
Journal of Computer and System Sciences 59. li\2--194 ( 1999) inir 1>..l'.i\· 
Article ID jcss.1999.1647. mailable online at http: W\\w.idcal!brnry.corn on um;~ 

Two Queries 

Harry Buhrman t 

CW!, P.O. Box 94079, 1090 GB A111stl'rdam, The Nl'tha/wuls 

and 

Lance Fortnow2 

Depa/'/lll<'ll/ o( Computer Science. Uni1·asity of' Chimgo, 
I/()() East 58t/J Stred, Chicago. Illinois 6063 7 

Received August 16. 1998: revised April 30. 1999 

We consider the question whether two queries SAT arc as powerful as one 
query. We show that if pNP[IJ=pNP[lJ then: Locally either NP=coNP or 
NP has polynomial-size circuits: pNP = pNP[ I]: L'f <;; 17 ~ I; .l'f = upNP[ I] n 
RPNP[Il; PH= sppNP[tl. Moreover, we extend the work of Hemaspaandra, 
Hemaspaandra, and Hempel to show that if p£j[t l = p2.'j[lJ then I:~= JJ ~. 
We also give a relativized world. where pNP[tJ = pNP[lJ, but NP ¥coNP. 

t'. 1999 Academic Press 

1. INTRODUCTION 

Are two queries to SAT as powerful as one query? This question has a long 
history in computational complexity theory. When computing functions, Krentel 
[ Kre88] showed that if two queries can be simulated by one query to SAT, that 
is, FPNP[ 1l = FPNPC 21 , then P =NP. 

When we focus on languages instead of functions life gets more complicated. 
Kadin [Kad88] showed that if pNP[tJ=pNP[ZJ then NPs:::coNP/pu/y and thus 

PH s; .E ~ [ Yap83]. Beige!, Chang, and Ogihara [ BC093], building on Chang and 
Kadin [ CK96] improve this to show that every language in the polynomial-time 
hierarchy can be solved by an NP query and a .Ef query. 

1 E-mail: buhrmanru cwi.nl. URL: http://www.cwi.nl/-buhrman. Partially supported by the Dutch 
foundation for scientific research ( NWO J by SION Project 612-34-002. and by the European Union 
through NeuroCOLT ESPRIT Working Group 8556, and HC&M Gran ERB4050PL93-05!6. 

1 E-mail: fortnow10 cs.uchicago.edL1. URL: http:l/www.cs.uchicago.edu/-f(1rtnow. Work done while on 

leave at CW!. Supported in part by NSF Grant CCR 92-53582, the Dutch Foundation for Scientific 
Research ( NWO ), and a Fulbright Scholar award. 

0022-0000/99 $30.00 182 
Copyright CC" 1999 by Academic Press 
All rights of reproduction in any form reserved. 



nvo QUERIES 183 

One goal might be to show that pNP[ 1 J = pNP(lJ implies NP = coN P. 

Hemaspaandra, Hemaspaandra, and Hempel [ H H H99a] made a step in that direc

tion. They showed that fork> 2, if pLf[' l = pLfl2J, then Ef =ff f. We extend their 
t h . . t h h· , . d'[l] ,.p(O] 
ec mques o sow tat, 1! P~ 2 =P~2 - . then Lf=ll';_. However. the techniques 

cannot be pushed down to k = I. We show a relativized world. where pNP[ 1 l = 

pNP[ 2 l, but NP'"'coNP. What does happen when pNP[IJ=pNPC 2 l? 

Building on the techniques of the above papers we show several new collapses if 
pNP[ I] = pNP[l] including: 

• Locally either NP= coNP or NP has polynomial-size circuits. 

• pNP = pNP(!J. 

• E'i c:; ll';/1 . 
• E'; = upNP[l] n RPNP[IJ . 

• PH=BPPNP[IJ. 

2. PRELIMINARIES 

We assume the reader is familiar with basic notions of complexity theory as can 

be found in many textbooks in the area (such as [ GJ79, HU79, BDG88, BDG90] ). 

For a set A we will identify A with its characteristic function. Hence, for a string 

x,A(x)E{O, I} andA(x)=l iffxEA. 

For languages A and B define A LIB to be the symmetric difference of A and B: 

i.e., (A n B) u (An B ). For complexity classes <(, and '/ define the class '6 LI'./ as 

{A LIB I A E <0 and BE '/}. 

An oracle Turing machine is nonadaptive if it produces a list of all of the queries 

it is going to make before it makes the first query. SAT is the set of satisfiable 

boolean formulae. For any set A. pAlkl is the class of languages that are recognized 

by polynomial time Turing machines that access the oracle A at most k times on 

each input. The class p:i[kl will allow only nonadaptive access to A. We note that 

pNP[IJ=pNP[2J if pNP[IJ=p~rc 2 i [CK95]. so all our results could be stated 

assuming pNP[ 1 l = p~rr 21 . 

If A is in p~l I J then there is a polynomial-time function h( x ): .E*-> I* x 

{ +. -} such that x is in A if and only if h(x)=(::, + J and= is in B or h(x)= 

( ::, - ) and :: is not in B. The string:: is the query made by the Turing machine and 

the + and - refer whether the machine accepts iff the query is in or rejects iff the 

query is in. The machine could ignore the query or not make it at all, in which case 

we just use a :: known to be in (or out) of B. 
UP is the set of languages that are recognized by polynomial-time nondeter

ministic Turing machines that have at most one accepting path on each input. 

We can generalize NP by defining the polynomial-time hierarchy. We define 

E{;=P and inductively define Lf+ 1 =NPE~' for i>O. We let llf=coLf. In par

ticular, we have NP= If and coNP = n f. Many complexity theorists conjecture 

that the polynomial-time hierarchy is infinite: i.e., Ef + 1 # Ef for all i. 



184 BUHRMAN AND FORTNOW 

Let ff, be a complexity class. We say a set A is in rt, If( n) if there exists an 
arbitrary function h such that lh(n) I = f(n) and a set Be r15 such that x e A iff 
< x, h( lxl)) E B. We say a language A is in Cf,/poly if A is in rr,; p(n) for some polyno
mial p. 

Given a formula if> on n variables we define the se!Freduction tree of if> as follows: 
(/>is the root and ifthe formula </J'(x 1 , ••• , xm) is a node in the tree then c/>'(x 1 :=true, 
x2 , ... , xm) and f(x 1 :=false, x 2 , ••• , x,..) are the two children of r/>'. We say 
c/>'(x 1 , ••• , xm) se(freduces to the formulae f(x 1 :=true. x 2 , ... , xm) and c/>'(x 1 := 
false, x 2 , .•.• xm). A formula with no free variables is a leaf in the tree. A node in a 
tree is satisfiable if and only if either of its children are satisfiable. One can deter
mine easily in polynomial whether a leaf is true or false. 

3. COLLAPSE IF p:£)£ll = P;;~[21 

Hemaspaandra, Hemaspaandra, and Hempel [HHH99a] exhibited a strong 
collapse if prH 1 l = Pfrf[2l for k > 2. 

THEOREM 3.1 ( Hemaspaandra, Hemaspaandra, and Hempel). For every k > 2, 
if' pr£[1J = pEf£2J then J:P= flP 
. 11 k k' 

Extending their techniques we improve their result to k = 2. 

THEOREM 3.2. ff'PE~[l] =Pf,~[2] then .I:f=flf. 

Pro4 For a predicate R(y) we use the notation 3my R(y) to mean 
3y(lyJ=mAR(y)) and vmyR(y) to mean Vy(lyl=m=>R(y)). Since .E~LINP~ 
Pfr~[ 2 l, Theorem 3.2 follows immediately from the following lemma. -

LEMMA 3.3 {/'.Ef L1NP~pE5[l] then .I:f=flf. 

Pro1!l Fix K a complete set for .Ef. Given an input x we will give a .Ef algo
rithm for determining that x is not in K. Let n = Ix!. We can assume there exists 
a polynomial-time predicate P such that 

where the quantification is done over strings of length n. 
Define the set DE .Ef LINP as 

D = K x SAT u K x SAT= { ( x, if>) I ( x E K /\ if> 1 SAT) v ( x 1 K /\ c/> E SAT)}. 

By assumption, there exists a polynomial-time computable function h: .I:* x .I:* --+ 

.I:* x { +, - } such that (x, if>) ED iff h(x, c/>)=(z, +)and :EK or h(x, c/>) =(:, -) 

and= 1 K. 
We give the .Ef algorithm for determining that x is not in Kin Fig. I. Lemma 3.3 

follows from the following claim. 



TWO QUERIES 

3 rf;,u 
3 h(x,rf;)=(z,+) h(x,rf;)=(z,-) 

rf;ESAT 

Vv 
P(z, u, v) 

</> \t SAT 
Vv 

P(z, u, v) 

l:/u 
Assuming that for all rf; 

</> E SAT<::> h(x,rf;) = (z,-) 
use self-reduction to find 
v such that --.P(x, u, v) 

185 

FIG. I. :E~' algorithm to determine x rj K. The 3 and \/ quantifiers have appropriate polynomial

Jength bounds. The E~' algorithm accepts ii' any column accepts. 

CLAIM 3.4. The algorithm in Fig. 1 i/Ctepts exactly ivhen x is not in K. 

Pro<1l Suppose the algorithm accepts in the rightmost column. For every u we 

will have found a counterexample r to P( x, 11, r) so x is not in K. 
If the first or second column accepts then we have .n/; K <;=;>:::.EK-= 

:JI.cl ll \fl:lr P(:::., u, 1·). 

Suppose that .Y is not in K. If the assumption in the rightmost column is true, 

then the self-reduction will always find the appropriate r. 
If the assumption in the rightmost column is wrong then either there is some </1 

such that </1ESAT and h(x,(/J)=(::., +)or </J~SAT and lz(x,<p)=(::., -). Then we 

will have either the first or second column accepting, respectively. I 
Hemaspaandra, Hemaspaandra, and Hempel [ HHH99a] give a more general 

version of Theorem 3. l for the boolean hierarchy over .L~' fork > 2. In a later paper, 
Hemaspaandra, Hcmaspaandra, and Hempel [ HHH99b] show that our 

Theorem 3.2 similarly extends to the boolean hierarchy over .L '{. 
Beige! and Chang [ BC97] use the techniques in the proof of Theorem 3.2 for 

some new results on commutative queries. 

4. LIMITATIONS OF pNPJI]= pNPl 2l 

We show that Theorem 3.2 cannot carry over for NP with a rclativizable prooC 

THEOREM 4.1. There exists o relutici::.ed 11·orld to 1\'hich NP =I= coNP, hut pNP[ 11 

= pNP! ~J = PSACE. 

We will use UP-generics as developed by Fortnow and Rogers [ FR94]. To 

create a UP-generic start with an oracle like TQBF that makes P = PSPACE and 

add a generic set U restricted to have at most one string at lengths that are towers 

of 2 and no strings at any other lengths. So G = TQBF E8 U. UP-generics also play 

an important role in creating a relativized world where the Berman Hartrnanis 

isomorphism conjecture holds and one-way functions exist [ Rog97]. 

Given an input x a polynomial-time process can only access one interesting string 

in U. The others are either too large to be queried or so small that they can be 

found quickly. We refer to this interesting string as the "cookie." 

Fortnow and Rogers [FR 94] show that relative to UP-generics G: 

I. P';=!=NP"'. 

2. P'; = N pG n coN PG. 



186 BUHRMAN AND FORTNOW 

Immediately we have the following corollary. 

COROLLARY 4.2. Refaril'e 10 UP-generics G, 

NP0 i= coNP 0 . 

Fix a PSPACE 0 language L accepted by some alternating polynomial-time 
Turing machine M 0 . We now describe the pNPG[lJ algorithm for L. 

Use the P = PSPACE base oracle to determine if x is accepted by M 0 if there is 
no cookie. There are two cases: 

No. Accept if the following NP question is true (using P = PSPACE base 
oracle): Does there exist a cookie such that M 0 ( x) accepts'? 

Yes. Accept if the following NP question is false (using P = PSPACE base 
oracle): Does there exist a cookie such that M 0 ( x) rejects? 

In either case we ask as single NP question and accept if and only if M 0 ( x) accepts. 
As a bonus we get the following corollary about complete sets for PSPACE. 

CoROLLAR Y 4.3. There exists a relativi:ed 1\'or/d where the l-tt-comp!ete degrel! 
for PSPACE is 1101 the same as the nwny~om! complete degree. 

We cannot extend Theorem4.l to get NP;fcoNP and pNP[Il=EXP srnce 
Homer. Kurtz, and Royer [ HKR93] give a relativizable proof that the 1-tt-com
plete degree for EXP is the same as the many-one complete degree. In a later 
paper, Beigel, Buhrman, and Fortnow [ BBF98] give a relativized world where the 
1-tt-complete degree for NP is not the same as the many-one complete degree. 

5. CONSEQUENCES OF pNP[lJ= pNP[lJ 

In this section we examine collapses that occur if pNP[IJ=pNP[ 2 l. Kadin 
[ Kad88] showed that the polynomial-time hierarchy collapse under this assump
tion. 

THEOREM 5.1 (Kadin). pNP[JJ = pNP[ 2J implies that NPs;coNP/po!y. 

Yap [ Yap83] shows that if NP s co NP/ poly then PH= E~. Beige!, Chang, and 
Ogihara [ BC093] building on the work of Chang and Kadin [CK 96] improved 
the collapse to just above I£. 

THEOREM 5.2 (Beige!, Chang, and Ogihara). /(pNP[IJ=pNP[ZJ then the po/ynu

mial-tin1e hierarchy collapses to I£ .JNP. 

Building on the work of Kadin [ Kad88 ]. Chang and Kadin [ CK96 ], Beigel, 
Chang, and Ogihara [ BCO 93 ], and Hemaspaandra, Hemaspaandra, and Hempel 
[ H H H 99a], we will show several other collapses under this same assumption. 

THEOREM 5.3. rr pNP[I] = pNP[Zl, then 

1. For all A in coNP, A= B u C. H'here B is in NP and C 1s in P /poly. 



Moreover, /(!r every n either 

(a) A n In = B n In, or 

(b) An 2 = C n In. 

2. pNP = pNP[lJ. 

3. I~~ fli/1. 
4. I~= upNP[IJ. 

5. I~= RPNP[ll. 

6. PH= BPPNP[IJ. 

TWO QUERIES 187 

For clarity, we leave off the polynomial-length bounds on the :J and V quantifiers 
in the proofs below. 

Define the languages D, E, and F by 

D =SAT x SAT u SAT x SAT= { (qi, if;) I ( </J E SAT /\ l/J ~ SAT)} 

u {(</J, l/J) I (</J~SAT /\ l/IESAT)} 

E =SAT x SAT= { (qi, l/J) I qi i;E SAT /\ ijJ E SAT}. 

F= SAT x { +} u SAT x { - } = { (r, +)I r E SAT} u { (r, - ) I r ~SAT}. 

We have D and E in pNP[ 2J = pNP[ t J by assumption. So there exist polynomial

time computable functions g and h that reduce D to F and E to F, respectively. 
To help understand our proofs let us review the basic Kadin [ Kad88] technique. 

First, let us restrict our attention to formulas of some fixed length. Call a string qi 
easy if there is some l/J such that /z( </J, ijJ) = ( r, + ) for some satisfiable r. 

They key point to note is that if a formula is ea,\)' then it has a short proof of 
nonsatisfiability: the formula l/J and a satisfying assignment for r. By the definitions 
of E and h, if r is satisfiable then qi must be unsatisfiable and l/J satisfiable. 

If every nonsatisfiable string is easy then every string has a short proof of 
satisfiability or nonsatisfiability. Otherwise there must exist some nonsatisfiable 

noneasy string. We call such strings hard. 
Suppose we had a hard string <P and consider /z( qi, l/J ). If if! is satisfiable then 

h(</J, t/l) must map to some (r, -) or</! would have been easy. Also in this case r 
would not be satisfiable. If tf; is not satisfiable then either h( </>, tf;) maps to a ( r, +) 

for some nonsatisfiable r or would map to a ( r, - ) with a satisfiable r. Given <P 

we have a short proof of nonsatisfiability for tf;: tf; is nonsatisfiable if ( 1 ) 
h( 1/J, l/J) = ( r, + ) for some r, or ( 2) Ii( </J, tf;) = ( r, - ) for some satisfiable r. 

Thus, we have that NP is in coNP with advice, the advice being a hard string 
or a bit, telling us there are no hard strings. 

One simple idea not used by Kadin or the researchers that followed him is that 
every nonsatisfiable formula is either easy or hard. We use this idea to give stronger 
collapses under the assumption that pNP[2 J = pNP[tJ. To make full use of this 

technique we need to define several kinds of easy and hard strings. Our Easy-I 
strings are the same as Kadin's. Easy-II strings are formulas with short proofs of 
nonsatisfiability, based on the self-reducibility of SAT. Easy-III are formulas with 



188 BUHRMAN AND FORTNOW 

a short proof of nonsatisfiability, given that they failed to be Easy-II. Easy-IV 
strings are formulas with a short proof of nonsatisfiability using techniques from 
Hemaspaandra, Hemaspaandra, and Hempel [ HH H99a] discussed in Section 3. 

DEFINITION 5.4. I. The formula </! is Easy-I if there is a t/; such that /z( <p, l/I) = 

(r, +)and rESAT. 

1. The formula cjJ is Easy-II if 

(a) cp is Easy-I, or 

( b) </1 is a leaf of a self-reduction tree and false, or 

( c) </! self-reduces to two Easy-I formulae. 

3. The formula cjJ is Easy-Ill if 

(a) cjJ is Easy-It or 

(b) There exists an Easy-II formula t/; such that h(t/J,</!)=(r, -) and 
TE SAT. 

4. The formula </! is Easy-IV if 

(a) <p is Easy-III, or 

( b) there is a 1/; E SAT such that g( </!, t/;) = ( r, + ) and r E SAT, or 

( c) There is an Easy-HI formula i/; such that g( <f!, 1/;) = ( r, - ) and r E SAT. 

Nonsatisfiable formulae that are not easy are called hard formulae. 

DEFINITION 5.5. The formula cjJ is Hard-I, Hard-II, Hard-Ill, or Hard-IV if 
c/J rf; SAT and rp is not Easy-I, Easy-II, Easy-lII, or Easy-IV, respectively. 

First we argue that for any i in {I, II, III, IV l, every string is exactly one of 
Hard-i, Easy-i, or satisfiable. 

The Easy-I and Hard-I strings are basically the Hard and Easy strings used by 
Kadin [ Kad88]. By looking at the self-reduction tree we will show that if there is 
a Hard-I string there is a Hard-I string that is Easy-II. This is a Hard-I string 
whose nonsatisfiability is nondeterministically verifiable. 

The Easy-III strings take advantage of this property to that we can use any 
Hard-I Easy-II string to deterministically separate the Hard-Ill strings from the 
satisfiable strings. The Easy-IV definition uses a technique from Hemaspaandra, 
Hemaspaandra, and Hempel [HHH99a] to use Hard-IV strings to deterministi
cally separate the Easy-III strings from the satisfiable strings. 

Putting it all together we show that if there are any Hard-IV strings, we will have 
polynomial advice separating the nonsatisfiable strings from the satisfiable ones. 

The following facts are easily derivable from the above definitions. 

LEMMA 5.6. I. The sets Easy-I, Easy-JI, Ea.1y-III, and Easy-IV all sir in NP. 

1. The sets Hard-I, Hard-II, Hard-Ill, and Hard-IV all sit in coNP. 

3. Easy-I<,;;:: Easy-II<,;;:: Easy-Ill r; Easy-IV r; SAT. 

4. Hard-IV r; Hard-III r; Hard-II r; Hard-I r; SAT. 

5. If' </J is Hard-I then j(Jr all l/J, t/; is in SAT if' and only (/' fz( c/J, l/J) = ( r, - ) ll'ith 
H,/: SAT. 



TWO QUERIES 189 

If we have a Hard-IV formula </>, then q> gives us a polynomial-time separator 

between SAT and the Easy- JI I formulae. 

LEMMA 5.7. For any Hard-!V.fim11ula </J 11·e hm·e 

1. ff' if; E SAT then g( c/>, lf;) = ( r, - )./i!r SO/Ill:.' r. 

2. If' 1/; is Easy-I!! then g( cf!, if;)= ( r, + ) .fiJ1· some r. 

Proo/ If either of these items were not true we would have r in SAT and, thus, 

0 would be Easy-IV. I 

We also show how to get a separator between SAT and the Hard-Ill formulae. 

LEMMA 5.8. !/'there is a Hard-1.fimnula rp then there is a Hard-1.fimnula x that 

i.1· Easy- II. 

Proof: Consider the self-reduction tree for </>. All the formulae in the tree are 

unsatisfiable. Consider the lowest Hard-I formula '.X in the tree. Either x is a leaf of 

the tree or '.X self-reduces to two Easy-I formulae. I 

We can use the formula '.X to separate SAT from the Hard-III formulae. 

LEMMA 5.9. For any Hard-I Easy-Jl.fim11ula x we hare 

1. /f' 1/; E SAT then h(x, lf;) = (r, - ) fiir some r. 

2. ff' if; i.1· Hard-I I I t/wn h( '.X, 1/;) = ( r. + ) jiJr some r. 

Proo/ 
Easy-II I. 

If the first case fails, then x is Easy-I. If the second case fails, then tj; is 

I 
Now we can put Lemmas 5.7 and 5.9 together. 

Proof' of' Theorem 5.3( I). We need only prove this item for A= SAT since SAT 

is complete for coNP and has nice padding properties. Let B be the set of Easy-IV 

formulae. By Lemma 5.6, B is an NP subset of SAT. 

Fix n and suppose there is some </! of length n in SAT - B. By definition 0 is 
Hard-IV. By Lemma 5.6, the formula 0 is also Hard-I, so there is some Hard-I 

Easy-II formula '.X by Lemma 5.8. 

Using as advice </J and '.X and a bit indicating whether or not a Hard-IV formula 

of length n exists, we define the following P /poly language con inputs 1/1 or length 11: 

I. 

3. 

If there arc no Hard-IV formulae of length n, then reject. 

If g( q>, 1/;) = ( r, + ) for some r, then accept. 

If h( x, 1/;) = ( r, +) for some r, then accept. 

4. Otherwise reject. 

If t/; is in SAT then by Lemmas 5.7 and 5.9, both lines 2 and 3 will reject. If t/; 

is in SAT then either if; is Easy-III or Hard-Ill. If 1/; is Easy-Ill then line 2 will 

accept. If tj; is Hard-III then line 3 will accept. I 

Proof' (}j' Tlzeorem 5.3(2) (PNP = pNP[JJ ). The proof follows from Lemmas 5.10 

and 5.11. 



190 BUHRMAN AND FORTNOW 

LEMMA 5.10 (Chang and Kadin ). If' pNP[ 11 = pNP[ 2l, then pNP[ 1 l = p~r. 

Chang and Kadin [CK95] prove Lemma 5.10 by looking at computation trees. 
Their proof cannot be used to generalize the result to k versus k + 1 queries. We 
present different proof using hard and easy strings. Chang [ Cha97] uses the ideas 
of our proofs of Lemmas 5.10 and 5.11 to extend Theorem 5.3(2) to show pNP[kJ = 
pNP[k+ 11 implies pNP[kJ = pNr. He then applies these results to approximation 
questions of various NP-complete problems. 

Proof' of' Lemma 5.10. Fix an input x to our p~r machine M. Let Q be the 
polynomial-size set of queries to SAT made by M(x). We will show how to com
pute p~r with two queries to NP, which then by assumption implies that 
p~P = pNP[IJ. 

For the first query, ask if every member of Q is either satisfiable or Easy-I. If the 
answer to the first query is yes then ask if M( x) accepts using "yes" for each 
satisfiable clement of Q and "no" for each Easy-I element of Q. If the answer to the 
first query is "no" then some element of Q is Hard-I. We then ask for our other 
query whether the following nondeterministic algorithm accepts: 

I. Guess S, a set of satisfiable formulae in Q. Guess satisfying assignments for 
each element of S. 

2. Guess £, a set of Easy-I elements in Q. Verify that each of the elements of 
E is Easy-I. 

3. For each</> and t/1 in Q-(SvE) check if h(</J,t/;)=(r, +I for any r or 
h(</>. l/;) = (r, - ) for some r in SAT. 

4. If all of the above tests pass, then simulate M using "yes" for queries in S 
and "no" for queries in Q - S. 

If the guesses of S and E were such that they contain all of the SAT and Easy-I 
elements of Q, respectively, then the remaining formulae are all Hard-I, so the third 
test will pass by Lemma 5.6. 

We need to show that if S is not Q n SAT then the above algorithm rejects. Let 
<P be a Hard-! element of Q and let if; be in Q n SAT- S. We have </> and l/; in 
Q - (Su£). By Lemma 5.6, Ii(</>, t/;) = ( r, - ) with r ~SAT, so the third test will 
fail. I 

PrOlf 1~/ Lenmw 5.11. Let MsAT be a pNr machine that runs in time nk. Con
sider the formulae </>; that for each i, I ~ i ~ nk, encodes: There exists a computation 
path of M(x), where for the first i queries q1 , ... , (/;,either C/; is satisfiable and l/; is 
answered "yes." or CJ; is Easy-I and q; is answered "no." 

Also consider the formulae t/;; that for each i, 0 ,,; i,,; nk, encodes: There exists an 
accepting computation path of M( x) such that 

1. for the first i queries q 1 .... , lJ;, either l/; is satisfiable and (]; 1s answered 
"yes," or C/; is Easy-I and l/; is answered "no," and 

2. For each q1, j > i, either 



TWO QUERIES 191 

(a) qi is answered "yes" and qi is satisfiable, 

( b) qi is answered "no" and /i( l/;+ 1 , qi)= ( r, +) for some r. or 

( c) qi is answered "no" and /i( l/; + 1 , ifJ) = ( r, - ) for some r in SAT. 

We ask all of the q>; and if;; questions to SAT in parallel. Consider the largest i 

such that q1; is satisfiable. If i = nk then MsAT( x) accepts if and only if 1/;; is 

satisfiable. 

If i < r/ then consider an accepting path encoded by a satisfying assignment of 

1/1 ;· The query q; + 1 must be Hard-I or c/1; + 1 would be satisfiable. By Lemma 5.6, all 

the answers to the queries are correct. Again we have that MSAT(x) accepts if and 

only if if;; is satisfiable. I 

Proof' <!f' T/1nm'111 5.3(3) (l'~ s; fl~/l ). Let L be in .E~. Express Las 

1 x I 3y 'V::: P( X, _)', .: ) f 

for some polynomial-time predicate P. Fix x and let q1Y encode "3:--i P( x, y,.: )." We 

have x E L if and only if there exists a y such that 1/; 1= SAT. 

Let A =SAT and B and C be as derived in Theorem 5.3( 1 ). Let DE P be such 

that x is in C iff ( x, a 1x 1) is in D. where a !xl is the polynomial advice. 

Fix an input x of length 11. The one bit of advice is whether case ( la) or ( 1 b) of 

Theorem 5.3 holds for 11. If case ( 1 a) holds, then we have x in L if and only if there 

is a y such that <Py is in B. If case ( 1 b) holds then we have x in L if and only if for 

all a11 there exists a formula 1/; such that either 

• 1/; is a leaf of a self-reduction tree and t/; E SAT iff (1/;. u,,) i D, or 

• 1/; is not a leaf of a self-reduction tree and 1/1 reduces to t/; 0 and t/; 1 and 

(1/;, a 11 ) ED iff (1/1 0• a,,) i D and ( 1/1 1 , a,,) i D. or 

• there is a y such that ( </1,., a 11 ) if= D. 

The argument for case (lb) is based on the proof by Karp and Lipton [KL80] 

that ifNPs;P/po/y then I'~=fl~. One can verify that in each case we get a 17f 
expression for L. I 

Whether we can eliminate the advice bit remains an interesting open question. 

Proof of Tlwore111 5.3(4) (L'~= LJpNP[Il). Toda and Ogihara [T092] show 

that upNP= upNP[lJ. Hence, we only need to prove that I.'£= upNP. 

Consider L. P, and the q1,., as in the proof of Theorem 5.3( 3 ). Consider a formula 

t/;" that encodes ''q1,. is satisfiable or there is some It'< y such that h( <P.v' rp"') = ( r, +) 

for some r or h( q1,., q1,..) = ( r. - ) for some r E SAT." 
Our lJpNP machine works as follows: 

1. Query the NP oracle to determine if there are any y such that q1)' is Easy-I. 

If so, immediately accept. 

Otherwise. accept if there exists a y such that 1/;v is not satisfiable. 



192 BUHRMAN AND FORTNOW 

If the first step does not accept, then all the l/Jy are either satisfiable or Hard-I. 
If all or the <Pr are satisfiable, then so are all of the 1/1J .. If there is some 11· < y such 
that rfaw and (/J,. are both Hard-! then by Lemma 5.6, t/; Y will be satisfiable. If y is the 
lexicographically least string such that </\. is Hard-I then by Lemma 5.6, l/Jy is not 
satisfiable. I 

Proof of' Theo/'{'111 5.3( 5) ( l'f = RPNP[I J ). By Theorem 5.3( 2) we only need to 
prove L'f = RPNP. 

Consider L, P, and the r/iy as in the proof of Theorem 5.3( 3). Our RP algorithm 
first queries the NP oracle to determine if there are any Easy-IV ~y· If so. then 
immediately accept. 

If this fails. then either all of the </>y are satisfiable or one of them is Hard-IV. If 
the second condition holds, then by the proof of Theorem 5.3( I) there exists poly
nomial-advice for SAT. 

Use the algorithm of Bshouty, Cleve, Gavald<'t, Kannan, and Tamon [ BCG +96] 
that randomly using an NP oracle finds the advice for SAT. If it fails to find the 
advice for SAT then reject. Otherwise, query the NP oracle again to determine if 
there is some y such that the advice says ~" is not satisfiable. I 

Proof of Thrnre111 5.3( 6) (PH = BPPNP[ t J ). Zachos [ Zac88] gives a relativizable 
proof that NP s:;: BPP implies PH= BPP. Relativizing to SAT we have .Ef s:;: BPPNP 
implies PH= sppNP. The result follows by applying Theorem 5.3( 5) and ( 2 ). I 

CoROLLAR Y 5 .12. !/' pNP[ 1 l = pNP[zJ and NP does not hal'<! 111l'a.1·ure :em in 
EXP, tlzo1 PH = pNP[ 1 J. 

Proo( Lutz [ Lut97] shows that if NP does not have measure zero m EXP, 
then sppNP = pNP. I 

6. OPEN QUESTIONS 

Theorem 5.3 still leaves may questions open. In particular, we do not know 
whether pNP[ 1 J = pNPE 2 l implies 

I. PH=PNP[l] 

2. I:~=flf 

3. SAT is the union of an NP set and an BPP /1 set 

4. PHs:;: PP, 

even in relativized worlds. 
One might also look at implications of related statements on two queries, such 

as sppNP[2] = sppNP[IJ. 

ACKNOWLEDGMENTS 

We thank Leen Torenvliet. Richard Chang, Dieter van Melkebeek. and St<.'ve Fenner for helpful 
discussions and Richard Beige\ for comments on an earlier draft. 



[ BBF98] 

[ BC97 J 

TWO QUERIES 193 

REFERENCES 

R. Beige!. H. Buhrmun. and L.. Fortnnw, NP might nut be as easy as detecting unique solu

tions. in "Proceedings. 30th ACM Symp<isium on the Theory or Co111puting," pp. 203 208, 

Assoc. Co111put. Mach .. New York. 1998. 

R. Beige\ and R. Chang. Commutative queries. in "Proceedings, 5th Israeli Symposium on 

the Theory of Computing and Systems. 1997," pp. 159 165. lnfim11. Co111p111 .. 1997. to 

appear. 

I BCG +96] N. Bshouty. R. Cleve. R. Gavaldt't, S. Kannan, and C. Tamon. Oracles and queries that are 

sullicient for exact learning . .!. Comp111. Sy.l'tem Sci. 52. No. 3 ( ! 996 ). 421433. 

l BCOLJ3] R. Beige\, R. Chang. and M. Ogihara. A relationship between difference hierarchies and 

relativized pulynomial hierarchies. Math. Sysre111.1· Theory 26 i 1993 ). 293 .1 IO. 

[ Bl)(l88J J. Balc{tzar. J. Diaz. and .1. Gabarrcl, "Structural Complexity I." Springer-Verlag. Ne11 

York. Berlin. 1988. 

[ BDG90 I J. Balc~w1r, J. Diaz. and J. Oabarr6. ''Structural Complexity I I," Springer-Verlag. New 

York Berlin. J 990. 

I Cha97] R. Chang. "Bounded Queries. Approximations and the Boolean Hierarchy," Technical 

Report. TC CS-97-04. Department of Computer Science and Electrical Engineering. 

University of Maryland Baltimore County. 1997. [lnl Co111p111., ttl appear] 

[CK 95 J 

l CK% l 

[ FR94] 

I G.179] 

R. Chang and .I. Kaelin. On computing boolean connectives of characteristic functions, 

Mur!t. Sr.1·1ems Thmry 28 I 1995 ). 173 198. 

R. Chang and J. Kadin. The Boolean hierarchy and the polynomial hierarchy: A closer 

connection. Sl~L'vf J. Compur. 25. No. 2 I 19961. 340 354. 

l.. Fortnow and J. Rogers. Separability and one-way functions, in "Proceedings. 5th Annual 

International Sympnsium on Algorithms and Computation." Lecture Notes in CompLtter 

Science. Vol. 8.'\4, pp. 396--404. Springer-Yerlag. Berlin. 1994. 

M. Garey and D. Johnson. "Computers and Intractability. A Ciuide to the Theory of 

NP-C\>mpkteness," Freeman. New York. 1979. 

[ HHll99a] E. Hemaspaandra, L. H<:maspaandra. and H. Hempel. A downward collapse within the 

polynomial hierarchy. S!AM J. Comr1111. 28, No. 2 ( !999). 383 393. 

[ H HH99b I E. Hcmaspaandra. I.. ffrrnaspaandra, and H. Hempel. Extending downward rnllapse from 

l-\·ersus-2 queries tn j-versus~j + I qu<:ri<:s, in "Proceedings nl' the 16th Symposium on 

Theoretical Aspects of Computer Science ... Lecture Notes in Computer Science. Vol. 1563. 

pp. 270 280, Springer-Verlag. Berlin. I 9lJLJ. 

[HKRLJ3j S. Homer. S. KurtL, and J. Royer. A note on many one and I-truth tahle complete sets. 

Tltcorcr. Co111p11t. Sci. 115, No. 2 I 199-1 J • .183 .1R9. 

[ HU7'1 I J. Hopcrnft and J. Ullman. "Introduction to Automata Theory. Languages and Computa

tion," Addison Wesley. Reading. MA. 1979. 

[ Kad88 I 

[ K l.80] 

I Kresn 

[Lut97] 

[ Rog97] 

J. Kadin. The polynomial time hierarchy collapses if the Buolcan hierarchy collapses. 

SIAM Journal 011 Cu111p111ing 17, No. 6 I 1988 ), 1263-1282. 

R. Karp and R. Lipton. Some connections between nonunii'orm and uniform complexity 

classes. in "Proceedings. 12th ACM Symposium on the theory of Computing." pp . .102-309, 

ACM. New York. 1980. 

M. Krrntel. The complexity of tlptimization problems. Jounwl of' Co111p11tl'I' and Sy.l'rem 

S'cic11ce.1· 36 I 1988 ). 490 509. 

J. Lutz. Observations on measure and lowness for d 5. Tltl!uri· of Co111p111i11g Systems 30, 

No. 4 I 1997 I. 429 442. 

J. Rogcrs. The isomorphism conjecture holds and one-way i'unctions exist relativc to an 

orack. Joumal uj' Complllt't and S~v.l'rm1 Science.I' 53, No . .1 ( 1997 ). 412--423. 



194 

[ T092l 

[ Yap83 J 

[ Zadi8] 

BUHRl\1AN AND FORTNOW 

S. Toda and M. Ogiwara. Counting classes are at least as hard as the polynomial-time 
hierarchy, SIAM .!ouma/ 011 Comp111i11g 12, No. 2 ( 1992). 316 32~. 

C. Yap, Some consequences or nonunifor111 conditions on uniform classes, Theoretical 
Co1J1/lliler Science 26 ( 1983 ). 287 ·-300. 

S. Zachos, Probalistic quantifiers and games, .!ouma! ol Compull'r and Sy.11011 Scimces 36 
I 1988), 4JJ 451. 


