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ABSTRACT
In this paper we study the COllective INtelligence (COIN) framework of Wolpert et al. for
dispersion games (Grenager, Powers and Shoham, 2002) and variants of the EL Farol Bar
problem. These settings constitute difficult MAS problems where fine-grained coordination
between the agents is required. We enhance the COIN framework to dramatically improve
convergence results for MAS with a large number of agents. The increased convergence
properties for the dispersion games are competitive with especially tailored strategies for solving
dispersion games. The enhancements to the COIN framework proved to be essential to solve
the more complex variants of the El Farol Bar-like problem.
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Abstract

In this paper we study the COllective INtel-
ligence (COIN) framework of Wolpert et al.
for dispersion games (Grenager, Powers and
Shoham, 2002) and variants of the EL Farol
Bar problem. These settings constitute difficult
MAS problems where fine-grained coordination
between the agents is required.

We enhance the COIN framework to dramati-
cally improve convergence results for MAS with
a large number of agents. The increased con-
vergence properties for the dispersion games
are competitive with especially tailored strate-
gies for solving dispersion games. The enhance-
ments to the COIN framework proved to be es-
sential to solve the more complex variants of the
El Farol Bar-like problem.

1 Introduction

A computational optimization problem can be
considered as a resource allocation problem
(Wellman, 1996a; Wellman, 1996b). Borrow-
ing from the insights of economics, it is how-
ever becoming increasingly clear that few con-
cepts for resource allocation scale well with in-
creasing complexity of the problem domain. In
particular, centralized allocation planning can
quickly reach a point where the design of satisfy-
ing solutions becomes complex and intractable.
A conceptually attractive option is to devise a
distributed system where different parts of the
system each contribute to the solution for the
problem. Embodied in a so-called distributed
Multi-Agent System (MAS), the aim is thus to
elicit “emergent” behavior from a collection of
individual agents that each solve a part of the
problem.

This emergent behavior relies implicitly on
the notion that the usefulness of the system is
expected to increase as the individual agents op-

timize their behavior. A weak point of such sys-
tems has however long been the typical bottom-
up type of approach: researchers first built
an intuitively reasonable system of agents and
then used heuristics and tuned system param-
eters such that – hopefully – the desired type
of behavior emerged from running the system.
Only recently has there been work on more top-
down type of approaches to establish the con-
ditions for MASs such that they are most likely
to exhibit good emergent behavior (Barto and
Mahadevan, 2003; Lauer and Riedmiller, 2000;
Guestrin, Lagoudakis and Parr, 2002).

In typical problem settings, individual agents
in the MAS contribute to some part of the col-
lective through their individual actions. The
joint actions of all agents derive some reward
from the outside world. To enable local learn-
ing, this reward has to be divided among the
individual agents where each agent aims to in-
crease its received reward by some form of learn-
ing. However, unless special care is taken as
to how reward is assigned, there is a risk that
agents in the collective work at cross-purposes.
For example, agents can reach sub-optimal so-
lutions by competing for scarce resources or by
inefficient task distribution among the agents as
they each only consider their own goals (e.g. a
Tragedy of the Commons (Hardin, 1968)).

The COllective INtelligence (COIN) frame-
work by Wolpert et al. suggests how to engi-
neer (or modify) the rewards an agents receives
for its actions in private utility functions. Op-
timization of each agent’s private utility here
leads to increasingly effective emergent behav-
ior of the collective, while discouraging agents
from working at cross-purposes.

The effectiveness of this top-down approach
and their developed utilities are demonstrated
by applying the COIN framework to a num-



ber of example problems: network routing
(Wolpert, Tumer and Frank, 1998), increasingly
difficult versions of the El Farol Bar problem
(Wolpert and Tumer, 1999), Braess’ paradox
(Tumer and Wolpert, 2000), and complex to-
ken retrieval tasks (’t Hoen and Bohte, 2003).
The COIN approach proved to be very effective
for learning these problems in a distributed sys-
tem. In particular, the systems exhibited ex-
cellent scaling properties. Compared to opti-
mal solutions, it is observed that a system like
COIN becomes relatively better as the problem
is scaled up (Wolpert and Tumer, 1999).

In this paper we investigate distributed Re-
inforcement Learning (RL) for allocation of n
agents to k tasks. Agents acting in parallel
and using local feedback with no central control
must learn to arrive at an optimal distribution
over the available tasks. Such problems are typ-
ical for a growing class of large-scale distributed
applications such as load balancing, niche selec-
tion, division of roles within robotics, or appli-
cation in logistics. These problems are, for ex-
ample, presented in the literature as dispersion
games (Grenager, Powers and Shoham, 2002),
minority games (Challet and Zhang, 1997) or
variants of the El Farol Bar problem. We inves-
tigate the performance of the COIN framework
for these general classes of problems relative to
general RL approaches and present extensions
to the COIN framework for improved conver-
gence results.

This document is structured as follows. In
Section 2, we describe the COIN framework
and the used RL algorithm. In Section 3 we
present dispersion problems that require coor-
dinated joint actions of a MAS. We do not show
results for minority games due to lack of space
and comparable results as for the presented dis-
persion games. In Section 3 we also present ex-
tensions to the COIN formalism and report on
the performance improvements. In Section 4,
we present results for the more difficult task of
an El Farol Bar-like problem. In Section 5 we
discuss future work and conclude.

2 COllective INtelligence

In this Section, we briefly outline the theory
of COIN as developed by Wolpert et al., e.g.
(Wolpert, Wheeler and Tumer, 1999; Wolpert
and Tumer, 1999; Wolpert and Tumer, 2001).

Broadly speaking, COIN defines the conditions
that an agent’s private utility function has to
meet to increase the probability that learning
to optimize this function leads to increased per-
formance of the collective of agents. Thus, the
challenge is to define a suitable private utility
function for the individual agents, given the per-
formance of the collective.

In particular, the work by Wolpert et al.
explores the conditions sufficient for effective
emergent behavior for a collective of indepen-
dent agents, each employing, for example, Re-
inforcement Learning (RL) for optimizing their
private utility. These conditions relate to (i) the
learnability of the problem each agent faces, as
obtained through each individual agent’s pri-
vate utility function, (ii) the relative “align-
ment” of the agents’ private utility functions
with the utility function of the collective (the
world utility), and lastly (iii) the learnability
of the problem. Whereas the latter factor de-
pends on the considered problem, the first two
in COIN are translated into conditions on how
to shape the private utility functions of the
agents such that the world utility is increased
when the agents improve their private utility.

Formally, let ζ be the joint moves of all
agents. A function G(ζ) provides the utility
of the collective system, the world utility, for a
given ζ. The goal is to find a ζ that maximizes
G(ζ). Each individual agent η has a private util-
ity function gη that relates the reward obtained
by the collective to the reward that the indi-
vidual agent collects. Each agent will act such
as to improve its own reward. The challenge
of designing the collective system is to find pri-
vate utility functions such that when individual
agents optimize their payoff, this leads to in-
creasing world utility G, while the private func-
tion of each agent is at the same time also easily
learnable (i.e. has a high signal-to-noise ratio,
an issue usually not considered in traditional
mechanism design). In this paper, ζ represents
the choice of which of the k tasks each of the n
agent chooses to execute and the challenge is to
find a private function for each agent such that
optimizing the local payoffs optimizes the total
task execution.

Following a mathematical description of this
issue, Wolpert et al. propose the Wonderful
Life Utility (WLU) as a private utility func-



tion that is both learnable and aligned with G,
and that can also be easily calculated.

WLUη(ζ) = G(ζ) − G(CL
Seff

η
(ζ)) (1)

The function CL
Seff

η
(ζ) as classically ap-

plied1 “clamps” or suspends the choice of task
by agent η and returns the utility of the system
without the effect of agent η on the remain-
ing agents η̂ with which it possibly interacts.
For our problem domain, the clamped effect set
are those agents η̂ that are influenced in their
utility by the choice of task of agent η. Hence
WLUη(ζ) for agent η is equal to the value of all
the tasks executed by all the agents minus the
value of the tasks executed by the other agents
η̂. If agent η picks a task τ , which is not chosen
by the other agents, then η receives a reward of
V (τ), where V assigns a value to a task τ . If
this task is however also chosen by any of the
other agents, then the first term G(ζ) of Equa-
tion 1 is unchanged while the second term drops
with the value of V (τ) as agent η competes for
completion of the task. Agent η then receives
a penalty −V (τ) for competing for a task tar-
geted by one of the other agents η̂. The WLU
hence has a built in incentive for agents to find
an unfulfilled task and hence for each agent to
strive for a high global utility in its search for
maximizing its own rewards.

Compared to the WLU function, other pay-
off functions have been considered in the liter-
ature for distributed Multi-Agent Systems: the
Team Game utility function (TG), where the
world-utility is equally divided over all partici-
pating agents, or the Selfish Utility (SU), where
each agent only considers the reward that it it-
self collects through its actions. The TG utility
can suffer from poor learnability, as for larger
collectives it becomes very difficult for each
agent to discern what contribution is made (low
signal-to-noise ration), and the SU suffers from
– potentially – poor alignment with the world-
utility, i.e. agents can work at cross purposes.
In Sections 3 and 4, we study the performance
of the SU and TG relative to the variants of the
WLU.

We use Q-learning (Sutton and Barto, 1998)
as RL algorithm for each of the n agents in the

1Ongoing work investigates more general clamping
functions.

MAS. A learner’s input space consists of the
available k tasks. The policy π is stochastic
according to a softmax function; in the policy, a
random task ki is chosen for state s and constant
c (set at 50) with normalized chance in [0, 1] of

cQ(s,ki)∑
j

cQ(s,kj) . As each agent only must choose one

task/action, we use a single state per agent. The
discount factor γ is set to 0.95. The learning
rate α, unless specified otherwise, is set at 1
as this produced best results for all the utility
functions considered. The next section presents
application of the RL learners for a MAS task
assignment problem.

3 Dispersion Games

Dispersion games (Grenager, Powers and
Shoham, 2002) are a general class of problems
where n agents each have to decide which of the
k tasks they are to undertake. In this section we
investigate the case when n = k which we call
the full dispersion game. Full utility is achieved
only when all k tasks are chosen by exactly one
of the n agents. We first discuss some results
from (Grenager, Powers and Shoham, 2002) for
this specific problem setting where agents use
different strategies2 for choosing their tasks.

As analyzed in (Grenager, Powers and
Shoham, 2002), for n = k, the expected time to
successful allocation for a naive strategy with
random choices by agents is nn/n!. This is ex-
ponential in n. Similar long time to conver-
gence results where found for Fictitious play,
even with slight modifications to the updates
of beliefs to avoid oscillatory behavior within
sets of suboptimal outcomes. Better results
where found using RL with a Q-learning Algo-
rithm with a Boltzman exploration policy. The
agents learned the expected reward for choos-
ing a specific task. The (selfish) reward for
each of the agents is a function of the number
of agents that use the same action. For this
setting, with a well chosen temperature decay
trajectory, a polynomial time to convergence
was found for convergence to the optimal so-
lution. Similar convergence results are found
for the Freeze strategy where an action is cho-
sen randomly by an agent until the first time it
is alone in choosing an action, at which point

2See (Grenager, Powers and Shoham, 2002) for details
and references.
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Figure 1: Results reprinted from (Grenager,
Powers and Shoham, 2002) with permission.

the agent replays that action indefinitely. Best
results where found for the Basic Simple Strat-
egy (BS) and the Extended Simple Strategy (ES)
where agents quickly focus on a task when they
are the only candidate and otherwise stochasti-
cally choose from the remaining tasks that are
still under contention. See Figure 1 (reproduced
with permission) for an overview of the results.

Figure 2 shows the results for the WLU for
increasing number of agents and correspond-
ing number of tasks (n = k). The reward for
executing a task by an agent is 1. The con-
vergence results improve on the used reinforce-
ment learning algorithm of (Grenager, Powers
and Shoham, 2002) and are competitive with
the BS en ES strategies, with however a much
more local signal as tasks that still need to be
resolved are not communicated to the agents
and an agent will have to explore for its “own”
task. The RL signal for agent η is purely based
upon how many agents η̂ choose the same task.
Agents using the SU (not shown) quickly reach
a maximum fitness of ≈ 0.8. The agents us-
ing the SU however have difficulty in targeting
the last 20% of the tasks as they continue to
compete for tasks. The TG utility (not shown)
performs even worse as a maximum utility of 0.7
is reached for 10 agents and a utility of ≈ 0.65
for a larger number of agents as the signal-to-
noise ratio decreases. In contrast, the penalties
imposed by the WLU successfully drive agents
to efficiently disperse.

As the number of agents increases, the point
at which individual agents choose a task is de-
layed. Agents for longer periods compete for
tasks in their early exploratory behavior and the
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Figure 2: WLU for dispersion games

issued penalties can not yet push unsuccessful
agents to unfulfilled tasks while this incentive
for correct dispersion is necessary for the system
to quickly converge. To improve on convergence
of the COIN framework, we define two new ex-
tensions of the WLU. Both are based on the
observation that the WLU as defined in Section
2 is symmetric. If, for example, two agents a1

and a2 both choose task ki, then both agents,
according to equation 1, receive a penalty when
calculating WLUa1(ζ) and WLUa2(ζ) respec-
tively. This however can lead to slower conver-
gence as both agents then may be forced to tar-
get different tasks while only one of the agents
need choose a different task. This slower con-
vergence becomes more dramatic as more than
one agent, say l > 2 agents, focuses on the same
task and l−1 agents need to “switch”. This phe-
nomenon partially explains the trend in slower
convergence of the WLU for an increasing num-
ber of agents in Figure 2.

We break the symmetry in the penalties of
the WLU in two ways. First of all, we consider
the case where one of the agents η targeting a
task k is randomly chosen as the winner and
is awarded the positive reward while the other
η̂ agents choosing the same task k are penal-
ized. We name this the WLUr as we consider
a random winner in which of the agents hap-
pen to arrive at a specific task. Secondly, as a
more refined variant of the WLUr, we consider
the case where the positive reward is assigned
to the agent that is most likely to choose action
k. We reward agent η with the highest Q value
for this task. We name this the WLUm from
most likely.

In Figure 3 we show typical results for the
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Figure 3: Improved convergence

new semantics, in this case for 2500 agents.3
The WLUr and WLUm converge dramatically
faster than the classic WLU, even for a large
number of agents. The WLUm outperforms the
WLUr similarly in all experiments for the range
of agents studied in Figure 2. Agents using the
WLUm can most quickly converge to a task and
drive other agents to choose another task. Note
that the adaptions of the WLU’s still only in-
volve local use of information per task in the
problem domain and no global information is
used while the WLUr and WLUm are competi-
tive with the ES and BS strategies of (Grenager,
Powers and Shoham, 2002).

We investigate the influence of the adaption
for the WLUm to the SU, which we name SUm.
Like for the WLUm, the agent most likely to
choose a task is given the reward. Penalties to
contenders for the same task are however not
given. In Figure 3 we show typical results for
a 100 agents.4 The performance of the SUm is
inbetween that of the WLUr and WLUm while
all learning methods converge in the limit to
optimal results. In Section 4 we show that this
property does not hold for the SUm in the more
difficult task choice problems.

In the above experiments we found best con-
vergence results for all RL algorithms while us-
ing a large learning rate α for the individual Q
learners. Increasing α from 0.1 to 1 with incre-
ments of 0.1 led to continuous increased perfor-
mance as agents then most quickly choose an
individual task to execute. A preference for a
large α is in contrast to earlier work (’t Hoen

3We did not explore settings with more agents due to
memory restrictions with the current implementation.

4Similar results held for 10, 1000, 1500, and 2500
agents.
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Figure 4: Performance of SUm

and Bohte, 2003) where agents must coordinate
on sequences of moves in a MAS token retrieval
task. In this setting, a small α led to best re-
sults as a too large α led to strong fluctuations
in valuations of moves early in a sequence and
this easily disrupts the fine-grained coordina-
tion required along the entire trajectory of an
agent.

The next section presents a more difficult dis-
persion game.

4 El Farol Bar

In our interpretation of the El Farol Bar Prob-
lem (Arthur, 1994) that is inspired by the notion
of dispersion games, agents have to decide on
what day week they will visit one of a given set
of bars. Good solutions can be hard to reach in
a distributed setting as agents oscillate in their
choice of attendance.5 In this paper we model
this problem as n agents that have to choose be-
tween 7 tasks that each give a reward of 1 to the
first n/7 agents that choose the task. Reward
for attendance is however only given if at least
n/7 agents choose a task. In terms of dispersion
games, we study k = 7 tasks that require 7c−1

agents to fulfill for a total of n = 7c agents, for
some constant c ≥ 1.

Figure 5 shows the results for the various
learning algorithms for 49 agents (c = 2). Each
bar is interpreted as a task that requires 7
agents for a total reward of 7, or 1 per agent
helping to accomplish the “task”. The SU and
TG perform badly as both cannot locally in-
terpret the RL signal to optimize their actions.
The variants of the WLU all perform well, as

5No one goes there nowadays, it’s too crowded. (Yogi
Berra)
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Figure 5: Bar attendance for 49 (72) agents

expected. The enhancements to the WLU intro-
duced in Section 3 significantly increase the con-
vergence rate of the system. The SUm, which
showed comparable performance for the disper-
sion tasks of that Section, however does not
have a sufficient added benefit for this more dif-
ficult task. It converges to a maximum utility of
0.8 after 30, 000 epochs. The issuing of penal-
ties as defined for the WLU’s is fundamental for
convergence to full utility.

In Figure 6, we show results for 343 (73)
agents. The WLUr and WLUm as exceptions
are both able to achieve good results. We how-
ever only achieved these best convergence re-
sults for all RL utilities by changing the used
learning rate α to an unconventional high level
of 10. Similar good results are found by slightly
adjusting the reward for the individual bar at-
tendance to 51 instead of 49.6 Both solutions
resulted in stronger convergence by forcing an
agent to choose a task. The WLU, even with
this enhancement, however did not improve be-
yond its shown level even after 150, 000 epochs.
The WLUr for this problem shows surprising
results in performance relative to the WLUm
when compared to the results of Section 3.

For this interpretation of the El Farol Bar
problem with such a large number of agents
we are reaching the limit of the straightforward
application of the WLU and even of the pro-
posed enhancements. We had to resort to mod-
ifications in the parameters of the learning al-
gorithm or the used reward structure. We are
hence reaching a point where we are moving be-
yond straightforward application of the COIN

651/49 > 1 per task reward to help push the softmax
function of the Q learners to one task.
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Figure 6: Bar attendance for 343 (73) agents

framework as an engineering approach. This
problem hence merits further study to arrive at
more fundamental solutions and insights.

5 Discussion and Conclusion

In this paper we studied the COllective IN-
telligence (COIN) framework of Wolpert et al.
for dispersion games (Grenager, Powers and
Shoham, 2002) and variants of the EL Farol
Bar problem. Essentially, agents have to learn
to choose individual tasks to execute. We ob-
served that for complex problems the COIN
framework is able to solve difficult MAS prob-
lems where fine-grained coordination between
the agents is required, in contrast to multi-agent
systems that use more common decentralized
coordination.

We enhanced the COIN framework to dra-
matically improve convergence results for diffi-
cult problems. The increased convergence prop-
erties for the dispersion games are competitive
with especially tailored strategies for solving
these task assignment problems. The enhance-
ments to the COIN framework proved to be es-
sential to solve the more complex variants of the
El Farol Bar-like problem.

The dispersion games of (Grenager, Powers
and Shoham, 2002) we believe form an inter-
esting testbed for learning methods applied to
Multi-Agent Systems (MASs). The task assign-
ment for n agents to k tasks is straightforward
to implement, yet can quickly become difficult
for distributed approaches due to parallel, asyn-
chronous learning by the agents and the lack of
global information. A fundamental question for
learning methods is at what point to they begin
to fail as the problems are scaled (increasing n
or more difficult tasks). Can this point be de-



layed by increasing communication between the
agents and at what cost? MAS learning is a
growing research area. Dispersion games can
form an interesting benchmark problem to re-
search the limits and possibilities of this new
field.
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