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We consider the question whether two queries SAT are as powerful as one
query. We show that if PNPIH = PNPL2] then: Locally either NP =coNP or
NP has polynomial-size circuits; PNF =PNPUL 50 < [72/1; £0 = UPNFU
RPNFU: PH = BPPNPU Moreover, we extend the work of Hemaspaandra,
Hemaspaandra, and Hempel to show that if P¥3'] = P¥321 then 2= [74.
We also give a relativized world, where PNPUT = PNPR21 byt NP s coNP.
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1. INTRODUCTION

Are two queries to SAT as powerful as one query? This question has a long
history in computational complexity theory. When computing functions, Krentel
[Kre88] showed that if two queries can be simulated by one query to SAT, that
is, FPNPLI = FPNPI2] then P=NP.

When we focus on languages instead of functions life gets more complicated.
Kadin [Kad88] showed that if PNPIHI=PNPL2] then NP < coNP/poly and thus
PH < 2% [ Yap83]. Beigel, Chang, and Ogihara [ BCO93], building on Chang and
Kadin [CK96] improve this to show that every language in the polynomial-time
hierarchy can be solved by an NP query and a 2’7 query.
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One goal might be to show that PNPUI—PNPL2I jpplies NP =coNP.
Hemaspaandra, Hemaspaandra, and Hempel [ HHH99a ] made a step in that direc-
tion. They showed that for k > 2, if P*i!1 = P¥{2] then X7 = /77, We extend their
techniques to show that, if P*¥'1 = P21 then X7 = /72. However. the techniques
cannot be pushed down to k=1. We show a relativized world, where PN =
PNPE1 byt NP 5 coNP. What does happen when PNP(!1 — pNP(2]9

Building on the techniques of the above papers we show several new collapses if
PNPLUT = pNPL2] jncluding:

» Locally either NP =coNP or NP has polynomial-size circuits.
o PNP_ pNP(1]

L)
o PH=BPPNFLI]

2. PRELIMINARIES

We assume the reader is familiar with basic notions of complexity theory as can
be found in many textbooks in the area (such as [GJ79, HU79, BDG88, BDG901).

For a set 4 we will identify 4 with its characteristic function. Hence, for a string
X, A(x)e {0, 1} and A(x)=1iff xe 4.

For languages 4 and B define 4 4B to be the symmetric difference of 4 and B;
i.e., (AN B)u(A4n B). For complexity classes ¢ and 7 define the class € 47 as

{A4B|Ae% and Be /}.

An oracle Turing machine is nonadaptive if it produces a list of all of the queries
it is going to make before it makes the first query. SAT is the set of satisfiable
boolean formulae. For any set 4, P4[%1 is the class of languages that are recognized
by polynomial time Turing machines that access the oracle 4 at most k times on
each input. The class P4l*1 will allow only nonadaptive access to 4. We note that
PNPUIT — pNPL2] jf pNPLI — pNPL2] [CK95], so all our results could be stated
assuming PNPL = pRPLA

If 4 is in P2 then there is a polynomial-time function A(x): Z* — I%* x
{+, —} such that x is in 4 if and only if A(x)=(z, +) and z is in B or Ai(x)=
(z, —) and z is not in B. The string - is the query made by the Turing machine and
the + and — refer whether the machine accepts iff the query is in or rejects iff the
query is in. The machine could ignore the query or not make it at all, in which case
we just use a = known to be in (or out) of B.

UP is the set of languages that are recognized by polynomial-time nondeter-
ministic Turing machines that have at most one accepting path on each input.

We can generalize NP by defining the polynomial-time hierarchy. We define
22 =P and inductively define 27, = NP for i>0. We let 1?7 =coXZ?. In par-
ticular, we have NP =27 and coNP =/7{. Many complexity theorists conjecture
that the polynomial-time hierarchy is infinite; ie., 27, | # 27 for all .
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Let % be a complexity class. We say a set 4 is in %/f(n) if there exists an
arbitrary function /1 such that |i(n)| = f(n) and a set Be% such that ve 4 iff
{x, n(]x])> e B. We say a language 4 is in %/poly if A isin % /p(n) for some polyno-
mial p.

Given a formula ¢ on n variables we define the self-reduction tree of ¢ as follows:
¢ is the root and if the formula ¢'(x,, .., x,,) is a node in the tree then ¢'(x, := true,
Noy ey X,,) and @'y :=false, x,,..,x,) are the two children of ¢'. We say
G'(X1. o Xy,) self-reduces to the formulae ¢'(x, :=true, x,,..,x,) and ¢'(x,:=
false, x5, ... x,,). A formula with no free variables is a leaf in the tree. A node in a
tree is satisfiable if and only if either of its children are satisfiable. One can deter-
mine easily in polynomial whether a leaf is true or false.

3. COLLAPSE IF p¥il'l = pZil2]
Hemaspaandra, Hemaspaandra, and Hempel [HHH99a] exhibited a strong
collapse if PFH!1 = P22 for > 2.

THeorREM 3.1 (Hemaspaandra, Hemaspaandra, and Hempel). For every k> 2,
if PEUI = P2 phop S0 =10,

Extending their techniques we improve their result to k = 2.
THEOREM 3.2, [f PEHN = PEU2 f)hen X0 = [T2.

Proof. For a predicate R()) we use the notation 3"y R(y) to mean
(lyl=m A R(y)) and ¥”y R(y) to mean Vy(|y]=m= R(y)). Since L ANP <
P2%2) Theorem 3.2 follows immediately from the following lemma.

LEmMMA 3.3 If 22 ANP < P¥UY then 32 =112,

Proof.  Fix K a complete set for 4. Given an input x we will give a 24 algo-
rithm for determining that x is not in K. Let 7= |x|. We can assume there exists
a polynomial-time predicate P such that

xeK<e3"yV": P(x, v, 2),

where the quantification is done over strings of length 7.
Define the set D e 25 ANP as

D=KxSATURKXSAT={(x,¢) [(xe K A ¢ ¢SAT) v (x¢ K A pcSAT)!.

By assumption, there exists a polynomial-time computable function h: Z* x 2* —
Z*x{+.,—} such that (x,§)e Diff A(x,¢)=(z, +) and ze K or h(x, ¢)=(z, —)
and z ¢ K.

We give the 24 algorithm for determining that x is not in K in Fig. |. Lemma 3.3
follows from the following claim.
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do,u
3 h(.’l?,¢) = (Z,+) h.(fl},qs) = (Z,—)
¢ € SAT
¢ & SAT Yu
Yo Yo Assuming that for all ¢

v P(z,u,v) P(z,u,v) ¢ € SAT & h(z,9) = (2,—)
use self-reduction to find
v such that =P(z, u, v)

FIG. 1. X% algorithm to determine x¢ K. The 3 and V quantifiers have appropriate polynomial-
length bounds. The X7 algorithm accepts if any column accepts.

Cram 3.4, The algorithm in Fig. 1 accepts exactly when x is not in K.

Proof.  Suppose the algorithm accepts in the rightmost column. For every u we
will have found a counterexample ¢ to P(x, u, v) so x is not in K.

If the first or second column accepts then we have x¢KeeK<
3L Ve P2, v).

Suppose that x is not in K. If the assumption in the rightmost column is true,
then the self-reduction will always find the appropriate .

If the assumption in the rightmost column is wrong then either there is some ¢
such that ¢ eSAT and h(x, ¢)=(z, +) or ¢ ¢SAT and A(x, ¢)=(z, —). Then we
will have either the first or second column accepting, respectively. J

Hemaspaandra, Hemaspaandra, and Hempel [ HHH99a] give a more general
version of Theorem 3.1 for the boolean hierarchy over £ for k > 2. In a later paper,
Hemaspaandra, Hemaspaandra, and Hempel [HHH99b] show that our
Theorem 3.2 similarly extends to the boolean hierarchy over 27.

Beigel and Chang [BC97] use the techniques in the proof of Theorem 3.2 for
some new results on commutative queries.

4. LIMITATIONS OF PNPIU= pNPI2]

We show that Theorem 3.2 cannot carry over for NP with a relativizable proof.

THEOREM 4.1.  There exists a relativized world to which NP % coNP, hyr PNPU
=PNPI2l = PSACE.

We will use UP-generics as developed by Fortnow and Rogers [FR94]. To
create a UP-generic start with an oracle like TQBF that makes P = PSPACE and
add a generic set U restricted to have at most one string at lengths that are towers
of 2 and no strings at any other lengths. So G = TQBF @ U. UP-generics also play
an important role in creating a relativized world where the Berman-Hartmanis
isomorphism conjecture holds and one-way functions exist [ Rog97].

Given an input x a polynomial-time process can only access one interesting string
in U. The others are either too large to be queried or so small that they can be
found quickly. We refer to this interesting string as the “cookie.”

Fortnow and Rogers [ FR94] show that relative to UP-generics G:

1. PY#NPY.
2. PY“=NPYncoNP“.
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Immediately we have the following corollary.

COROLLARY 4.2.  Relative to UP-generics G,
NP¢ # coNPC.

Fix a PSPACES language L accepted by some alternating polynomial-time
Turing machine MS. We now describe the PNPI!) algorithm for L.

Use the P = PSPACE base oracle to determine if x is accepted by M if there is
no cookie. There are two cases:

No. Accept if the following NP question is true (using P=PSPACE base
oracle): Does there exist a cookie such that M (x) accepts?

Yes. Accept if the following NP question is false (using P =PSPACE base
oracle): Does there exist a cookie such that M ©(x) rejects?

In either case we ask as single NP question and accept if and only if M9(x) accepts.
As a bonus we get the following corollary about complete sets for PSPACE.

COROLLARY 4.3.  There exists a relativized world where the 1-tt-complete degree
Jor PSPACE is not the same as the many-one complete degree.

We cannot extend Theorem 4.1 to get NP #coNP and PNFIH =EXP since
Homer, Kurtz, and Royer [HKR93] give a relativizable proof that the 1-tt-com-
plete degree for EXP is the same as the many-one complete degree. In a later
paper, Beigel, Buhrman, and Fortnow [ BBF98] give a relativized world where the
I-tt-complete degree for NP is not the same as the many—one complete degree.

5. CONSEQUENCES OF PNFl= pNP2]

In this section we examine collapses that occur if PNPLN=PNPI2] Kadin

[ Kad88] showed that the polynomial-time hierarchy collapse under this assump-
tion.

THEOREM 5.1 (Kadin). PNPUH = PNPL2L jypjies that NP < coNP/poly.

Yap [Yap83] shows that if NP = coNP/poly then PH = 24, Beigel, Chang, and
Ogihara [ BCO93] building on the work of Chang and Kadin [CK967] improved
the collapse to just above X'3.

THEOREM 5.2 (Beigel, Chang, and Ogihara). [If PNPLY = PNPL2 yhion the polyno-
mial-time hierarchy collupses to 25 ANP.

Building on the work of Kadin [Kad88], Chang and Kadin [CK96], Beigel,
Chang, and Ogihara [ BCO 93], and Hemaspaandra, Hemaspaandra, and Hempel
[HHH99a], we will show several other collapses under this same assumption.

THEOREM 5.3. [f PNFUI = PNPL2] y0p

1. For all A in coNP,A=BuUC, where B is in NP and C is in P/poly.
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Moreover, for every n either
(a) AnX"=BnZX" or
(b) AnZXZt'=Cn2Z"

2. PNP=PpNPIIL
3. remg.

4. rp=ypNell

5. Xf=RPNU,

6. PH=BPPN?I!],

For clarity, we leave off the polynomial-length bounds on the 3 and ¥V quantifiers
in the proofs below.
Define the languages D, E, and F by

D =SAT xSAT USAT x SAT = {(¢, ) | (p € SAT A ¢ SAT)}
U () | (¢ SAT Ay e SAT)!
E=SAT xSAT={($, /) | ¢ ¢SAT A y € SAT}.
F=SATx{+ | USAT x{—} ={(7, +)|1€SAT} U {(r, —) [T ¢ SAT!.

We have D and E in PNPI21= PNPII by assumption. So there exist polynomial-
time computable functions g and /1 that reduce D to F and E to F, respectively.

To help understand our proofs let us review the basic Kadin [ Kad887] technique.
First, let us restrict our attention to formulas of some fixed length. Call a string ¢
casy if there 1s some y such that /1(¢, ) = (1, +) for some satisfiable 7.

They key point to note is that if a formula is easy then it has a short proof of
nonsatisfiability: the formula  and a satisfying assignment for 7. By the definitions
of E and A, if 7 is satisfiable then ¢ must be unsatisfiable and  satisfiable.

If every nonsatisfiable string is easy then every string has a short proof of
satisfiability or nonsatisfiability. Otherwise there must exist some nonsatisfiable
noneasy string. We call such strings hard.

Suppose we had a hard string ¢ and consider i(¢$, ). If  is satisfiable then
I, ) must map to some (7, ) or ¢ would have been easy. Also in this case t
would not be satisfiable. If i is not satisfiable then either (¢, ) maps to a (7, +)
for some nonsatisfiable 7 or would map to a (r, —) with a satisfiable 7. Given ¢
we have a short proof of nonsatisfiability for : ¥ is nonsatisfiable if (1)
I, ) = (7, +) for some 7, or (2) (¢, ) = (7, —) for some satisfiable 7.

Thus, we have that NP is in coNP with advice, the advice being a hard string
or a bit, telling us there are no hard strings.

One simple idea not used by Kadin or the researchers that followed him is that
every nonsatisfiable formula is either easy or hard. We use this idea to give stronger
collapses under the assumption that PNP[21=PNFLL To make full use of this
technique we need to define several kinds of easy and hard strings. Our Easy-I
strings are the same as Kadin’s. Easy-II strings are formulas with short proofs of
nonsatisfiability, based on the self-reducibility of SAT. Easy-1Il are formulas with
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a short proof of nonsatisfiability, given that they failed to be Easy-II. Easy-1V
strings are formulas with a short proof of nonsatisfiability using techniques from
Hemaspaandra, Hemaspaandra, and Hempel [ HHH99a] discussed in Section 3.
DEFINITION 5.4. 1. The formula ¢ is Easy-I if there is a Y such that (¢, ) =
(r, +) and 1 SAT.
2. The formula ¢ is Easy-11 if
(a) ¢ is Easy-I, or
(b) ¢ is a leaf of a self-reduction tree and false, or
(¢) ¢ self-reduces to two Easy-1 formulae.
3. The formula ¢ is Easy-1I1 if
(a) ¢ i1s Easy-ll, or
(b) There exists an Easy-II formula  such that Ay, ¢)=(z, —) and
7eSAT.
4. The formula ¢ is Easy-1V if
(a) ¢ is Easy-III, or
(b) there is a € SAT such that g(¢, ¥) = (1, +) and 7€ SAT, or
(¢) There is an Easy-IlI formula  such that g(¢, )= (7, —) and 7€ SAT.

Nonsatisfiable formulae that are not easy are called hard formulae.

DerINITION 5.5. The formula ¢ is Hard-I, Huard-1l, Hard-111, or Hard-1V if
¢ ¢ SAT and ¢ is not Easy-1, Easy-11, Easy-111, or Easy-1V, respectively.

First we argue that for any 7 in {I, II, III, IV}, every string is exactly one of
Hard-i, Easy-i, or satisfiable.

The Easy-1 and Hard-I strings are basically the Hard and Easy strings used by
Kadin [ Kad88]. By looking at the self-reduction tree we will show that if there is
a Hard-1 string there is a Hard-l string that is Easy-1I. This is a Hard-I string
whose nonsatisfiability is nondeterministically verifiable.

The Easy-111 strings take advantage of this property to that we can use any
Hard-1 Easy-II string to deterministically separate the Hard-III strings from the
satisfiable strings. The Easy-IV definition uses a technique from Hemaspaandra,
Hemaspaandra, and Hempel [HHH99a] to use Hard-IV strings to deterministi-
cally separate the Easy-III strings from the satisfiable strings.

Putting it all together we show that if there are any Hard-IV strings, we will have
polynomial advice separating the nonsatisfiable strings from the satisfiable ones.

The following facts are easily derivable from the above definitions.

Lemma 5.6, 1. The sets Euasy-I, Easy-11, Easy-111, and Easy-1V all sit in NP,
2. The sets Hard-1, Hard-1I, Hard-1I1, and Hard-1V all sit in coNP.
3. Eusy-1< Eusy-11 < Eusy-1II < Easy-1V < SAT.
4. Hard-1V < Hard-111 < Hard-I11 = Hard-1 < SAT.
5. If ¢ is Hard-1 then for all W, is in SAT if 'and only if h(¢p, )= (T, —) with
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If we have a Hard-1V formula ¢, then ¢ gives us a polynomial-time separator
between SAT and the Easy-11I formulae.

LemMmA 5.7, For any Hard-1V formula ¢ we have
1. If Yy eSAT then g(¢p, )= (1, — ) for some t.
2. I iy Easy-1II then g(p, )= (7, + ) for some .

Proof. 1f either of these items were not true we would have ¢ in SAT and, thus,
¢ would be Easy-1V. f{

We also show how to get a separator between SAT and the Hard-III formulae.

LemMAa 5.8, If there is a Hard-1 formula ¢ then there is a Hard-I formula « that
is Eusy-11.

Proof. Consider the self-reduction tree for ¢. All the formulae in the tree are
unsatisfiable. Consider the lowest Hard-I formula « in the tree. Either o is a leaf of
the tree or « self-reduces to two Easy-I formulae. {

We can use the formula x to separate SAT from the Hard-III formulae.
LeMMA 5.9.  For any Hard-I Easy-II formula o we have

1. If e SAT then h(x, )= (1, —) for some .
2. I is Hard-111 then hio, ) = (t, +) for some t.

Proof. If the first case fails, then x is Easy-I. If the second case fails, then y is
Easy-111. §

Now we can put Lemmas 5.7 and 5.9 together.

Proof of Theorem 5.3(1). We need only prove this item for 4 =SAT since SAT
is complete for coNP and has nice padding properties. Let B be the set of Easy-1V
formulae. By Lemma 5.6, B is an NP subset of SAT.

Fix n and suppose there is some ¢ of length # in SAT — B. By definition ¢ is
Hard-1V. By Lemma 5.6, the formula ¢ is also Hard-1, so there is some Hard-l
Easy-II formula « by Lemma 5.8.

Using as advice ¢ and « and a bit indicating whether or not a Hard-1V formula
of length n exists, we define the following P/poly language C on inputs i of length n:

1. If there are no Hard-1V formulae of length n, then reject.

1o

If g(¢, ) =(7, +) for some 7, then accept.
3. If (e, ) =(7, +) for some r, then accept.
4. Otherwise reject.
If  is in SAT then by Lemmas 5.7 and 5.9, both lines 2 and 3 will reject. If ¢

is in SAT then either ¢ is Easy-II1 or Hard-IIL. If  is Easy-III then line 2 will
accept. If ¢ is Hard-1II then line 3 will accept. |

Proof of Theorem 5.3(2) (PNP=PNPUI) - The proof follows from Lemmas 5.10
and 5.11.
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LEMMA 5.10 (Chang and Kadin). [f PNPU = PNPL21 ] pppp PNPULL = pINP.
LEmMMa 5.11.  [f PNPUI = PNPL2I 10y PP = PNP,

Chang and Kadin [CK95] prove Lemma 5.10 by looking at computation trees.
Their proof cannot be used to generalize the result to k versus & +1 queries. We
present different proof using hard and easy strings. Chang [Cha97] uses the ideas
of our proofs of Lemmas 5.10 and 5.11 to extend Theorem 5.3(2) to show PNPI#] =
PNPLE+ 1T implies PNPUAI = PN He then applies these results to approximation
questions of various NP-complete problems.

Proof of Lemma 5.10. Fix an input x to our PN machine M. Let Q be the
polynomial-size set of queries to SAT made by M(x). We will show how to com-
pute PN with two queries to NP, which then by assumption implies that
PNP — PNP[I]

t ‘

For the first query, ask if every member of Q is either satisfiable or Easy-1. If the
answer to the first query is yes then ask if M(x) accepts using “yes” for each
satisfiable element of Q and “no” for each Easy-I element of Q. If the answer to the
first query is “no” then some element of Q is Hard-I. We then ask for our other
query whether the following nondeterministic algorithm accepts:

1. Guess S, a set of satisfiable formulae in Q. Guess satisfying assignments for
each element of S.

2. Guess E, a set of Easy-I elements in Q. Verify that each of the elements of
E is Easy-l.

3. For each ¢ and  in Q—(SUE) check if h(¢d, )= (7, +) for any 7 or
h(¢, W)=z, —) for some 7 in SAT.

4. If all of the above tests pass, then simulate M using “yes” for queries in S
and “no” for queries in Q — S.

If the guesses of S and E were such that they contain all of the SAT and Easy-I
elements of O, respectively, then the remaining formulae are all Hard-1, so the third
test will pass by Lemma 5.6.

We need to show that if S is not Q nSAT then the above algorithm rejects. Let
¢ be a Hard-I element of Q and let  be in Q "SAT —S. We have ¢ and y in
O —(SUE). By Lemma 5.6, h{¢, ) =(1, —) with 1¢SAT, so the third test will
fail. §

Proof of Lemma 5.11.  Let M54 be a PP machine that runs in time #*. Con-
sider the formulae ¢, that for each i, 1 <i<n*, encodes: There exists a computation
path of M(x), where for the first / queries ¢,, ..., ¢;, either ¢, is satisfiable and ¢, is
answered “yes,” or ¢; is Easy-1 and ¢, is answered “no.”

Also consider the formulae ; that for each i, 0 <i< »*, encodes: There exists an
accepting computation path of M(x) such that

I. for the first i/ queries ¢, ..., ¢;, either ¢, is satisfiable and ¢, is answered
yes,” or ¢, is Easy-1 and ¢, is answered “no,” and

w@

2. For each ¢;, j>i. either
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(a) ¢, is answered “yes™ and ¢; is satisfiable,
(b) ¢, is answered “no™ and /i(¢; ., ¢;) = (7, +) for some 7. or

(c) ¢ is answered “no” and /i(¢; .. ¢;) = (1, —) for some 7 in SAT.

We ask all of the ¢, and s, questions to SAT in parallel. Consider the largest i
such that ¢, is satisfiable. If i=n* then MSAT(x) accepts if and only if v, is
satisfiable.

If i <»* then consider an accepting path encoded by a satisfying assignment of
;. The query ¢;,, must be Hard-I or ¢, would be satistiable. By Lemma 5.6, all
the answers to the queries are correct. Again we have that MS4T(x) accepts if and
only if y, is satisfiable. §

Proof of Theorem 5.3(3) (25 = 14/1). Let L be in 2. Express L as
(x| 3y Vs Py, oy, o))

for some polynomial-time predicate P. Fix x and let ¢, encode *3=71P(x, », z).” We
have xe L if and only if there exists a 1 such that ¢ ¢ SAT.

Let 4 =SAT and B and C be as derived in Theorem 5.3(1). Let De P be such
that x is in C iff (x, ay) is in D, where «, is the polynomial advice.

Fix an input x of length n. The one bit of advice is whether case (la) or (1b) of
Theorem 5.3 holds for n. If case (1a) holds, then we have x in L if and only if there
is a y such that ¢, is in B. If case (1b) holds then we have x in L if and only if for
all a, there exists a formula y such that either

o 1 is a leaf of a self-reduction tree and ¢ e SAT iff (, «,) ¢ D, or

o | is not a leaf of a self-reduction tree and ¢ reduces to ¥, and ¥, and
(W, u,)eDiff (Yo, a,)¢D and (Y, a,)¢D, or

o there is a y such that (¢ . a,) ¢ D.

The argument for case (1b) is based on the proof by Karp and Lipton [KL80]
that if NP < P/poly then X =1T%5. One can verify that in each case we get a /7]
expression for L. |

Whether we can eliminate the advice bit remains an interesting open question.

Proof of Theorem 5.3(4) (£4=UPN) Toda and Ogihara [TO92] show
that UPNP = UPNPLUL Hence, we only need to prove that 5= UPNF,

Consider L, P, and the ¢, as in the proof of Theorem 5.3(3). Consider a formula
¥, that encodes “¢, is satisfiable or there is some w < y such that hd,.¢,)=(t. +)
for some 7 or ii(¢$,. ¢,) = (7. —) for some Te SAT.”

Our UP™? machine works as follows:

I.  Query the NP oracle to determine if there are any y such that ¢, is Easy-L
If so, immediately accept.

2. Otherwise. accept if there exists a y such that y, is not satisfiable.
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I the first step does not accept, then all the v, are either satisfiable or Hard-1.
If all of the ¢, are satisfiable, then so are all of the . If there is some w <y such
that ¢,, and ¢, are both Hard-I then by Lemma 5.6, ¥, will be satistiable. If y is the
lexicographically least string such that ¢, is Hard-I then by Lemma 5.6, i/, is not
satisfiable. J

Proof of Theorem 5.3(5) (££=RPNFI) By Theorem 5.3(2) we only need to
prove £{=RP"".

Consider L, P, and the ¢, as in the proof of Theorem 5.3(3). Our RP algorithm
first queries the NP oracle to determine if there are any Easy-IV ¢,. If so, then
immediately accept.

If this fails, then either all of the ¢, are satisfiable or one of them is Hard-IV. If
the second condition holds, then by the proof of Theorem 5.3(1) there exists poly-
nomial-advice for SAT.

Use the algorithm of Bshouty, Cleve, Gavalda, Kannan, and Tamon [ BCG *96]
that randomly using an NP oracle finds the advice for SAT. If it fails to find the
advice for SAT then reject. Otherwise, query the NP oracle again to determine if
there is some y such that the advice says ¢, is not satisfiable. J

Proof of Theorem 5.3(6) (PH =BPPNU!) Zachos [ Zac88] gives a relativizable
proof that NP = BPP implies PH = BPP. Relativizing to SAT we have £2 < BPPN?
implies PH = BPP™. The result follows by applying Theorem 5.3(5) and (2). |

COROLLARY 5.12. [f PNPU =PNPL2L ypd NP does not have measure =ero in
EXP, then PH = PNPU

Proof. Lutz [Lut97] shows that if NP does not have measure zero in EXP,
then BPPNF = PNP

6. OPEN QUESTIONS

Theorem 5.3 still leaves may questions open. In particular, we do not know
whether PNPUT = PNPL2) implies

I. PH=PNFIN

2. Xr=11%
3. SAT is the union of an NP set and an BPP/1 set
4. PH<PP,

even in relativized worlds.
One might also look at implications of related statements on two queries, such

as BPPNFL2I = gppNPl
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