
Theory Comput Syst
DOI 10.1007/s00224-015-9661-1

Distinguishing Two Probability Ensembles with One
Sample from each Ensemble

Luı́s Antunes1 · Harry Buhrman2 ·
Armando Matos3,4 · André Souto5,6 ·
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Abstract We introduced a new method for distinguishing two probability ensem-
bles called one from each method, in which the distinguisher receives as input two
samples, one from each ensemble. We compare this new method with multi-sample
from the same method already exiting in the literature and prove that there are ensem-
bles distinguishable by the new method, but indistinguishable by the multi-sample
from the same method. To evaluate the power of the proposed method we also show
that if non-uniform distinguishers (probabilistic circuits) are used, the one from each
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method is not more powerful than the classical one, in the sense that does not dis-
tinguish more probability ensembles. Moreover we obtain that there are classes of
ensembles, such that

– any two members of the class are easily distinguishable (a definition introduced
in this paper) using one sample from each ensemble;

– there are pairs of ensembles in the same class that are indistinguishable by multi-
sample from the same method.

Keywords Indistinguishability · Multi-sample distinguishers · Communication
complexity · Single-message protocols

1 Introduction

The computational indistinguishability of two probabilistic ensembles is a funda-
mental concept in Cryptography and in Physics. It is usually assumed that the most
general method for efficiently distinguishing two probabilistic ensembles P and Q

is an efficient (probabilistic poly-time) algorithm A, which “measures” a property of
the ensembles, outputting either 0 or 1. If the value of |E(A(P )) − E(A(Q))| is not
negligible,1 we say that the algorithm distinguishes the two ensembles; in the previ-
ous expression, E(·) denotes the expected value of a random variable, while A(P )

and A(Q) are random variables corresponding to the output of A when the input is
distributed according to P or Q, respectively. In this paper, due to the extensive use
in the literature, this method for distinguishing ensembles will be called the classical
method.

However, in many situations, this is not the most general method for (efficiently)
distinguishing two ensembles. For instance, in [4] the authors consider distinguish-
ing algorithms that receive as input two independent samples of the same ensemble
(either both from P or both from Q) and prove that there are pairs of ensembles
distinguishable by this method (which in this paper we call the two from the same

1A non negative function f is said to be negligible if for each polynomial p, there is n0 such that for all
n ≥ n0, f (n) ≤ 1/p(n).
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method2), which are indistinguishable by the classical method. In [4] distinguishers
with two or more samples have been studied and it was shown that, for every inte-
ger k ≥ 1, a distinguisher that has as input k + 1 samples (of the same ensemble) is
more powerful, i.e. distinguishes more pairs of ensembles, than a distinguisher that
has as input just k samples.

Although traditionally in Cryptography the classical method is the used method
for distinguishing it is clear that concerning security, one should study and
consider all efficient methods of distinguishing distributions (“worst case anal-
ysis”), since some eavesdropper can eventually access the two distributions
and gain advantage of that information. For that reason, it is important to
study the concept of two from the same distinguishability introduced in [4]
and to explore new forms to efficiently distinguish probability distributions. In
this paper, we introduce a new method that, in some cases is better in the
sense that is able to distinguish more distributions than the two from the same
method.

It should be remarked that there are situations in which the multi-sample from
the same ensamble method is not more powerful than the classical method, see [4,
5]. That happens, for instance, when both ensembles are poly-time computable
and the distinguishers are probabilistic poly-time algorithms; it also happens when
the distinguishers are (non-uniform) probabilistic poly-time circuits. Cryptographers
usually consider distributions P and Q which are efficiently samplable in poly-
time and distinguishers that are non-uniform. In these cases, our proposed method
is not more powerful. From a security point of view, considering only this way of
generating probability distributions is not the best option, in the sense that many
distributions are generated by unknown methods (based on natural phenomena) and
some of these distributions only make sense for certain individual input lengths.
Except in Section 3, we assume that the distinguishers are probabilistic poly-time
algorithms.

In this paper, we further generalize the concept of distinguisher, by defin-
ing a new form of distinguishing ensembles. The generalization is the fol-
lowing: the distinguishing algorithm has two input samples, one from each
ensemble.

In Section 3, we show that, if (non-uniform) probabilistic poly-time circuits are
used as distinguishers, this new method, like the multi-sample method (Definition 2),
is not more powerful than the classical one.

In Section 4, (uniform) probabilistic poly-time algorithms are used as dis-
tinguishers. We show that, in particular, there are probabilistic ensembles
distinguishable by the one from each method that are indistinguishable by
any algorithm corresponding to the hierarchy defined in [5] (algorithms that
receive as input several samples of the same ensemble); see Theorem 3 and
Corollary 1.

2We opt for the nomenclature two from the same and multi-sample from the same as a short hand to
properly indicate that the algorithm used as distinguisher receives two (or more respectively) samples of
the same ensemble.
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A class C of probabilistic ensembles is easily distinguishable if there is a
constant a > 1/2 and a probabilistic poly-time algorithm A such that, for any ensem-
bles P and Q in the class C, we have E(A(P, P )) ≤ 1 − a and E(A(P,Q)) ≥ a.
Using a modification of Ambainis’ single message protocol of Communication Com-
plexity (see [1, 2, 6, 9, 11]) we show in, Section 5, that easily distinguishable
classes do in fact exist and moreover that they contain pairs of ensembles that are
indistinguishable by any algorithm corresponding to the hierarchy defined in [5].

1.1 Notation and Background

The notation used in this paper is standard. For background on Probability Theory
and Complexity, we refer the reader to standard textbooks, such as [3] and [10].

All polynomials p : N
+ → R

+ considered in this work are positive and have
degree at least 1, so that limn→∞ p(n) = +∞. The function f : N

+ → R
+ is

negligible in n if, for every polynomial p(n), we have f (n) ≤ 1/p(n) for sufficiently
large n. The logical implication and its negation will be denoted by “⇒” and “ �⇒”,
respectively. The cardinality of a set and the absolute value of an expression are both
denoted by “| · |”.

The probability of an event x is denoted by pr(x). The expected value of a ran-
dom variable X is denoted by E(X). By x ∼ P we mean that the event x is drawn
according to the probabilities associated with the ensemble P . If x is uniformly drawn

from the set or tuple X, we write x ∈U X. The notation (
a

b
) means the number of

combinations of a choosing b.
If A is an algorithm with two inputs, an expression like A(P, Q) means that A

receives as input two independent samples, one from the ensemble P and the
other from the ensemble Q; similarly, the inputs of A(P, P ) are two indepen-
dent samples from P . Given an algorithm, we denote by R the ensemble that
corresponds to the internal uniform random source; by r , r ′. . . we denote indepen-
dent samples of R. Whenever no confusion may arise we will drop the algorithm
argument R, writing for instance A(P, Q) instead of A(P, Q, R). For simplicity,
an expression like E x ∼ P

r ∼ R

E(A(x, y, r)), or equivalently Ex∼P, r∼RE(A(x, y, r)),

which contains the free variable y, will be denoted by E(A(P, y, R)) where
it is assumed that the expected value of the random variable A(P, y, R) is
taken over the first and third arguments, distributed according to P and R,
respectively.

Whenever we talk about “algorithms” we mean “probabilistic poly-time algo-
rithms”.

Whenever it is important to express that an ensemble P has the parameter n,
we write Pn instead of P . For each n ∈ N, the domain of the ensemble Pn is the
set {0, 1}n and its support is sup(Pn) = {x : |x| = n ∧ Pn(x) �= 0}. An ensemble Pn

is equiprobable for a value of n if, for each x ∈U sup(Pn), the probability Pn(x) is
the same; P is equiprobable if Pn is equiprobable for every n. For each of the indis-
tinguishability definitions used in this paper, the word “distinguishable” is always
used as the logical negation of “indistinguishable”.
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2 Definitions of Indistinguishability

We present the following definitions of indistinguishability: classical (computa-
tional indistinguishability), two from the same indistinguishability, and one from each
indistinguishability.

The first two concepts had already been studied in the literature (see for
instance [4]) and the two from the same indistinguishability [4, 5]. As far as the
authors of this paper know, the one from each indistinguishability is presented here
for the first time.

In each of the following definitions of indistinguishability there are two parts:
the algorithm having as input one or more samples of the ensembles and the dis-
tinguishing criterion, usually based on a difference between expected values of the
algorithms.

In expressions like Ex∼P, x′∼Q(A(x, x′)) it is assumed that x and x′ are of the
same size. Moreover, we will sometimes denote by E(A(P,Q)) and E(A(P, P ))

the expressions Ex∼P, x′∼Q(A(x, x′)) and Ex∼P, x′∼P (A(x, x′)), respectively, when
the size is understood from the context.

Definition 1 (Classical (computational) indistinguishability) The ensembles {Pn}
and {Qn} are classically indistinguishable or indistinguishable with one sample if, for
any probabilistic poly-time algorithm A with output 0 or 1, the function |E(A(Pn))−
E(A(Qn))| is negligible in n.

Definition 2 (Two from the same indistinguishability) The ensembles {Pn} and {Qn}
are two from the same indistinguishable or indistinguishable with 2 samples from the
same if, for any probabilistic poly-time algorithm A with output 0 or 1, the function
|E(A(Pn, Pn)) − E(A(Qn, Qn))| is negligible in n.

For any k ∈ N the definition of multi-sample from the same indistinguishability
(or indistinguishability with k samples from the same) is similar.

Definition 3 (One from each indistinguishability) The ensembles Pn and Qn are
one from each indistinguishable if, for any probabilistic poly-time algorithm A(x, y)

with output 0 or 1, the function |E(A(Pn, Qn))−E(A(Pn, Pn))|+ |E(A(Pn, Pn))−
E(A(Qn, Qn))| is negligible in n.3

In the previous definition, if an algorithm A distinguishes P from Q it means
that either it received two samples (one from each distribution) and distinguishes
them from any other two samples from P (the first term) or that P and Q are two
from the same distinguishable distributions (second term). This definition, can be

3Notice that since the distinguisher has access to two samples, one could consider a more complex sum
involving all possible combinations of samples from P and Q as arguments of A, but this simple form is
enough to capture the desired properties, like strengthening the classical definition of indistinguishability
and symmetry.
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seen as a generalization to the hypothetical scenario of a protocol using random
objects (distribution P ), where an adversary could interfere with a stream of those
random processes by injecting non-uniform ones (distribution Q) and a method that
the party(ies) of the protocol could use to detect that interference.

First we show that this definition is at least as powerful as the classical one.
Let � be the criterion corresponding to ensembles {Pn} and {Qn} and regarding

the classical definition,

� = |E(A(Pn)) − E(A(Qn))| (1)

and �′ the criterion for the same ensembles corresponding to the one from each
indistinguishability definition,

�′ = |E(A(P,Q)) − E(A(P, P ))| + |E(A(P, P )) − E(A(Q, Q))|. (2)

The expressions � and �′ are called the ensemble distance (associated with the
corresponding definition) between Pn and Qn.

One desirable property in the concept of indistinguishability is symmetry. The
notion introduced in this paper is also symmetric in the sense that if we have two
ensembles P and Q, such that P is one from each distinguishable from Q then Q is
also one from each distinguishable from P although the fact that the distance might
be slightly different. We list some facts which are either easy to prove, already known
or proved in the rest of the paper. An important result of this paper is item 4.

1. If the ensembles P and Q are classically distinguishable they are also distin-
guishable with k samples for every k ≥ 1, see [5].

2. If the ensembles P and Q are classically distinguishable or are distinguish-
able with 2 samples from the same ensemble, they are also one from each
distinguishable.

3. For any k ≥ 1 there are ensembles P and Q that are indistinguishable with k

samples from the same ensemble but distinguishable with k+1 samples from the
same ensemble, see [4] and [5].

4. There are ensembles P and Q that are indistinguishable with k samples from
the same ensemble for every k ≥ 1, but are one from each distinguishable, see
Theorem 4.

3 When One From Each Method is no Better than the Classical One

The model of computation influences the power of the distinguishers and have direct
impact in Cryptography (see for example [8]). We prove that, in the non-uniform
setting, access to one sample from each ensemble does not increase the power of
the distinguisher. For simplicity, in this section, we use only the first term of �′
(Definition 2), namely |E(A(P, P )) − E(A(P,Q))|, the term that is different in the
two definitions. The consideration of the other term is straightforward.

Theorem 1 If A is a probabilistic poly-size circuit, {Pn} and {Qn} are ensem-
bles such that Pn and Qn are defined in {0, 1}n, and p(n) is a polynomial, then
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there is a probabilistic poly-size circuit B such that, for every sufficiently large n,
|E(A(Pn, Pn)) − E(A(Pn, Qn))| ≤ |E(B(Pn)) − E(B(Qn))| + 1/p(n), where the
averages are taken over the inputs and over the random coin-flips used by the circuit.

Proof Consider the difference �′ = |E(A(Pn, Pn))−E(A(Pn, Qn))|. In more detail,

�′ = |Ex∈Pn,y∈Qn (A(x, y)) − Ew∈Pn,z∈Pn (A(w, z)) |
= |Ex∈Pn

(
Ey∈Qn (A(x, y)) − Ez∈Pn (A(x, z))

) |
= Ex∈Pn |Ey∈Qn (B(y)) − Ez∈Pn (B(z)) |
= Ex∈Pn |f (x)|

where f (x) = Ey∈Qn(B(y)) − Ez∈Pn(B(z)), A and B are circuits and �′ and f (x)

are parametrized for inputs of size n.
In order to prove the statement of the theorem, it is necessary to replace the circuit

A(·, ·) by a circuit B(·) that distinguishes the ensembles that can be distinguished by
A. If A distinguishes Pn from Qn, �′ is non negligible, so that there are infinitely
many values of n and a polynomial p(n), such that Ex∈Pn

|f (x)| ≥ 1
p(n)

. This is the
expectation over the 2n values of x of size n and hence, for at least one x we must
have

f (x) = ∣∣Ey∈Q(A(x, y)) − Ez∈P (A(x, z))
∣∣ ≥ 1

p(n)
.

Otherwise, �′ would be negligible. Thus, B is a circuit that, for these values of n,
“contains” inside the value of x, and outputs A(x, u), where u is the only input of
B(u). We may write B(u) = A(x, u). Then,

|E(B(Pn)) − E(B(Qn))| = |E(A(x, Pn)) − E(A(x,Qn))|
is non negligible, so that the ensembles Pn and Qn are distinguishable by a circuit
with a single sample as input.

If Pn and Qn are poly-time samplable probability ensembles, one sample from
each ensemble also does not increase the power of the distinguisher, when we
consider probabilistic poly-time algorithms as distinguishers.

Theorem 2 If A is a probabilistic poly-time algorithm, {Pn}n and {Qn}n are
samplable ensembles defined in {0, 1}n, and p(n) is a polynomial, then there is
a probabilistic poly-time algorithm B such that, for every sufficiently large n,
|E(A(Pn, Pn)) − E(A(Pn, Qn))| ≤ |E(B(Pn)) − E(B(Qn))| + 1/p(n), where
the averages are taken over the inputs and over the random coin-flips used by the
algorithm.

Proof Suppose that A and B are probabilistic poly-time algorithms with 2 and 1
inputs respectively and that Pn and Qn are poly-time samplable. We define B(u) as
follows. The algorithm receives u (distributed according to Pn or Qn) as input.

1. Using the poly-time samplable distribution Pn, generate the (independent)
samples x1, x2, x3.
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2. Run A to obtain the values α = A(u, x1) and β = A(x2, x3).
3. Output α − β.

Note that

– If u is distributed according to Pn, we have E(B(u)) = E(A(Pn, Pn)) −
E(A(Pn, Pn)) = 0 (the expectation values of α and β are equal).

– If u is distributed according to Qn, we have

�′ = ∣∣Eu∈Qn(Ex∈Pn(B(u))) − Eu∈Pn(Ex∈Pn(B(u)))
∣∣

= ∣∣Eu∈Qn(Ex∈Pn(B(u)))
∣∣

which is assumed to be non negligible. Observe that taking the expectation
over x ∈ Pn corresponds to an average over the internal random source of the
algorithm. Not representing this internal source, one would write

�′ = ∣∣Eu∈Qn(B(u)) − Eu∈Pn(B(u))
∣∣ = |E(B(Qn)) − E(B(Pn))| .

Obviously, the single input randomized algorithm B distinguishes Pn from Qn.

4 Algorithms as Distinguishers

In this section we establish some simple relationships between Definitions 1 (classi-
cal), 2 (two of the same), and 3 (one from each). Notice that if the ensembles {Pn}
and {Qn} are distinguishable according to Definition 1 (classical), they are also
distinguishable according to Definition 2 (two of the same), and also according to
Definition 3 (one from each). If the ensembles P and Q are distinguishable accord-
ing to Definition 2 (two of the same), they are also distinguishable according to
Definition 3 (one from each).

One can summarize these relationships using the following implications between
the distinguishability definitions:

classical ⇒ two from the same ⇒ one from each.

It is known that two from the same �⇒ classical (see [4] for more details), and the
fact that one from each �⇒ two from the same follows from Theorems 3 and 4; in fact,
as we shall see (Corollary 1), we have that for every integer k, one from each �⇒ k

samples from the same.

Theorem 3 If {Pn} and {Qn} are (different) uniformly distributed ensembles with
support size bounded by a polynomial, they are distinguishable by the one from each
method.

Proof For simplicity, assume that the support sizes of Pn and Qn are equal for each
n; denote them by s(n). Let a be the number of elements common to the supports
of Pn and Qn. Consider the algorithm

A(x, y) : if x = y return 1, else return 0.
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We have E(A(Pn, Pn)) = E(A(Qn, Qn)) = 1/s(n) (here the value of a is irrel-
evant). Let us compute E(A(Pn, Qn)). Consider the event (x, y) with x and y

distributed according to Pn and Qn respectively. The probability that x = y

is a/s2(n);
then |E(A(Pn, Qn))| = pr(x = y) = a/s2(n); as a ≤ s(n) − 1, we have

|E(A(Pn, Qn)) − E(A(Pn, Pn))| =
∣∣∣∣

a

s2(n)
− 1

s(n)

∣∣∣∣ = s(n) − a

s2(n)
≥ 1

s2(n)

so that, as s(n) is bounded by a polynomial, algorithm A distinguishes the ensembles
Pn and Qn by the one from each method.

We now show that there are probability ensembles Pn and Qn that can not be
distinguished by any probabilistic poly-time algorithm that receives as input two
samples of the same ensemble.

Theorem 4 For every integer k ≥ 1 and for every non-decreasing positive function
s : N+ → R

+ which is not bounded by a constant but bounded by a polynomial,
there are uniform (in the support) probability ensembles {Pn} and {Qn} with support
size s(n), that are indistinguishable with k samples from the same ensemble.

Proof For sake of simplicity we present the proof for the case of k = 2.
Given an (probabilistic poly-time) algorithm A(Pn, Pn), we consider its average

behavior over all the pairs (xi, xj ), 1 ≤ i, j ≤ n with xi, xj ∈ sup(Pn). Let us
consider the function gA

Pn
g

A−→ E(A(Pn, Pn)) ∈ [0, 1]
where the arguments of the algorithm A are two independent samples distributed

according to Pn. Notice that there are

(
2n

s(n)

)
probability distributions over {0, 1}n

with support size s(n).
Let A1, A2,. . . , At(n) be the algorithms considered up to input length n. Once s(n)

is not bounded by a constant, we can choose t (n) = s(n). Fix the number of sub-
intervals of [0, 1] considered in each stage, that is for each of the first s(n) algorithms,
as

f (n) =
(

1

2
×

(
2n

s(n)

))1/s(n)

.

For sufficiently large n we have (recall that s(n) is bounded by a polynomial)
(

2n

s(n)

)
≥

(
2n

s(n)

)s(n)

.

Then

f (n) =
(

1

2
×

(
2n

s(n)

))1/s(n)

≥
(

1

2
×

(
2n

s(n)

)s(n)
)1/s(n)

= 2n−1/s(n)

s(n)
≥ 2n−1

s(n)
.

Thus, as s(n) is bounded by a polynomial, 1/f (n) is negligible.
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It remains to show that

(
2n

s(n)

)
/f s(n)(n) ≥ 2, so that, after s(n) stages, one for

each algorithm, we have at least two distinct ensembles, P and Q; in fact we have
(

2n

s(n)

)/
f s(n)(n) =

(
2n

s(n)

)/ (
1

2
×

(
2n

s(n)

))
= 2.

In summary, considering an enumeration of the poly-time (halting) Turing
machines A1, A2,. . . , where there are s(n) machines considered up to n, we have
the following result. For each m ∈ N there are ensembles P and Q, defined above,
that are indistinguishable with two samples by the algorithms A1,. . . , Am. In fact:
(i) every algorithm, say with index m, is introduced at some n0, (ii) by construction,
Am can not distinguish P from Q, and (iii) the same is true for all n ≥ n0. This
implies that P and Q are indistinguishable by any probabilistic poly-time algorithm
which receives two samples from the same ensemble as input.

The general case. i.e., with k ≥ 2 samples of the same ensemble is straightforward
from the previous argument considering the function hA

Pn
h

A−→ E(A(Pn, · · · , Pn︸ ︷︷ ︸
k

)) ∈ [0, 1].

The proof is insensitive to the number of input samples and also to the class of
time and space resources allowed in the distinguishing algorithms, and somewhat
insensitive to the (positive) probabilities in the support. Also, the condition that the
support size must have a polynomial upper bound, may be relaxed. Some of these
generalizations are included in the following result.

Corollary 1 For every k ≥ 1 and for every positive function s : N+ → R
+ which

is bounded by a polynomial but not by a constant, there are uniform (in the support)
probability ensembles P = {Pn} and Q = {Qn} with support size s(n), that are
indistinguishable with k samples of the same ensemble but distinguishable by the one
from each method.

This result can be further generalized to non-uniform probabilities in the sup-
port: given any polynomial p, the result remains valid for probabilities with lower
bound 1/p (in the support).

5 Easily Distinguishable Classes of Ensembles

We now envisage the existence of classes containing one from each distinguishable
ensembles that are indistinguishable with k samples of the same. To this end we
introduce the classes of easily distinguishable ensembles.

Definition 4 A class C of probabilistic ensembles is easily distinguishable if there
is a probabilistic poly-time algorithm A and a constant a > 1/2 such that, for
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any ensembles {Pn} and {Qn} in the class, we have E(A(Pn, Pn)) ≤ 1 − a and
E(A(Pn, Qn)) ≥ a. In particular, notice that |E(A(Pn, Pn)) − E(A(Pn, Qn))| is
always greater than a constant.

Clearly, if two ensembles are easily distinguishable, then they are also one from
each distinguishable.

In order to prove the existence of easily distinguishable classes which are indis-
tinguishable with k samples from the same, we will borrow ideas from a variant
of Communication Complexity protocols, the SMP (simultaneous message passing)
model (see [2, 9]) and in particular the protocol for string equality described in [1],
which will be modified in order to define easily distinguishable classes of ensem-
bles. The messages sent by Alice or Bob will correspond to events of the ensemble.
For sake of completeness of the paper and a better understanding of the argument,
we included details in Appendix A of the aforementioned protocol.

We modify the protocol in [1], so that the messages sent by Alice or Bob can be
seen as events corresponding to certain probabilistic ensembles. Let p be any real
number in the open interval (1/2, 3/5), for instance p = 6/11. The choice of this
interval and the suggested p are explained in the Appendix A.

1. From x ∈ {0, 1}n, Alice builds the 6m × 6m matrix M where m is the smallest
integer satisfying (6m)2 ≥ 3n, by using a [(6m)2, n, (6m)2/6]-code. The code-
word for x is laid out in a (6m)× (6m) square forming the matrix M . See [1] for
more details. From y ∈ {0, 1}n, Bob builds, in a similar manner, the 6m × 6m

matrix N .
2. Alice selects a random row r and a column c of M and sends the “event”

〈i, j, r, c〉 to the Referee, where i is the index of row r and j is the index of col-
umn c, and r contains all the entries of the ith-row and c all the entries of the j th

column.
3. Bob selects a random row r ′ and a column c′ of N and sends the “event”

〈i′, j ′, r ′, c′〉 to the Referee, where i′ is the index of row r ′ and j ′ is the index of
column c′.

4. Referee:

(a) if rj ′ �= c′
i or ci′ �= r ′

j , output NO

(b) if rj ′ = c′
i and ci′ = r ′

j , output NO with probability p and YES with
probability 1 − p.

Notice that we are considering an adaptation of Ambainis’ protocol to easily
distinguish two distributions defined by x and y and defined next.

5.1 The Ensemble Corresponding to a String x

Given any string x with length n we define the probability distribution Pn(x) con-
sisting of the sequences 〈i, j, r, c〉 that are the possible messages sent by Alice in the
previous protocol.

Similarly to the protocol described in [1], it can be shown that, independently of
the strings x and y, the answer of the protocol is correct with probability at least p.
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5.2 Throwing the Dice

Given a probability distribution P(x), an event corresponds to a selection (i, j) by
Alice. Bob’s situation is similar, but he “uses” the probability distribution P(y)

represented by matrix N .
Notice that the Referee, seen as a distinguisher, receives one sample from each

ensemble, namely 〈i, j, r, c〉, an event from Pn(x) and 〈i′, j ′, r ′, c′〉, an event
from Pn(y).

Moreover, the Algorithm C described above can be used as a distinguisher since it
is a probabilistic algorithm that easily distinguish the distributions presented if x �= y.

Now to finish the proof we need to show that, among these easily distinguishable
ensembles there are some that are not multi-sample from the same distinguishable.

5.3 Applying the Pigeonhole Principle

Our goal is to use the pigeonhole principle, as in the proof of Theorem 4, in order
to prove the existence of x and y (both with length n) such that P(x) and P(y) are
indistinguishable by any multi-sample (from the same ensemble) distinguisher.

The number of bits in each message is �(
√

n), so that it has an upper bound c
√

n

for some constant c. In fact, we can take as c any number greater than 2
√

3, because
in this variant of the protocol, the communication length is doubled (relatively to
the protocol in [1] presented in the Appendix). From the fact that the support of
the considered distributions has size (6m)2, its description is given by 2 log(6m) =
2 log(

√
3n) bits, which is unbounded in n. Recall that from Ambainis’ protocol m

and n are related by n = (6m)2. In terms of Theorem 4, we can thus make the
identification (

2n

s(n)

)
↔

(
2c

√
n

2 log(
√

3n)

)
=

(
2p

s(p)

)

where p = c
√

n is a new variable, and s(p) is unbounded in p. A negligible interval
in [0, 1] in terms of p, like 2−p is also negligible in terms of n, 2−p = 2−c

√
n and

the function s(n) is certainly unbounded in p and n. In summary, Theorem 2 applies
to this class of ensembles and we get the following result.

Theorem 5 There are infinitely many classes C1, C2,. . . of easily distinguishable
ensembles such that, for sufficiently large n and for every k, the class Cn contains
pairs of probability ensembles that are indistinguishable with k samples from the
same ensemble.

As a consequence, there are many non-trivial ensembles (in fact 2n ensembles
with elements of the form 〈i, j, r, c〉 and size 12m + 2 log(6m)) that are easily dis-
tinguishable using the adaptation of Ambainis’ protocol but are indistinguishable by
multi-sample.
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Appendix A: 3-computer model

In this part of the paper we provide insight and details for the understanding of
Section 5.

First, consider the following “equality” problem: A has a string x, B has a string
y and we want to know if x = y. If deterministic algorithms are considered, it is
known that for each algorithm there are “bad” cases where the whole string needs to
be sent from A to B. In the worst case, the number of bits used by any algorithm for
string equality is �(n). If probabilistic algorithms with an arbitrary small probability
of error are allowed, the situation changes. It becomes possible to compute whether
strings are equal just with one message of length O(log n) from one party to another
(see [11]). This result is optimal in the sense that c log n is also a lower bound, for
some c.

In [11], Yao introduced another model called “3-computer model”. In this model,
there are three parties A, B and C, where one string is given to the first party A

and another string is given to the second party B. These two parties can send mes-
sages to C. They can not exchange information between themselves and C can
not send any messages to the other two. A has variables x1, x2, · · · , xn and B

has variables y1, y2, · · · , yn. A analyzes its variables, sends a message to C, B

analyzes its variables and sends a message to C, too. Then C compares the two
messages received from A and B and announces the result of the computation. In
this new model, it appears to be more difficult to compute if two strings are equal.
In [1], the author presents a protocol for “equality function”, where O(

√
n) bits

are sent.

Definition 5 (Hamming distance) If x, y are strings of �n, x = (x1, x2, · · · , xn) and
y = (y1, y2, · · · , yn), then the Hamming distance between x and y is the number of
i such that xi �= yi . It is denoted by d(x, y).

Definition 6 (Code) M ⊂ �n is called a [n, k, ε]- code if it contains 2k elements
and d(x, y) ≥ ε for every two distinct x, y ∈ M .

Lemma 1 (Theorem 17.30 in [7]) If 0 < δ < 1
2 , then for each n there is an [n, k, ε]-

code such that ε/n ≥ δ and k/n ≥ 1 − H2(ε/n), where H2(x) = −x log (x) − (1 −
x) log(1 − x).

In [1], the author uses a particular case of this lemma.

Lemma 2 For each m there is a [3m,m,m/2]-code.
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Proof In Lemma 1 replace n by 3m and δ by 1
6 . �

Theorem 6 (Theorem 1 in [1]) It is possible to compute the equality function in the
3-processor model so that both A and B transmit

√
3n + o(

√
n) bits to C and the

probability of the correct answer is at least 6/11.

Proof Let n be a fixed size of the string and m be the smallest integer satisfy-
ing the inequality (6m)2 ≥ 3n. There is a [(6m)2, (6m)2/3, (6m)2/6]-code, from
Lemma 2 above. In order to obtain a [(6m)2, n, (6m)2/6]-code, 2n elements of
the [(6m)2, (6m)2/3, (6m)2/6]-code are chosen. Then, we establish a one-to-one cor-
respondence between the elements of this new code and words x ∈ �n. Next, we
detail the description of the algorithm.

For the party A: Find the codeword s = (s1, · · · , s(6m)2) corresponding to
input data x = (x1, · · · , xn) and consider a 6m × 6m table with the numbers
s1, · · · , s(6m)2 in the squares of the table. Choose a random row i, where i is uni-
formly distributed over {1, · · · , 6m}, and communicate (i, a1, a2, · · · , a6m) to C,
where (a1, a2, · · · , a6m) is the content of row i.

For the party B: Find the codeword s = (s1, · · · , s(6m)2) corresponding to the
input data y = (y1, · · · , yn) and consider a table as in the case for A. Choose a ran-
dom column j , where j is uniformly distributed over {1, · · · , 6m}, and communicate
(j, b1, b2, · · · , b6m) to C , where (b1, b2, · · · , b6m) is the content of column j .
For the party C: C compares aj and bi . If aj �= bi , C communicates that g = 0
(x �= y). If aj = bi , C communicates that g = 1 (x = y) with probability 6

11 and
that g = 0 with probability 5

11 .
The number of bits communicated from A (or B) to C is 6m + �log(6m)� =√

3n + o(
√

3n).
In order to prove that the algorithm really computes g with the probability of a

correct answer being at least 6
11 , notice that aj corresponds to the entry (i, j) of

the table constructed by A and that bi corresponds to the entry (i, j) of the table
constructed by B. If g = 1 (x = y), then the tables of A and B are equal. Hence
aj = bi . Thus, with probability 6

11 , C gives the answer g = 1. If g = 0 (x �= y),
then A and B construct two different tables. As the squares of these tables have
the codewords from a [(6m)2, n, (6m)2/6]-code, these tables are different in at least
(6m)2

6 squares (one-sixth of all squares).
A and B choose the value for the pair (i, j) with equal probability. Thus, each

square becomes the square contents of which C receives from both A and B with
equal probability. With probability p0 ≥ 1

6 the square in which the numbers in two
tables are different is chosen, i.e., with probability p0, C receives two different values
and with probability 1 − p0 two equal values. So, C announces the correct answer
g = 0 with probability p0 + 5

11 (1 − p0) = 5
11 + 6

11 × 1
6 = 6

11 .

Notice that the protocol presented in the proof above outputs 1 correctly with
probability p and outputs 0 correctly with probability 1 − 5

6p. In particular, to have
this two probabilities greater than 1/2, the value of p should belong to (1/2, 3/5).
Furthermore, p = 6/11 turns the aforementioned probabilities equals.
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Then, the probability of error can be made arbitrarily small, repeating this algo-
rithm many times and considering the majority of the outcomes as the final result by
C. The number of communicated bits is O(

√
n).
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