 0. View b as a k-bit binary number (leading
bits may be 0). Let X' (Y') be X with the Xb (Yb) re­
moved. Then INTER(X, Y) = 1::} INTER(X', Y') =
1.

Pr: If INTER(X, Y) = 1 and INTER(xb, Yb) = 0
then clearly INTER(X', Y') = 1. Hence we assume
INTER(X, Y) = 1 and INTER(xb, Yb) = 1.

Let b = bkbk-1 · · · b1. Let 1 ~ j :s; k. If bj = 1 then
Xb is a substring of Xj and Yb is a substring of Yj and
they are in the same position. Since INTER(xb, Yb) =
1 we obtain INTER(Xj, Yj) = 1 = bi. Since
INTERk (XkXk-1 · · · X1, YkYk-1 · · · Y1) =f. b we have
V 1<;<kINTER(X;, 'Yi) =f. b;. Since INTER(Xi, 'Yi) =
b; this reduces to V l<i<k b·=O INTER(X;, 'Yi) =f. b;
hence Vi<i<kb=0 INTER(.. f,Yi) = 1. Let io be such
that b;0 :;; -0 'a'.rid INTER(Xio• J:i0) = 1. Note that
X;0 (Yi0) does not have Xb (yb) placed in it. Hence
INTER(X', Y') = 1. I

Lemma 6.3 ([16, 29]) Ri/~(INTER) = n(n) even
when restricted to

D = {(x,y) E {O, l}n x {0, l}n : for :s; 1 i X; = y;}.

Thm 6.4 Let k and E < l/2k be constants.
Rrub(ELIM(INTERk)) = O(iog(n)l~glog(n)).

Pr: Assume R~ub(ELIM(INTERk)) = t(n) via
protocol P'. By Lemma 6.1 we can obtain a
protocol P such that Ri/~ogn(ELIM(INTERk)) =
O(t(n) loglogn) via P. We can also apply the protocol
to k-tuples of inputs of length ~ n by having both Al­
ice and Bob pad with O's. We will still assume it costs
t(n)loglogn.

We use P to obtain a randomized protocol for

INTER that shows Ri/~(INTER) = O(iog(n{1~~1og(n)l·

By Lemma 6.3 Ri/~(INTER) = n(n), hence we have
t(n) = D(n/ logn loglogn).

Let X and Y be two strings of length n. Let Alice
have X and Bob have Y. Alice and Bob divide X
and Y into 2k - 1 parts that are roughly of the same
length, so that X = x1 ... x2k_ 1 and Y = y1 .•. y2k_i.
Now xi, ... , X2k-2 are of length ln/(2k - l)J and x 2k_ 1

has length n - (2k - 2)Ln/(2k - l)J ~ l 2t_i j. Let Xi

(Yi) be a string obtained from X (Y) as in Lemma 6.2.
Note that IXd = IYil $ n so we can apply the protocol
P to (Xk · · ·X1, Yk · · · Y1).

Run protocol P on (Xk · · ·X1, Yk · · · Y1). If
the protocol returns Ok then Alice and Bob stop
and reject. Note that if this happens then
Pr(V~=i INTER(Xi, Yi) = 1) $ 10!n, so the prob­
ability of error is $ 10 i n. If the protocol returns
b = bi·· ·bk then by Lemma 6.2 with probability
greater than 1 - 10~ n we have INTER(X, Y) = 1 ~
INTER(X', Y') where X' is X with the Xb cut out (and
Y' is similar). Next, Alice and Bob remove Xb and Yb
from their strings and reiterate the process. Repeat up
to logn times if needed.

A careful analysis shows that the probability that all
steps are correct is (1-1/ logn)0 <1ogn), which is about
e-c for some constant c. By a variant of Lemma 6.1 we
can iterate the algorithm a constant number of times to
get the probability of error down to t. This constant
gets absorbed into the big 0. I

Thm 6.5 Let k and E < 1/2k be constants.
Rrub(ELIM(IPk)) = n(n/lognloglogn).

Pr: By Lemma 6.3 Ri/~(INTER) = O(n) even
when restricted to D = {(x,y) E {O,l}n x {O,l}n :
for$ 1 i Xi = yi}. On D, IP = DISJ. The proof of

Theorem 6.4 can now be viewed as a lower bound on
Rrub(ELIM(IPk)). I

7 D(ELIM(f2)) and D(ALMOST(fm))

Def 7 .1 If a, r E {O, 1} * are strings of the same length
then a = 1 r means that a and r are either identical or
differ on one bit.

Def 7.2 Let j : {O, l}n x {O, l}n --4 {O, 1}
ALMOST(Jk) ~ {{O, l}n}k x {{O, l}n}k x {O, l}k is
defined by {(x,y,b) I fk(x,y)= 1 b}

Clearly D(ALMOST(Jk)) $ (k-l)D(f). We believe
this is optimal but put forth a far weaker conjecture.

0-7695-0674-7 /00 $10.00 © 2000 IEEE

7

Conjecture 7.3 For any function f, for any k E N,
D(ALMOST(Jk)) ~ ~D(f).

We establish some connections between the com­
plexity of ALMOST(Jk) and the complexity of enu­
meration.

Def 7.4 If X ~ {O, l}m and 1 $ii, ... , ik $ m then
X[i1, ... , ik] is the projection of X onto those coordi­
nates.

Lemma 7 .5 Let X ~ { 0, 1} m. Let b E X be ·unknown.
If (Vi,j)[IX[i,j]I $ 3] then there is an algorithm that
requests$ r~ l - 1 bits of b that produces b' =i b.

Pr: We show the weaker theorem that there is an
algorithm that requests$ j~ l bits of b. We then show
how to modify the algorithm to request $ r ~ l - 1.

Let U = {1,. . .,m}, K = G = 0. Throughout the
algorithm U will be the set of indices i such that bi is
Unknown, nor have we ventured a Guess, K will be the
set of indices i such that we Know bi, and G will be
the set of indices i such that we have made a Guess for
bi· At the end of the algorithm we will have U = 0,
KU G = {1,. . ., m }, and at most one of our guesses is
wrong.

At all times U, K, and G are a partition of
{1, .. .,m}. The expression "K =KU {a,i}" means
that wherever a, i are, they leave those sets and go into
K Similar for other sets. Our final output will be
b' = bi · · · b~. Initially bi, ... , b~ are undefined. They
may get set and reset several times; however at the end
of the algorithm they will all be defined.
ALGORITHM

For i=l tom
If X[i] = {c} then b; = c, K =KU {i}

For i = 1 to m, For j = i + 1 to m
If X[i,j] ~ {00, 11} then

ASK(bi =??)
If bi = 1 then b: = 1, bj = 1, K = KU { i, j}
If bi = 0 then b: = 0, bj = 0, K = KU { i, j}

Else
If X[i,j] ~ {01, 10} then

ASK(bi =??)
If bi = 1 then b; = 1, b'. = 0, K = K U { i, j}
If bi= 0 then b; = 0, b~ = 1, K =KU {i,j}

End For loop (Note IX[i,j]I $ 2 ~ i,j EK)
While U =f:. 0

i = rnin(U)
If (3j, k E U U G - {i})(3c1, c2 E {0, 1})[Oc1 ~

X[i, j] /\ lc2 tf. X[i, k]] then (CASE 1)
ASK(bi =??)
If bi = 0 then b; = 0, bj = 1- c1, K = Ku { i, j}

Ifb; = 1 then b~ = 1, b~ = 1-c2 , K = KU{i,k}
(Note that If b; = 0 then since b;bj E X[i,j] and

Oc1 rf. X[i,j], we have bj = 1- c1.
Similarly, If b; = 1 we have bk = 1 - c2 .)

Else (CASE 2- will prove below this must occur)
find d E {O, l} such that ('i/j E U U G -

{i})[i{dO,dl}nX[i,j]I s l]
b; = 1- d, G =GU {i}

End While
END OF ALGORITHM

It is easy to see that the algorithm (a) requests
s IT l coordinates, (b) sets all the b;, and (c) (Vi E
K)[b; = b;J.
Claim 1: Either Case 1 or Case 2 occurs.
Proof: Assume Case 1 does not occur. We show that
Case 2 does. Intuitively Case 1 is saying that there
is j, k such that X[i, j] and X[i, k] exclude elements of
{O, 1}2 that begin with different bits. The negation is
that, for all j, k, X[i,j] and X[i, k] exclude elements of
{O, 1}2 that begin with the same bit. This bit is the din
case 2. We proceed more formally. Fixj0 E UUG-{i}.
Since IX[i,Jo]I s 3 either (3c E {O, l})[Oc rf. X[i,jo]]
or (3c E {O, l})[lc rf. X[i,j0]]. We consider the first
scenario (the second is similar)

Assume (3c1 E {O,l})[Oc1 rf. X[i,jo]. (We call it
"c1" because it will later play the role of c1 in Case
1, leading to a contradiction.) We have !{OO, 01} n
X[i,Jo]I s 1 which looks like Case 2 for jo with
d = 0. We show that (Vj EU u G - {i})[!{00,01} n
X[i,j]I s l]. Assume, by way of contradiction, that
(3j)[!{OO, 01} n X[i,j]I = 2]. Since IX[i,j]I s 3 we
have (3c2E{O,1})[lc2 rf. X[i,j]J. Hence

(3jo,j EU U G- {i})(3c1, c2 E {0, l})

[Oc1 rf. X[i,jo] /\ lc2 rf. X[i,j]].

This is Case 1 with different names for the variables;
hence it is really Case 1, a contradiction.
End of Proof of Claim 1

Claim 2: There is at most one i E G such that b; /:- b;.
Proof: Assume, by way of contradiction, that there
exists i1, i2 E G with b; 1 /:- b; 1 and b; 1 =f. b; 1 • Since
i1, i2 E G we know that (1) they are both the chosen
i in some phase, (2) when they are chosen Case 2 oc­
curs, and (3) they are both always in U U G. Since
b;1 =f. b;1 when i = i 1 we get Case 2 with d = b; 1 • Since
i2 EU U G we get i{b;10,b;1 l} n X[i1,i2]i s 1. Simi­
larly, l{b;2 0,b;2 l} n X[i2,it]I s 1 which we rewrite as
!{Ob;2 , lb;2 } n X[i1, i2]i s 1.

We prove that jX[i1, ·i2]I s 2 and hence it must have
been dealt with before the while loop even started,

0-7695-0674-7 /00 $10.00 © 2000 IEEE

8

which contradicts i1,i2 EU. Clearly b; 1 b; 2 E X[i1,i2].
Since l{b; 10, b; 1 1} n X[i1, h] I s 1 we get b; 1 (1 - b;2) rf.
X[i1, i2]· Since i{Ob;2 , lb;J n X[i1, i2]1 s 1 we get
(1 - b;Jb;2 rf. X[i1, i2] · Since b;1 (1 - b;2) # (1- b;1)b;2

we have eliminated two elements from X[i1, i2]· Hence
IX[i1, i2]1 s 2.
End of Proof of Claim 2
Claim 3: The algorithm can be modified to request
I m/21 - 1 bits.
Proof: Run the algorithm keeping track of how many
queries it makes. If it stops before making I m/21 th
queries then we are done. If it is about to make its
I m/21 th query then stop it. Each of the first r m/21-1
queries lead to 2 indices being placed in the K set.
Hence m - 2 bits are known for certain. Let the un­
known bits be indexed i and j. Let c;CJ rf. X[i,j]. Set
b~ = 1 - e; and bj = 1 - Cj. They cannot both be
incorrect since b;bi /:- C;CJ·

End of Proof of Claim 3 I

Lemma 7.6 Let X ~ {O, l}m. Let b EX be unknown.
Let 2 s k s m. If ('i/i1, ... , ik)[!X[i1, · · ·, ik]i s k + l]
then there is an algorithm that requests s max{ IT l -
1, k- l} bits of b that produces b' =1 b.

Pr: We prove this by induction on k. Lemma 7.5
gives the base case of k = 2. Assume k 2 3
and that the lemma holds for k - 1. Assume X ~

{0,1}= and ('i/i1, ... ,ik)[IX[i1,-··,ik]! =::; k + l]. If
('i/i1,. .. ,ik-1)[1X[i1,···,ik-1]! s k] then we are done
by induction. If not then
(3i1,. .. ,ik_i)[IX[i1.-··,ik-1]! 2 k + 1]. Let i E
{1, ... , m} - {i1, ... , ik-d· Since IX[ii, ... , ik-1, i]j S
k + 1 and jX[i1, · · -,ik-ill 2 k + 1 for every
c E X[i1, ... , ik-il exactly one of cO or cl is in
X[i1, ... , ik-1, i]. Hence if we ask for the values of
b; 1 , ••. , b;k- • we can determine the values of all the
other b;. This takes k - 1 questions. I

Note 7.7 In addition to its use here, Lemma 7.6 can
also be used to prove the following new theorem: if et
is k + I-enumerable then, for all m, one can compute
C~ with at most one error using max{fTl, k - 1} of
the queries given.

Thm 7.8 Let f : {O, l}n x {O, l}n -"* {O, l}.
Then D(ALMOST(fm)) s (';)D(ENUM(k + 1, Jk)) +
max{fTl -1, k- l}D(f).

Pr: We exhibit a protocol for ALMOST(!=) that
will invoke a D(ENUM(k + 1, fk)) protocol (';) times,
and an f protocol at most max{ tTl -1, k-1} times.

1) Alice has x = x1x2 · · ·Xm, Bob has y =
Y1Y2 · · ·Ym·

2) For all ii<···< ik ~ {l, ... ,m} Alice and
Bob compute a set of k + 1 possibilities for
fk(Xi 1X;2 ···X;k,y; 1Yi 2 .. ·Y;k). This invokes a
D(ENUM(k + 1, fk)) protocol (';;) times.

3) Let X ~ {O, l}m be the set of possibili­
ties for fm(x, y) that are consistent with the
information gathered in step 2. (That is,
b E X iff for every i 1, ... , ik the string
b; 1 • • • bik was output when Alice and Bob enu­
merated Jk (x;1 • • • Xik, y; 1 • • • Yik). Note that X
is nonempty since f(x1,yi)···f(xm.Ym) EX.)
Note that Alice and Bob both know X and that
X satisfies Lemma 7.6.

4) Alice and Bob perform the algorithm in
Lemma 7.6.2 with X as in the previous step and
b = Jk(x,y). Whenever they need to find a partic­
ular bit f(x;, Yi), they invoke an f protocol. This
will happen at most max{ r!f l -1, k -1} times.

I

Cor 7.9 Let m,n EN and let f: {O, l}n x {O, l}n--+
{O, 1}. Then D(ALMOST(fm)) ::; (';')D(ELIM(j2)) +
{f !fl - l)D(f).

Cor 7.10 Let m, n EN and let f: {O, l}n x {O, l}n--+
{ 0, 1}. Assume Conjecture 7. 3 holds for some even m.
Then D(ELIM(J2)) 2:: !1(D(f)).

8 N(ENUM(e,Jk)), N(f), and Rfub

The next theorem uses ideas from the proof that
p-superterse sets are in P /poly from [2].

Lemma 8.1 Let e, k, n E N and let f : {O, l}n x
{O,l}n --+ {0,1}. Either N(ENUM(e- l,fk-1))

::; N(ENUM(e, fk)) + log(kn) + 0(1) or Rfj~(f) $

N(ENUM(e, fk)).

Thm 8.2 Lete, k,n EN and letf: {O, l}nx{O, l}n--+
{O, l}. Either

1. Rfj:(f) $ N(ENUM(e, Jk)) or

2. N(j) ::; N(E~i:_~J~,fk)) + elog(kn) + O(e).

Cor 8.3 Let e, k, n EN and let f: {O, l}n x {O, l}n--+
{O, l}. Either Rf'J~(f) $ N(ENUM(k, Jk)) or N(f) $

N(ENUM(k, Jk)) +log(kn).

0-7695-0674-7 /00 $10.00 © 2000 IEEE.

9

9 D(ENUM(e, fk)) and Direct Sum Conj

Lemma 9.1 ([4, 9, 27]) Let X ~ {O, l}k such that
IXI $ k. Let b E X be unknown. There is an algorithm
that requests $ k - 1 bits of b that produces b.

Thm 9.2 Let f: {O, l}n x {O, l}n--+ {O, I}. For all k,
D(Jk) $ D(ENUM(k, Jk)) + (k - l)D(f)

Pr: This is proven using a protocol that uses
Lemma 9.1 in a manner similar to how Theorem 7.8
used Lemma 7.6. I

Cor 9.3 If the Direct Sum conjecture holds at k then
D(ENUM(k, Jk));::: D(j) - O(k).

10 The Comm. Comp. of Selection

The next theorem uses ideas from the proof in [18]
that p-selective sets are in P /poly.

Thm 10.1 Let n E N and f : {O, l}n x {O, l}n --+
{0,1}. ThenN(SELECT(f2)) ;:::N(f)-log(n)-1 and
N(SELECT(f2)) 2:: coN(f) - log(n) - 1.

By N(SELECT(j2)) ;::: N(ELIM(j2)) and Theo­
rem 3.5 we have N(SELECT(DISJ2)) ;:::: n - O(logn).
By Theorem 10.1 and N(DISJ) ;::: n + 1 (a fooling set
argument) we have N(SELECT(DISJ2));::: n - log(n).
We improve this.

Thm 10.2 N(SELECT(DISJ2)) ;::: n.

Pr: Assume that N(SELECT(DISJ2)) = t via pro­
tocol P. Let X1 and x2 be strings of length n such
that C(x1 IP, x2) ;::: n and C(x2IP, x1) ;::: n. Let Alice
have X1X2 and Bob have X1X2. Let b = bib2 · · · bt be
a sequence of bits that form a possible path to a real
leaf L that Alice and Bob could go down. (Note that b
includes both the nondeterrninistic choice bits and the
communication bits by the definition of nondeterrnin­
istic protocols.) Assume that the leaf outputs 2 (the 1
case is similar).

We show that x1 can be directly recovered from
x2, P, b. This shows t 2: n since C(x2IP, x1) ;:::
n. Recovery algorithm: Enumerate all x such that
P(xx2, xx2) could end up at leaf L. There will only
be one such x (proven below) and that one x is x 1 .

Assume that x and x', get enumerated in the
above recovery algorithm. Since P(xx2, xx2) and
P(x'x2,x'x2) both end up at L, by a basic theorem
in communication complexity [21, Propostion 1.14],
the inputs (xx2, x'x2) and (x' x2, xx2) will end up

at L. Hence DISJ(x, x')DISJ(:r:2, :r:2) i= 01. Since
DISJ(::c2, ::c2) = 1 we have DISJ(:r, x') = 1. We also get
DISJ(x', x)DISJ(:r:2, X2) i= 01. Since DIS.J(::c2, X2) = 1
we have DISJ(x', x) = 1 Since x and x' are disjoint sets
and x' and x are disjoint sets, x = x'. I

Thm 10.3 D(j3) S:: 2D(.f) + 3D(SELECT(j2)).

Pr: For this theorem we use the definition
(x1:c2, Y1Y2, b1b2) E SELECT(j2) if f(x1, Y1) = b1 or
f (:r:2, Y2) = b2 and b1 i= h This is easily seen to
be equivalent to the usual definition. We present a
protocol for D(f3) which transmits at most 2D(f) +
3D(SELECT(f2)) bits. Assume Alice has X1X2:r:3 and
Bob has Y1Y2Y:l· For i,j E {1,2,3} and i < j, Al­
ice with inputs Xi, Xj and Bob with inputs y;, YJ run
the SELECT(.f2) protocol and produce output b),j, bT.J·
For each i, observe that Alice and Bob predict f(1:;, Yi)
exactly twice while running SELECT(f2) thrice. Since
the output of the SELECT(j2) protocol is limited to
01 or 10, it must be the case that for some i, the two
predictions of Alice and Bob on f(x;, y;) do not match.
Without loss of generality, let us assume that the mis­
match happens for i = 1. Now Alice and Bob compute
f(x:1, Yi) by exchanging at most D(f) bits. Without
loss of generality, let us assume that bl,2 i= f (:i:1, Y1).
Knowing this, Alice and Bob will correctly conclude
that f(:r2,y2) = b~. 1 . Finally, Alice and Bob computes
f (x: 3 , y3) by exchanging at most D(f) bits. I

Cor 10.4 If the Direct Surn Conjecture holds then
D(SELECT(j2)) 2 ±DU) - 0(1).

11 Acknowledgments

We want to thank Laszlo Babai, Richard Chang,
Steve Fenner, Anna Gal, Steve Horner, Vladik
Kreinovich, Eyal Kushilevitz, Luc Longpre, Jacob
Lurie, Noam Nisan, Michael Saks, and Frank Stephan
for helpful discussions. The third author wants
to thank Eyal Kushilevitz and Noam Nisan whose
book [21] introduced him to the field.

References

[1] Agrawal and Arvind. Poly-time tt reductions to P­
selective sets. STRUCTURES94.

[2] Amir, Beige!, Gasarch. Some connections between
bounded query classes and non-uniform complexity.
STRUCTURES90

[3] Babai, Frankl, Simon. Complexity classes in commu­
nication complexity theory FOCS86

0-7695-0674-7 /00 $10.00 © 2000 IEEE

10

[4] Beige!. Bounded queries to SAT and the Boolean hi­
erarchy. TCS, 84:199--223, 1991.

[5] Beige!, Gasarch, Gill, Owings. Terse, superterse, and
verbose sets. le1C, 103(1):68-85, 1993.

[6] Beige!, Hirst. One help bit doesn't help. STOC98
[7] Beige!, Kummer, Stephan. Approximable sets. l&C,

120(2):304-314, 1995.
[8] Bollobas. Extremal Graph Theory. Acad. Press, 1978.
[9] Bondy and Murty. Graph Theory with applications.

American Elsevier, 1977.
[10] Bshouty. On the direct sum conjecture in the straight

line model. J. of Complexity, 14, 1998.
[11] Cai, Hemachandra. Enumerative counting is hard.

me, 82(1):34-44, 1989.
[12] Feder, Kushilevitz, Naor, Nisan. Amortized commu­

nication complexity. 81COMP, 24(4):736-750, 1995.
[13] Ga.sarch, Martin. Bounded Queries in Recursion The­

ory. Birkhauser, 1999.
[14] Halstenberg, Reischuk. Relations between complexity

classes. JCSS, 41:402--429, 1990.
[15] Jockusch. Semirecursive sets and positive reducibility.

Tran. of the AMS, 131:420-436, 1968.
[16] Ka.lyana.sundaram, Schnitger. The prob. communica­

tion complexity of set intersection. SIAM J. on Disc.
Math., 5:545-057, 1992. Earlier-STRUCTURES87.

[17] Karchmer, Raz, Wigderson. Super-log depth lower
bounds via the direct sum in comm. comp. Comp.
Comp., .5, 1995. Earlier-STRUCTURES91.

[18] Ko. On self-reducibility and weak P-selectivity. JCSS,
26:209--221, 1983.

[19] Krentel. The complexity of optimization problems.
JCSS, 36(3):490-.509, 1988.

[20] Kummer. A proof of Beigel's cardinality conjecture.
JSL, 57(2):677-681, 1992.

[21] Kushilevitz, Nisan. Communication Complexity.
Camb. Univ. Press, 1997.

[22] Li, Vita.nyi. An Introduction to Kolmogorov Complex­
ity and Its Applications. Addison-Wesley, 1991.

[23] Lovasz. Communications complexity: A survey. In
B. Korte, editor, Paths, Flows, and VLSI layout, 1990.
Springer-Verlag. Also CS-TR-204-89, Princeton Univ.

[24] Mader. Homomorphieeigenschaften und mittlere ka.n­
tendicht.e von graphen. Math. Ann., V. 174, 1967.

[25] Nisan, Rudich, Saks. Products and help bits in deci­
sion trees. SICOMP, 28, 1998.

[26] Ogihara. Polynomial-time membership comparable
sets. SI COMP, 24, 1995. Earlier STRUCTURES94.

[27] Owings. A cardinality version of Beigel's Nonspeedup
Theorem. JSL, 54(3):761-767, 1989.

[28] Paul. Realizing Boolean functions on disjoint sets of
variables. TCS, 2(3):383-396, 1976.

[29] Razborov. On the distributional complexity of dis­
jointness. TCS, 106:385-390, 1992. Earlier-ICALP90.

[30] Robertson, Seymour. Graph minors XV: Wagner's
conjecture. to appear in J. of Comb. Theory (B).

[31] Selman. P-selective sets, tally langs, and the behavior
of p--time reducibilities on NP. MST, 13:55-65, 1979.

[32] Sivakumar. On membership comparable sets. JCSS,
pages 270-280, 1999. Earlier-COMPLEXITY98.

[33] Yao. Some complexity questions related to distributive
computing. STOC79

