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Abstract

In this paper we compare the different programming paradigms available on the Cray T3D for the implementation
of a 3D prototype of an Atmospheric Chemistry/Transport Model. We discuss the amount of work needed to
convert existing codes to the T3D and the portability of the resulting codes. Tests show that the scalability with
respect to the model size and the number of processors is linear except for the data parallel implementation.
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1. INTRODUCTION

The mathematical description of atmospheric transport, chemistry and exchange of trace constituents
gives rise to a system of time-dependent partial differential equations (PDEs) of the advection-
diffusion-reaction type

¢+V-(ue)=V-(K-Ve)+ R+ S. (1.1)

This system of PDEs describes the evolution in time ¢ and space (z,y, z) of the concentration vector
c(t,z,y, z) of all chemical species in the model. The transport is modeled by advection in the windfield
u(t,z,y,z) and by (turbulent) diffusion represented by the parameter K(t,z,y,z). The chemistry
is modeled in the chemical reaction term R(t,z,y,z). Source and sink terms are represented by
S(t,z,y,z). To simulate with such a model real-life atmospheric chemistry/transport processes on
a temporal and spatial scale of interest, first of all efficient and robust numerical algorithms are
needed. Computer capacity, however, is also a critical factor, both with respect to computer power



and with respect to memory. This induces an unceasing quest for efficient implementations on the most
advanced computer systems like vector/parallel supercomputers and massively parallel distributed-
memory systems.

In this paper we compare the different programming paradigms available on the Cray T3D for the
implementation of a 3D prototype of (1.1) with respect to their efficiency, both for the computer and for
human beings. An important question in this respect is whether a code designed for a shared-memory
supercomputer needs to be fundamentally restructured to accommodate a distributed-memory parallel
architecture. Another issue is to what extent a code, written in (a dialect of) HPF (High Performance
Fortran), can be efficient on distributed-memory parallel systems, on vector/parallel supercomputers,
and on (a cluster of) workstations.

We consider three different programming styles to implement the 3D model on a Cray T3D:

e Data parallel: distribute the data with directives and use array syntax for the computations on
the data. Array syntax constructs are automatically distributed over the processors.

¢ Data and work sharing: distribute the data and the loops that contain the computations on the
data using directives.

e Domain decomposition: each processor does the computations on a subdomain using data resid-
ing on that processor. Explicit message passing is used to account for the boundary conditions
between the subdomains.

As starting point for the implementations we used codes in Fortran 77 and Fortran 90 developed for
the shared-memory vector/parallel architecture Cray C90. We will comment on the changes needed
to convert the C90 codes to the T3D. The resulting codes are portable except for the main program
in the domain decomposition implementation. The scalability with respect to the model size and the
number of processors is linear for the second and third variant. For the data parallel implementation
the code does not scale linearly due to deficiencies in the compiler.

In Section 2 we will give a short survey of the numerical algorithms used and their consequences
for the implementation. In Section 3 we discuss the implementations themselves, the amount of work
needed to convert the C90 code into a T3D code, and the portability of the resulting programs.
Section 4 contains the performance results for the different implementations, Section 5 an evaluation
of the scalability both with respect to the number of processors and with respect to the model size. In
this section we also discuss future expectations and comparisons to other platforms like vector/parallel
computers.

2. THE MODEL

For our comparison we use the same 3D prototype of (1.1) on the sphere as in [8, 5] (see [§] for
a complete description). The test problem contains horizontal advection, vertical diffusion and the
chemical reaction model EMEP[7] (66 species, 140 reactions). The domain is defined by an horizontal
area of 7.5° square and a vertical height of 2000m. The computational domain is given by a uniform
longitude-latitude grid in the horizontal directions and a non-equidistant grid in the vertical.

The numerical solution method for (1.1) is derived along the method of lines. The horizontal advec-
tion operator is discretized by the mass-conservative, flux-limited finite-difference scheme proposed in
[4], based on 3rd-order upwind-biased discretization. The resulting 9-point stencil has 5 grid points
along both the longitudinal and the latitudinal lines. The vertical diffusion term is discretized on a
non-equidistant cell-centered grid resulting in a 3-point coupling in the vertical. The time integration
is performed by an IMEX (IMplicit-EXplicit) scheme, based on the 2nd-order backward differentiation
formula, which handles advection explicitly and chemistry and vertical diffusion implicitly and cou-
pled. The resulting nonlinear systems are solved with Gauss-Seidel iteration. The tridiagonal linear



systems that result from the diffusion term are solved directly within the Gauss-Seidel process (cf.
(8])-

We consider this 3D prototype a good approximation of a full-scale implementation of (1.1) in the
sense that adding diffusion or vertical advection will not influence the trend of our findings as long
as the horizontal processes will be calculated explicitly. On the other hand a real model will contain
much more I/O operations like, e.g., reading of and dealing with meteo and emission data and logging
concentration vectors at specific times or even directly visualizing the solution values. An evaluation
of the performance of that part of a simulation, however, can better be done on the successor of the
T3D, the T3E, since that machine also has a scalable I/O architecture.

3. IMPLEMENTATION

The original code was developed for the shared-memory vector/parallel Cray C90 architecture (cf.
[1, 8]). One of the goals then was to compare the efficiency and ease of use of Fortran 77 versus
Fortran 90 for a full-scale implementation of (1.1). As data structure for the concentration vector ¢
in (1.1) at a specific time a four-dimensional array containing the space indices and the species index
was chosen. Parallelism was obtained purely by distributing the work (loops) over the processors.
On a distributed-memory machine data on which a processor operates should as much as possible
reside in the local memory of that processor. Therefore, the data arrays for the concentration vectors
should be distributed over the local memories. Of interest then for a code on a parallel distributed-
memory system is the coupling which exists between the data that is distributed over the processors.
In equation (1.1) the transport and diffusion part gives rise to a coupling in space and the chemical
reaction term to a coupling across the chemical species. If one uses operator splitting or an IMEX
time-integration scheme it is customary to compute the chemistry part implicitly, possibly coupled
with the vertical diffusion. The other parts of system (1.1) are in general integrated explicitly in
time. Because the implicit computation of the chemistry coupled with the vertical diffusion is by
far the most expensive part of a time step we choose in principle to distribute the data such that
the implicit part of the time step will be computed on local data, i.e., the horizontal domain will be
partitioned and the vertical and species indices of a specific grid point in the horizontal domain all
reside on 1 processor (each local memory contains entire vertical columns and entire species vectors
for a number of points in the horizontal plane). This means that for the computation of the advection
in each direction the concentration values of the 2 nearest neighbors at an internal boundary should
be exchanged. The flux over 2 of the 4 boundaries should also be communicated to the neighboring
subdomain. However, we will also show the effect of using this data distribution only for the chemistry
and vertical diffusion part and using for the rest of the computations a partitioning of the vertical (each
local memory contains entire horizontal planes and entire species vectors for a number of points in
the vertical direction) with (implicit) redistribution of the data in between. Using this data mapping
no further communication is required.

The implicit assumption in the above is that the model is implemented on the entire domain in
the data parallel and data and work sharing programming style (the SIMD or SPMD approach). A
second way of looking at an implementation of the model is the domain decomposition approach. Here
the physical domain of the global model is decomposed in subdomains that are distributed over the
processors. On each processor a local model is computed, with, if explicit time integration is used,
in every time step known boundary conditions between the subdomains. Explicit message passing is
used to take these boundary conditions into account.

3.1 Programming Paradigms

The Cray T3D offers two different programming styles in Fortran. The first is the data and work
sharing model Craft (Cray Research Adaptive ForTran). Using directives the data is distributed over
the processing elements (PEs). Array syntax constructs are automatically distributed over the PEs,



such that the work is done on the PE on which most of the data resides. If the computation on the
distributed data is programmed using loops, the programmer has to add directives to distribute the
work. With the Craft programming model the (safe) access to non-local memory is organized by the
compiler and the run-time system. The second programming paradigm, and more suitable for the
domain decomposition approach, is the use of local or PRIVATE data in combination with message
passing. This message passing can be done using the ‘standards’ PVM or MPI, or using the Cray
explicit shared memory programming style (SHMEM). The latter is an order of 10 faster according
to a comparison of message passing systems on the T3D[6]. In this case the programmer has to take
care of the synchronization and data coherency in memory and in cache.

For a better understanding of the choices made in the implementation we first make some technical
remarks about the architecture and the programming paradigms of the Cray T3D. For a more detailed
description we refer to the T3D documentation and to [5, 3].

The Cray T3D (Torus 3 Dimensional interconnecting topology) is a massively parallel machine
with physically distributed but logically shared memory. A machine can contain a maximum number
of 2048 processor elements (PE). The central processing units (CPUs) used in the T3D are 64-bit
DEC 21064 processors with a theoretical peak performance of 150 Mflop/s. The clock frequency is
150 MHz. The processor has a separate instruction and data cache of 8 kbyte each. Each PE of the
machine has local memory which can be accessed by all other PEs across the communication network.
The term logically shared memory denotes the possibility to address memory on a remote PE with
normal Fortran array-indexing commands. To achieve a high degree of parallelism for other than
the so called ‘embarrassingly parallel programs’ the interconnecting network has a high bandwidth:
the data transfer rate is 300 Mbyte/s in each of the 6 directions. All processors can be programmed

individually (MIMD architecture).

The memory hierarchy on the T3D is not very austere for a distributed memory machine. Roughly
speaking one can say that obtaining data from cache is approximately 10 times as fast as from local
memory, which in turn is approximately 10 times as fast as remote memory (the distance of the
communicating processors is not of influence on the access time). However, the (mis)use of the cache
often results in a performance that is not as good as one would expect. Since the cache policy is
direct mapping, it is easy to get cache thrashing, especially with SHARED arrays which have obligatory
dimensions that are a factor of 2 (remember that the cache size is 1024 words). Because of a different
address calculation loads and stores of PRIVATE data from local memory are cheaper than loads and
stores of SHARED data from local memory.

In the following we describe the three different programming styles and the resulting implementa-
tions of the 3D model that we will evaluate in Section 4 and 5. The first two are based on the T3D
Craft model, the third is the message passing variant. Our policy in the implementations using Craft
were to add as much as possible optimizing compiler directives in the module headers, to limit the
changes within the code to a minimum, and to keep the code portable (of course the parallelizing
directives are machine-dependent).

We did not use SHARED to PRIVATE coercion as we did in [5]. The main reason for this is the fact
that the code will be no longer portable, but we will discuss in Section 4, whether coercion would
have lead to a significant better performance.

In contrast to the previous version of the compiler (see [5] for details) padding by hand of SHARED
arrays is no longer necessary, since there is an automatic 16 word padding. Also loops are now
unrolled by the compiler, although perhaps not in the most optimal way. However, adding directives
by hand and testing the result for a complete code would take too much time without improving the
performance significantly.

Since integer divisions are done in software one should replace these wherever possible. This is
currently not done by the compiler.



The use of ‘weighted’ distributions of shared arrays will no longer be supported in the future and
therefore it is not included in the tests whether a different distribution from the default [:BLOCK, : BLOCK]
gives a significant better performance or not.

The directives we did use for optimization are:

e PE RESIDENT. Ensures the compiler that data access is local; cache will be used, but local data
access still uses global indices.

e Trusted SHARED array arguments where possible, so that it is not necessary to check whether
data redistribution is needed.

e NO BARRIER inserted where allowed after DOSHARED loops or array-syntax statements. The com-
piler places an implicit barrier after each array syntax statement or DOSHARED loop, unless it is
considered save to omit this. We expect that a future release of the compiler will reorder loops
and remove implicit barriers more often than is done now, but for the moment it was necessary
to do it by hand to prevent a lot of unneeded synchronizations.

3.1.1 Data parallel.  Data parallel programming means that the data is distributed with directives
and that array syntax is used for the computations on the data. Under the Cray T3D Craft model
array syntax constructs are automatically distributed over the PEs. The implementation was based
on the Fortran 90 version of the code. Unfortunately it was not possible to use the Fortran 90 code
itself, since in the CF90 compiler currently available on the T3D (Version 0.1.2.2) the implementation
of a great deal of essential Fortran 90 features like MODULES, etc. is deferred.

Converting a program where the computations are written in array syntax (and in Fortran 90
intrinsics) boils down to adding the data distribution directives in the header of the program and the
subroutine and function headers. However, due to compiler deficiencies, we had to split the module
that solves the chemistry coupled with the vertical diffusion into 11 parts. We also added NO BARRIER
directives to remove some implicit barriers.

In the data parallel programming style it is also extremely easy to change the data distribution be-
tween the computations. So in this programming model we implemented two different data mappings:

1. Partitioning of the horizontal domain. With respect to the communication this results for each
processor in the exchange of 8 data arrays (vertical and species dimension) before the flux
computation and a ‘send’ and a ‘receive’ of 2 data arrays (flux) before the computation of the
horizontal advection.

2. Partitioning of the horizontal domain (as in 1) during the computation of the chemistry coupled
with the vertical diffusion and partitioning of the vertical direction during the rest of the pro-
gram. This means that all data needed in the computations is local, but it implies also that a
redistribution of the concentration arrays has to take place before and after the subroutine that
computes the chemistry coupled with the vertical diffusion.

Note that the only differences between these two programs are different SHARED directives in all the
subroutine headers except the ones that compute the chemistry / vertical diffusion, and the removal
of the ‘trusted’ specification of the array arguments in the enveloping chemistry routine.

3.1.2 Data and work sharing.  The use of this programming model implies distribution of the data
and the loops that contain the computations on the data using directives. Our starting point for this
implementation was the Fortran 77 code. Besides the data distribution directives and the optimization
directives described above, we needed to adapt the routine that computes the norm of a (SHARED)
vector.



3.1.8 Domain decomposition.  In this approach each PE does the computations for a local model
on PRIVATE data. Explicit message passing is used to communicate the necessary concentration and
flux values across the internal boundaries. A ‘master’ program takes care of the message passing, the
synchronization, and the data coherency.

For this implementation we used the original Fortran 77 code. All ‘workhorses’ in the code can be
executed on each PE using PRIVATE data. The program flow implemented in the calling program had
to be interspersed with calls to SHMEM routines to communicate the internal boundary data. We
used the non-portable SHMEM routines instead of the PVM or MPI alternatives since according to
the information in [6] the latter are approximately 5-40 times slower.

Note, that we need (almost) synchronous communication of the internal boundary data. The data
is needed right after it has been computed (on a neighboring PE). Nevertheless we implemented both
the SHMEM_GET variant and the SHEM_PUT + SHMEM BARRIER + cache flush variant. SHMEM_PUT is about
twice as fast as SHMEM_GET, but it is not a priori clear whether the total time, which includes also the
time needed for the shared-memory-operation barrier and the cache flush, will also be less.

3.2 Portability

The first two programming paradigms result in codes that are standard Fortran since all changes
needed are implemented through directives. Of course the parallelizability is not portable to other
architectures without adding the machine-specific directives.

In the domain decomposition style the master program is restricted to the T3D since a heavy use
is made of the non-standard SHMEM routines. It is however easy to convert it to a program to be
executed on a PVM.

4. RESULTS

In this section we compare the various implementations with each other with respect to their overall
performance and with respect to the computationally expensive parts of the model, viz., the compu-
tation of the fluxes and the coupled solution of chemistry and vertical diffusion. We use the following
abbreviations for the implementations:

e DP1: Data Parallel with data distribution 1.

e DP2: Data Parallel with data distribution 2.

e DWS: Data and Work Sharing (data distribution 1).

e SMG: Domain Decomposition implemented with SHMEM GET (data distribution 1).

e SMP: Domain Decomposition implemented with SHMEM_PUT (data distribution 1).

We use two different grid sizes. Since for SHARED arrays all but the last dimension have to be a
power of 2, we use 32 grid points in the vertical direction (in contrast to 40 grid points as used in the
original tests in [8]). The horizontal domain is divided in a 16 X 16 grid and a 32 x 32 grid, respectively.

4.1 Hardware and Programming Environment

The Cray T3D machine used for this report is located at the EPFL (Ecole Polytechnique Fédérale
de Lausanne) and was connected via the front-end Cray YMP and the Internet network to the CWI.
The T3D at the EPFL consists of 256 PEs with 64 Mbytes or 8 Mwords local memory per PE.

The results in this report were obtained with the CF77 6.2.2 Programming Environment. The
Fortran compiler recognizes a subset of Fortran 90, including array syntax. The timings were obtained



with the rtc intrinsic function which returns real-time clock values (compiler options -Wf"-oaggress
-ounroll"). We used the Apprentice tool to determine the performance and to look into details of
(specific parts of) the code (compiler options -Wf"-Ta -oaggress -ounroll").

4.2 Full Model Timings
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Figure 2: Execution time (a) and parallel efficiency (b) for a 32 x 32 horizontal grid.
DWS: +, DP1: x, DP2: %, SMG: o, SMP: -



In this section we give the results of the execution timings for a varying number of processors obtained
for the various implementations. To depict the performance we use the same graphical representation
as in [2], namely two plots displaying raw speed and scaling:

(a) Execution time: relative to the DWS implementation single processor execution time. The quan-
tity
100 x Time (N PEs)
Time(DWS 1 PE)

is plotted against the number of PEs, on a log,-log, scale.

(b) Parallel Efficiency: speed-up per PE relative to the DWS single PE execution time. The quantity

Time(DWS 1 PE)
N x Time (N PEs)

is plotted against the number of PEs on a log, scale.

Plot (a) measures the execution time on N processors. It shows the relative performance of the
implementations and it can be used to see how far increasing the number of processors decreases the
execution time. Plot (b) measures the scaling behavior with the number of processors. Linear scaling
corresponds to a horizontal line.

Due to a lack of memory it was not possible to execute the 32 x 32 test on 1 PE so that the quantities
in Fig. 2 are relative to the time of DWS on 2 PEs. The Data Parallel versions (DP1 and DP2) of
the code needed even more memory than available on 2 PEs.

Fig. 1 and 2 show that the Domain Decomposition approach scales nicely with the number of PEs.
The same holds for the Data and Worksharing implementation unless the number of horizontal grid
points (2 x 2), and thus the amount of work, on 1 PE is very small. However, the Data Parallel
implementation, which for small numbers of PEs even outperforms the DWS implementation, falls
quickly below the efficiency line of the other implementations. The reason for this poor scalability
is twofold. Firstly, the compiler unexpectedly puts barriers in front of an array syntax statement
thus inducing unnecessary synchronizations. These barriers can not be removed with NO BARRIER
directives. Secondly, SHARED temporary arrays are allocated, presumably to store intermediate results.
We have the impression that this only happens if the array syntax statements are placed inside a loop.
We have no reasonable explanation for these phenomena.

The scalability with the model size is perfectly linear for the DWS and SM implementations. The
runs for the 32 x 32 grid on N processors are as expensive as the runs for the 16 x 16 grid on N /4
processors.

4.3 Apprentice output

To get more insight in the performance of the various parts of the codes we used the Apprentice tool.
For a various number of processors we show in Tables 1 and 2 the Megaflop rate per processor for
the computationally important parts of the advection and the solution of the chemistry coupled with
the vertical diffusion. Also the percentage of time spent in the ‘communication’ routines barrier,
SHMALLOC, shfree, REDIST.4_1W, SHMEM_GET, SHMEM PUT, and SHMEM_BARRIER is given. Note, that
this percentage can vary for different runs. E.g., we think that the 14% communication time listed in
Table 1 under SMG on 16 processors is an anomaly.

For the DWS and SM codes the time spent in the communication routines is determined by the
barrier routine. This indicates that one can not expect a benefit from using SHMEM PUT instead
of SHMEM_GET. For the data parallel implementations much time is spent in SHMALLOC and shfree



DWS

MFlop/s/PE
NPE || Flux A Flux ¢ Chem. | % comm.
1 3.5 4.2 5.2 0
4 3.4 3.8 5.3 2
16 3.0 3.1 5.5 7
64 24 2.1 5.7 28
DP1 DP2
MFlop/s/PE MFlop/s/PE
NPE || Flux A Flux ¢ Chem. | % comm. || Flux A Flux ¢ Chem. | % comm.
1 3.8 4.3 5.2 4 6.9 7.1 5.1 5
4 3.2 3.5 4.6 20 6.8 7.0 4.6 27
16 2.2 2.3 3.2 42 6.6 6.8 3.2 51
64 0.8 0.8 1.5 53
SMG SMP
MFlop/s/PE MFlop/s/PE
NPE || Flux A Flux ¢ Chem. | % comm. || Flux A\ Flux ¢ Chem. | % comm.
1 8.0 9.4 5.1 0 8.0 9.1 5.2 0
4 7.7 9.3 5.3 2 7.6 9.4 5.3 2
16 8.1 9.1 5.6 14 8.0 9.2 5.7 5
64 9.5 9.4 6.4 24 9.3 9.5 6.6 21

Table 1: Performance (in Mflop/s per processor) of flux computation and of chemistry coupled with
vertical diffusion and the percentage time spent in communication routines. 16 x 16 horizontal grid.

DWS
MFlop/s/PE
NPE || Flux A Flux ¢ Chem. | % comm.
4 3.5 4.1 5.2 1
16 3.3 3.8 5.3 3
64 3.1 3.3 5.5 9
DP1 DP2
MFlop/s/PE MFlop/s/PE
NPE || Flux A Flux ¢ Chem. | % comm. || Flux A Flux ¢ Chem. | % comm.
4 3.5 3.9 5.2 7 7.0 7.2 5.2 14
16 2.8 3.1 4.6 20 7.0 7.1 4.6 27
64 1.3 14 3.2 39
SMG SMP
MFlop/s/PE MFlop/s/PE
NPE || Flux A\ Flux ¢ Chem. | % comm. || Flux A Flux ¢ Chem. | % comm.
4 8.0 9.4 5.1 1 7.8 9.4 5.2 1
16 7.7 9.3 5.3 4 7.7 9.3 5.3 3
64 8.2 9.2 5.6 7 8.1 9.2 5.7 8

Table 2: Performance (in Mflop/s per processor) of flux computation and of chemistry coupled with
vertical diffusion and the percentage time spent in communication routines. 32 x 32 horizontal grid.
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together with the required barrier calls. The implicit redistribution of data needed in DP2 gives a
significant increase in communication time but the gain in computational efficiency seems to outweigh
this disadvantage according to the relative efficiency graphs in Fig. 1 and 2.

The flop-rate listed under Chem. is obtained for one of the 11 subroutines that solve the chemistry
coupled with the vertical diffusion. However, the other routines show a comparable behavior. The
performance of this routine is hampered by the fact that a lot of data values are needed which are used
only once. Thus memory operations determine the speed. Apprentice output shows that 30% of the
time is spent executing ‘work’ instructions, whereas 70% is required for loading instruction and data
cache. Optimization by hand, using stripmining and prefetching data, can double the Mflop rate (as
shown in [5]) but this would be hard and tedious labour. Undoubtedly future releases of the compiler
will take care of this.

Tables 1 and 2 also show the effect of using local data for the computation of the advection: the
Mflop rate more than doubles, but at the cost of communication time elsewhere. We attribute the
high numbers in Table 1 for the SM codes on 64 processors to cache effects. The PRIVATE data arrays
are of dimension 2 X 2 X 32 and thus fit easily in the cache.

Finally the Apprentice output shows that it is not likely, that SHARED to PRIVATE coercion of the
arrays when entering the chemistry routine will result in a significant increase of the performance.
The computation of the chemistry coupled with the vertical diffusion implemented with PRIVATE data
is approximately 5-10% cheaper than using SHARED data. Since SHARED to PRIVATE coercion results in
non-portable code we do not advocate this implementation method. N.B. the fact that the Megaflop
rates for DWS and SM for corresponding problems are almost equal (see Tables 1 and 2) is due to
a 1.5 times as large number of floating point operations. This can possibly be the result of the more
complex address calculation used for SHARED data access.

5. DISCUSSION

The scalability both with respect to the model size and with respect to the number of processors is
almost perfect, although the linear speed-up is perhaps more the result of a poor performance on 1 PE
combined with a very fast interconnecting network. A different cache policy and a better optimizing
compiler (cache prefetching, look-ahead, loop optimization by stripmining, unrolling, splitting and
fusion) could probably result in an increase of the computational performance by a factor of 5.

Since logically shared non-local memory will never be addressed through the cache (this would imply
a hardware update of all caches) it is our expectation that a better 1 PE performance would benefit
the explicit message passing implementations. However, if the compiler deficiencies are resolved,
the data parallel / HPF approach will also result in an efficient code. Moreover, such a program
will be, without adaptations, efficient on a shared-memory parallel/vector, on a distributed-memory
parallel architecture, and on a workstation. For a (heterogeneous) cluster of workstations it is unlikely
that a very efficient implementation of HPF will ever exist. Besides, the interconnecting network
presumably is too slow and the communication times too irregular to use the SIMD or SPMD approach
in combination with an IMEX integration method.

Finally, we want to give an indication of the relative performance of a model like (1.1) on the Cray
C90 and on the Cray T3D. On 1 processor of the C90 a 5-day run on a 33 x 33 x 40 spatial grid took
1650 CPU seconds with a computational speed of 500 Mflop/s (cf. [8]). If we extrapolate our results
for the SM runs on a 32 x 32 x 32 grid a 5-day run would take 1300 seconds on 64 processors, which
is approximately the same amount of time (32/40 - 1650 = 1320). The good news about the T3D is
that, because of the excellent scaling, one can run in the same amount of time on 1024 processors a
problem with grid size 128 x 128 x 32, thus obtaining a speed of 8 Gflop/s, whereas on the C90 the
computational performance does not scale linearly with the number of processors and the amount of
memory does not scale at all. Moreover, the compiler optimization techniques for a shared-memory



11

vector /parallel architecture have greatly improved in the last 10 years, whereas the compiler technique
for the distributed-memory architectures is still in its infancy. Even the 1 processor optimization of
the current T3D CF77 compiler leaves room for improvement.

6. CONCLUSIONS

In this paper we compared the different programming paradigms available on the Cray T3D - data
parallel, data and work sharing, and explicit message passing - for the implementation of a prototype
of an Atmospheric Chemistry/Transport Model. As mentioned in Section 3 the amount of work
needed to convert a code is limited and the resulting codes are portable with the exception of the
main program in the message-passing implementation. An evaluation of the performance tests done
with these codes show a perfect scalability both for the data-and-work-sharing and for the message-
passing variant. Deficiencies in the compiler precluded that the results for the data-parallel version
are equally favorable.

In the previous section we discussed our expectations for distributed-memory architectures and we
indicated that the Cray T3D can easily outperform the Cray C90 with respect to the computational
part of an Atmospheric Chemistry/Transport Model. To model real-life processes, however, one also
needs a scalable I/O architecture and further experiments are needed to see whether the T3E will be
a good candidate for long-term simulations with an Atmospheric Chemistry/Transport Model.
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