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ABSTRACT. This paper analyzes large deviation probabilities related to the number of cus-
tomers in a Markov modulated infinite-server queue, with state-dependent arrival and ser-
vice rates. Two specific scalings are studied: in the first, just the arrival rates are linearly
scaled by N (for large N ), whereas in the second in addition the Markovian background
process is sped up by a factor N1+ε, for some ε > 0. In both regimes, (transient and sta-
tionary) tail probabilities decay essentially exponentially, where the associated decay rate
corresponds to that of the probability that the sample mean of i.i.d. Poisson random vari-
ables attains an atypical value.
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1. INTRODUCTION

In [1, 4] we have considered the tail asymptotics of the Markov-modulated infinite-server
queue: under two specific scalings large-deviations results were derived for the probabil-
ity that the number of jobs in the system attains a given (atypical) value. In these queueing
systems, both arrival and service processes depend on the state of an external, indepen-
dently evolving finite-state Markov chain, referred to as the modulating process; the feature
that there are infinitely many servers entails that customers are served in parallel.
As remarked in [5], however, such Markov-modulated infinite-server queues come in two
flavors: one in which the service times are sampled upon arrival, and one in which the
departure rate at a given point in time depends on the current state of the modulating
process. Importantly, the large deviations results in [1, 4] relate to the former model; for
the latter model such large deviations asymptotics have not been derived so far, to the best
of our knowledge. The primary objective of this paper is to identify these asymptotics.

The model considered in this paper can be specified in greater detail as follows. Let J(·) be
an irreducible continuous-time Markov chain, on a finite-state space {1, . . . , d}, with tran-
sition rate matrix Q and stationary distribution vector π (where we follow the convention
that vectors are written in bold). When this modulating process, sometimes called the
background process, is in state i, jobs arrive according to a Poisson process with rate λi ≥ 0.

In the context of our previous work [1, 4], the service times were sampled upon arrival: if
the state of J(·) is i when the job arrives, then the service time is sampled from an expo-
nential distribution with mean 1/µi (where it is noticed that the results could be extended
to a setting with general state-dependent distributions). In the present paper, however, we
consider the model in which the hazard rate of leaving the system at a given point in time,
say t, is µi if J(t) = i. In our model there are infinitely-many servers: there is no waiting.
We denote by M(t) the number of customers in the system at time t ≥ 0; we assume the
system being empty at time 0.
The difference between the two models is reflected in a very insightful manner as follows.
It was observed in [6] that in the model of [1, 4] the number of customers in the system at
time t has a Poisson distribution with random parameter

(1)
∫ t

0
λJ(s)e

−µJ(s)(t−s)ds.

This property can be intuitively understood by realizing that e−µi(t−s) can be interpreted
as the probability that a customer arriving at time s ∈ [0, t) while the background process
is in state i, is still present at time t. For the model to be considered in the present paper,
a similar representation is valid: M(t) has again a Poisson distribution, but now with
random parameter

(2)
∫ t

0
λJ(s)e

−
∫ t
s µJ(r)drds.
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Observe how the state-dependent departure rate is incorporated in this expression: now
exp(−

∫ t
s µJ(r)dr) represents the probability that a customer arriving at time s ∈ [0, t) is

still present at time t. As it will turn out, the representation (2) will enable us to derive the
large deviations asymptotics that we are aiming for.

The literature on Markov-modulated infinite-server queues is surprisingly small (com-
pared to the literature on Markov-modulated single-server queues); we mention a num-
ber of key papers here. O’Cinneide and Purdue [10] provide explicit expressions for the
moments of the stationary number of customers, and systems of partial differential equa-
tions for the corresponding transient moments, in the context of the model variant studied
in the present paper (with state-dependent hazard rate, that is). Related results, for a con-
siderably broader class of models, are given in [9]; we also mention [8] for extensions to a
semi-Markovian background process. As mentioned above, [6] presents the useful obser-
vation that M(t) has a Poisson law with a random parameter (that depends on the path of
the background process in [0, t]), as was highlighted in (1) and (2).
In [2, 3] the arrival rates are scaled by N (to become Nλi when J(·) is in state i), while the
background process is sped up by a factorNα. For both model variants introduced above,
central-limit type results are derived. A crucial finding is that results in which the back-
ground process is faster than the arrival process (α > 1, that is) are intrinsically different
from those in which the background process is slower (α < 1). A similar dichotomy ap-
plies in the large-deviations domain for the model in which the service times are sampled
upon arrival, corresponding to representation (1); [4] covers the case of a slowly moving
background process and [1] the case of a fast background process. The results presented
in the present paper show that these qualitative findings carry over to the model variant
in which the departure rates depend on the current state of the background process, that
is, the variant corresponding to representation (2).

The organization and contributions of this paper are as follows.

– In Section 2 we consider the counterpart of [4]: we study the regime in which
only the arrival rates are scaled by a factor N , for N large. It turns out that, with
M (N)(t) the number of customers in the system in the N -scaled model, the tail
probabilities of M (N)(t) decay exponentially, where the corresponding decay rate
is the solution of a specific optimization problem. This optimization problem lends
itself to a non-trivial explicit solution, in terms of a closed-form expression for the
most likely path followed by the background process in order for the number of
customers to reach a high value. Given this explicit result, the large deviations
asymptotics follow from a proof that resembles the one in [4].

– Section 3 addresses the counterpart of [1]: we scale the arrival rates by N , but the
transition rates of the background process by N1+ε for ε > 0. Defining

(3) λ∞ :=
d∑
i=1

πiλi, µ∞ :=
d∑
i=1

πiµi,
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the main intuition is that in this scaling, as N tends to ∞, the arrival process be-
comes essentially Poisson (with rate Nλ∞), while the service times become ex-
ponentially distributed with a uniform service rate (with mean µ−1

∞ ), so that the
system behaves as an M/M/∞ queue with these parameters. This explains why
the large deviations of the (transient and stationary) number of customers in the
system are those of the sample mean of i.i.d. Poisson random variables.

2. SLOW TIMESCALE REGIME

In this section, we consider the regime in which the arrival rates λi, for i = 1, . . . , d are
scaled by N , whereas the generator matrix Q remains unchanged. In Section 2.1 we prove
a number of structural properties related to the maximum (and minimum) value that can
be attained by the random parameter of the Poisson distribution, cf. representation (2).
These results are then used in Section 2.2 when establishing large deviations results.

2.1. Maximum value attained by Poisson parameter. The objective of this section is to
find a path f+(·) for J(s), 0 ≤ s ≤ t that maximizes the (random) parameter of the Poisson
distribution (2). Let Ft denote the class of Borel functions f : [0, t] 7→ {1, . . . , d} and, for a
given f ∈ Ft, denote the Poisson parameter by:

(4) κt(f) :=

∫ t

0
λf(s)e

−
∫ t
s µf(r)drds.

We thus want to solve the following optimization problem:

sup
f∈Ft

κt(f) ≡ κ+
t (P)

and we seek a maximizing path f+ satisfying

κt(f
+) = κ+

t .

As it turns out in Section 2.2, such a path, which will be shown to exist and is Lebesgue
almost-surely unique, plays a crucial role when determining the large deviation asymp-
totics of the number of customers in the system in our N -scaled model. We will also point
out how to identify a path f−(·) that minimizes κt(f).
In preparation to analyzing the optimization problem (P), denote %i := λi/µi. An im-
portant role is played by an index i+ (not necessarily unique) that satisfies %i+ = %+ :=

maxi∈{1,...,d} %i.

Lemma 1. The following claims hold:

1. For every f ∈ Ft,

κt(f) ≤ %+
(

1− e−
∫ t
0 µf(r)dr

)
< %+.

2. For any t ≥ 0,

κ+
t ≥ %+

(
1− e−µi+ t

)
.
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Proof: Claim 1 is an immediate consequence of

κt(f) =

∫ t

0
%f(s)µf(s)e

−
∫ t
s µf(r)drds ≤ %+

∫ t

0
µf(s)e

−
∫ t
s µf(r)drds = %+

(
1− e−

∫ t
0 µf(r)dr

)
whereas Claim 2 follows from considering the constant function f(s) = i+ for s ∈ [0, t], so
that:

κ+
t ≥

∫ t

0
λi+e

−µi+ (t−s)ds = %+
(
1− e−µi+ t

)
.

This proves the claims. 2

In the following, it will prove useful to represent the elements of the set of combinations
of arrival rates and service rates, i.e., {(µi, λi) | i ∈ {1, . . . , d}}, as points in the (µ, λ)-plane.
Also, we define, for any i, j such that µi 6= µj ,

γ(i, j) :=
λi − λj
µi − µj

,

denoting the slope between the points (µi, λi) and (µj , λj) in the (µ, λ)-plane. Now con-
sider the following algorithm in pseudocode to find ρ+, i.e., the maximum slope between
the origin and any (µi, λi).

Algorithm 1. Input: λi, µi, i ∈ {1, . . . , d} -- Output: I0, . . . , Ik and i1, . . . , ik.

0. Set ` := 1, I0 := 0, A0 := {1, . . . , d}, and

i1 := arg min

{
µi : λi = max

j∈A0

λj

}
.

1. Let

A` := {i : I`−1 < γ(i, i`) < %i` and µi < µi`} .

If A` is empty go to step (3), otherwise, go to step (2).

2. Let

I` := min
j∈A`

γ(j, i`), i`+1 := arg min
i∈A`
{µi : γ(i, i`) = I`} .

Set ` := `+ 1 and return to step (1).

3. Set I` := %i` and STOP.

To aid in understanding, see Fig. 1 for an example with d = 7 and k = 2. Note that i1 is the
index of the node with the largest λi and i2 is that of the node with the largest %i (= %+). I0

is the slope zero, I1 is the slope of the segment connecting (µi1 , λi1) and (µi2 , λi2), and I2 =

%+. Note that in this case there are two indices j for which I1 = γ(i1, j), and that i2 is the
one having the smaller value of µj . Also note that there is a point (close to (0,0)) that if we
connect a segment between it and i2 the slope is greater than I1. However, since this slope
is also greater than %i2 = %+, the algorithm stops at ` = 2. The bold segments describe a
concave function, which is the reason why %`, the slopes of the segment connecting (0, 0)

and (µi` , λi`), increases in ` and in particular when the algorithm stops then %i` = %+.
Fig. 2 demonstrates that the maximal value of λi − cµi is given by i1 for I0 < c < I1 and
(µi, λi) ∈ [µi2 , µi1 ]× [λi2 , λi1 ] and by i2 for I1 < c < I2 and (µi, λi) ∈ [0, µi2 ]× [0, λi2 ].
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µi

λi

i1

%i2(= %+)

%i1

i2

I2

I0 = 0

I1

Fig. 1: Example with d = 7 and k = 2.

µi

λi

i1

i2

I1<c<I2

I0<c<I1

Fig. 2: Maximal value of λi − cµi.

Algorithm 1 is one possible organized method of finding a minimal nonnegative, nonde-
creasing, concave function g such that that g(µi) ≥ λi for all i ∈ {1, . . . , d}. This function is
unique (the infimum of concave functions is concave); i1, . . . , ik are the indices for which
g(µi) = λi, that is, the indices of the extreme points of the hypograph.
For any 0 < v < ∞ there is some supergradient c(v) ∈ [0, ρ+], such that for each 0 ≤ u <

∞, g(u)− g(v) ≤ c(v)(u− v), that is, g(u)− c(v)u ≤ g(v)− c(v)v. In particular, if we take
v = µi` , then g(v) = λi` and a supergradient is any c ∈ [I`−1, I`] which gives for each i,

(5) λi − cµi ≤ g(µi)− cµi ≤ g(µi`)− cµi` = λi` − cµi` .

We thus have the following lemma.

Lemma 2. The output of Algorithm 1 is a sequence of different states i1, . . . , ik and values 0 =

I0 < . . . < Ik = %+ such that for every 0 ≤ c < %+ we have that

(6) max
i∈{1,...,d}

(λi − cµi) =
k∑
`=1

(λi` − cµi`) 1[I`−1,I`)(c) .

In an identical manner, for the purpose of minimization (rather than maximization), we
need to find the maximal nondecreasing convex function h such that h(µi) ≤ λi for each i
with maximal subgradient %− = mini∈{1,...,d} %i. In the maximizing case, the restriction on
the maximal subgradient was automatically satisfied by the assumption that the function
must be nonnegative and thus g(0) = 0, which implies that the maximal supergradient is
%+ (the slope of the segment that connects (0, 0) with (µik , λik)).

Algorithm 2. Input: λi, µi, i ∈ {1, . . . , d} -- Output: I0, . . . , Ik and i1, . . . , ik.

0. Set ` := 1, I0 := 0, A0 := {1, . . . , d}, and

i1 := arg max

{
µi : λi = min

j∈A0

λj

}
.
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µi

λi

%i2(= %−)

I1
i1

i2

I0

I2

Fig. 3: Example with d = 7 and k = 2.

µi

λi

i1

i2

I1<c<I2

I0<c<I1

Fig. 4: Minimal value of λi − cµi.

1. Let

A` := {i : I`−1 < γ(i, i`) < %i` and µi > µi`} .
If A` is empty go to step (3), otherwise, go to step (2).

2. Let

I` := min
j∈A`

γ(j, i`), i`+1 := arg max
i∈A`
{µi : γ(i, i`) = I`} .

Set ` := `+ 1 and return to step (1).

3. Set I` := %i` and STOP.

The corresponding figures are Figs. 3 and 4. Therefore, we also have the following lemma.

Lemma 3. The output of Algorithm 2 is a sequence of different states i1, . . . , ik and values 0 =

I0 < . . . < Ik = %− such that for every 0 ≤ c < %− we have that

(7) min
i∈{1,...,d}

(λi − cµi) =

k∑
`=1

(λi` − cµi`) 1[I`−1,I`)(c) .

We are now ready to state the main result of this subsection, presenting the maximizing
path explicitly; later we also point out how the corresponding minimizing path can be con-
structed. We first introduce some notation. Let the sequence i1, . . . , ik be as in Lemma 2.
Let the time epochs t+0 , . . . , t

+
k−1 be defined recursively through t+0 := 0, t+k := ∞ and, for

` ∈ {1, . . . , k − 1},

(8) t+` := t+`−1 +
1

µi`
log

%i` − I`−1

%i` − I`
;

Also, set f+(s) = i` for s ∈ [t+`−1, t
+
` ) and ` ∈ {1, . . . , k}.

Theorem 1. f+ is optimal for (P) for each t ≥ 0. If t+`−1 ≤ t < t+` then the optimal value is given
by

(9) κ+
t = κt(f

+) = I`−1e
−µi` (t−t

+
`−1) + %i`

(
1− e−µi` (t−t

+
`−1)
)
.
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Proof: We observe that

(10) κt(f) =

∫ t

0
(λf(s) − µf(s)κs(f))ds,

since the derivatives of the integral above and (4) are equal and κt(0) = 0. Thus (P) is
equivalent to an optimal control problem (P′) of the form

maximize x(t)

subject to: x′(s) = λf(s) − µf(s)x(s), s ∈ [0, t],

x(0) = 0,

f ∈ Ft.

(P′)

The Hamiltonian — as used in optimal control theory — for (P′) isH(x, p, f) = p(λf−µfx)

where p(s) = e−
∫ t
s µf(r) dr is the unique solution of

p′(s) = −∂xH(x, p, f) = µf(s)p(s)

and p(t) = 1. As p is positive, f+ maximizesH(x, p, f) if and only if it maximizes λf−µfx.
As a consequence, the Pontryagin maximum principle hints at the guess that an optimal
solution should satisfy for each s ∈ [0, t]:

λf+(s) − µf+(s)κ
+
s = max

i∈{1,...,d}
(λi − µiκ+

s ).

Assuming that this is the correct guess, and recalling that i+ = arg max %i, we have that

max
i∈{1,...,d}

(λi − µiκ+
s ) ≥ λi+ − µi+κ+

s = µi+(%+ − κ+
s ) > 0

and it follows by combining part 1 of Lemma 1 with Eqn. (10) that κ+
s is strictly increasing,

continuous, with κ+
0 = 0 and κ+

s → %+ as s→∞.
By Lemma 2, for every ` ∈ {1, . . . , k} and s such that I`−1 ≤ κ+

s < I`, we have that

arg max
i∈{1,...,d}

(λi − κ+
s µi) = i`,

and in order to describe the optimal control and the value of κ+
t (the optimal value of

κt(f)), for each t ≥ 0, it remains to find t+0 < . . . < t+k such that I`−1 ≤ κ+
s < I` if and only

if t+`−1 ≤ s < t+` . For this purpose it is straightforward to show that

(11) I` = I`−1e
−µi` (t

+
` −t

+
`−1) + %i`

(
1− e−µi` (t

+
` −t

+
`−1)
)

and some simple manipulations result in (8). In particular, for ` = k the equality in (11)
can be achieved only with t+k =∞. For I`−1 ≤ t < I`, replacing I` on the left by κ+

t and t+`
on the right by t, results in (9).
To complete the proof, we need to show that our guess is indeed the correct one. If not,
then there would be some choice of f ∈ Ft such that κt(f) > κ+

t . Note that both κ+
t

and κt(f) are (absolutely) continuous functions of t, and satisfy κ+
0 = κ0(f) = 0. Now

introduce τt(f) := sup{s : s ≤ t, κ+
s = κs(f)}. By continuity it follows that κ+

τt(f) =
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κτt(f)(f), with τt(f) < t, and in addition that κ+
s < κs(f) for each τt(f) < s ≤ t. Hence,

for any τt(f) < s ≤ t,

λf(s) − µf(s)κs(f) ≤ max
i∈{1,...,d}

(λi − µiκs(f)) < max
i∈{1,...,d}

(λi − µiκ+
s ) = λf+(s) − µf+(s)κ

+
s

which implies that

κt(f)− κτt(f)(f) =

∫ t

τt(f)
(λf(s) − µf(s)κs(f))ds

<

∫ t

τt(f)

(
λf+(s) − µf+(s)κ

+
s

)
ds = κ+

t − κ
+
τt(f),

and since κτt(f)(f) = κ+
τt(f) we have that κt(f) < κ+

t , a contradiction. Thus, κt(f) ≤ κ+
t =

κt(f
+) for every f ∈ Ft (and every t ≥ 0), and conclude that f+ is indeed optimal. 2

The corresponding minimization (rather than maximization) problem can be dealt with
analogously. In Thm. 1 we should now take the sequence i1, . . . , ik as in Lemma 3 (that
is, the output of Algorithm 2). Let f− be a minimizing path, which is, like f+, Lebesgue
almost-surely unique.

2.2. Large deviations results. We have already noticed that M (N)(t) has a Poisson distri-
bution with (random) parameter Nκ(J), with J ≡ (J(s))s∈[0,t] the path of the background
process. Below we identify two numbers a+ and a− such that for all a < a+ (a > a−) the
exponential decay rate of the above transient overflow (underflow) probability equals 0;
the striking feature, however, is that a+ is strictly larger than a−. To keep the notation trans-
parent, we suppress the dependence on t of functions and variables. Let P (N)(f) denote a
Poisson random variable with mean Nκ(f), and let Ft be as defined before. Combining
the above, we can write, in self-evident notation,

P
(
M (N)(t) > Na

)
=

∫
f∈Ft

P
(
P (N)(f) > Na

)
P(J(·) ∈ df(·)).

Define
d(f) := a− κ(f)− a log

a

κ(f)
.

For f+ and f−, the following lemma is an immediate consequence of Thm. 1 and its min-
imization counterpart.

Lemma 4. Both f+(·) and f−(·) are piecewise constant functions, taking values in {1, . . . , d},
that jump at most d− 1 times in [0, t].

We now state and prove the main result of this subsection.

Theorem 2. For a ≥ a+ := κ(f+),

lim
N→∞

1

N
logP

(
M (N)(t) > Na

)
= d(f+).

For a ≤ a− := κ(f−),

lim
N→∞

1

N
logP

(
M (N)(t) < Na

)
= d(f−).
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Proof: Although the proof is similar to that of [4, Thm. 1], we include it here for the sake
of completeness and readability. We focus in the proof on the case that a ≥ a+; the case
a ≤ a− works analogously.

� We start by proving the lower bound. Recall that the jump epochs in [0, t] correspond-
ing to f+, resulting from Lemma 4, are denoted by t+1 , . . . , t

+
k , with k < d. Introduce

the following set of functions that are ‘close to’ f+ (i.e., equal to f+, apart from ‘small’
intervals around the t+j , j = 1, . . . , k):

Ft,δ :=

f ∈ Ft : f(s) = f+(s) for all s ∈ [0, t] \
k⋃
j=1

(t+j − δ, t
+
j + δ)

 ;

choose δ > 0 sufficiently small that the intervals (t+j − δ, t
+
j + δ) do not overlap nor cover

times 0 and t. Consider the following obvious lower bound:

P
(
M (N)(t) > Na

)
≥
(

min
f∈Ft,δ

P
(
P (N)(f) > Na

))
P(J(·) ∈ Ft,δ).

Now it is realized that P(J(·) ∈ Ft,δ) is strictly positive (where it is used that J(·) is an
irreducible Markov chain on a finite state space), and in addition independent of N . This
entails that

lim inf
N→∞

1

N
logP

(
M (N)(t) > Na

)
≥ lim inf

N→∞

1

N
log

(
min
f∈Ft,δ

P
(
P (N)(f) > Na

))
.

Then observe that , due to Stirling’s factorial approximation, if a ≥ κ(f), for any ε > 0 and
N large enough,

P
(
P (N)(f) ≥ Na

)
=

∑
k≥Na

e−Nκ(f) (Nκ(f))k

k!

≥ e−Nκ(f) (Nκ(f))dNae

dNae!
≥ eNd(f) 1− ε√

2πNa
.

Choose an arbitrary f ∈ Ft,δ. Then define λ+ := maxi λi, and µ+ := maxi µi. Using the
triangle inequality, it is immediate that |κ(f)− κ(f+) | is majorized by∣∣∣∣∫ t

0
λf(s)e

−
∫ t
s µf(r)drds−

∫ t

0
λf(s)e

−
∫ t
s µf+(r)drds

∣∣∣∣
+

∣∣∣∣∫ t

0
λf(s)e

−
∫ t
s µf+(r)drds−

∫ t

0
λf+(s)e

−
∫ t
s µf+(r)drds

∣∣∣∣ .
It is readily seen that the latter of these two terms is majorized by, using the definition of
the set Ft,δ,∫ t

0

∣∣λf(s) − λf+(s)

∣∣ e− ∫ t
s µf+(r)drds ≤

∫ t

0

∣∣λf(s) − λf+(s)

∣∣ ds ≤ 2λ+δk.

Now focus on the former term. First observe that, for all s ∈ [0, t],∣∣∣∣∫ t

s
(µf(r) − µf+(r)) dr

∣∣∣∣ ≤ 2µ+δk,
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so that the term can be bounded by∫ t

0
λf(s)e

−
∫ t
s µf(r)dr

∣∣∣ 1− e− ∫ t
s (µf+(r)−µf(r))dr

∣∣∣ ds ≤ tλ+ max
{

1− e−2µ+δk, e2µ+δk − 1
}
.

We conclude that |κ(f)− κ(f+) | goes to 0 as δ ↓ 0. As a consequence, also | d(f)− d(f+) |
vanishes as δ ↓ 0. From this, we conclude that for a ≥ κ(f+),

lim inf
N→∞

1

N
logP

(
M (N)(t) > Na

)
≥ d(f+).

� The corresponding upper bound is less involved; the proof is identical to the one of [4,
Thm. 1]. Note that if a > a+, then for all f ∈ Ft we have that EP (N)(f) is smaller than or
equal to Na. Evidently,

P
(
M (N)(t) > Na

)
≤ max

f∈Ft

P
(
P (N)(f) > Na

)
.

Based on the Chernoff bound [7], we have

P
(
P (N)(f) > Na

)
≤ eNd(f).

Combining the above inequalities, we obtain

lim sup
N→∞

1

N
logP

(
M (N)(t) > Na

)
≤ max

f∈Ft

d(f).

As κ(f+) maximizes κ(f), and d(f) is increasing in κ(f) (for κ(f) ≤ a), we conclude that

lim sup
N→∞

1

N
logP

(
M (N)(t) > Na

)
≤ d(f+).

This proves the upper bound. 2

Recall that %− := mini∈{1,...,d} %i, where i− is such that %i− = %−. Then the following result,
featuring the large deviations of the steady-state M (N) of M (N)(t), follows from a small
modification in the proof of Thm. 2, fully analogously to [4, Prop. 1].

Corollary 1. For a ≥ a+ := %+,

lim
N→∞

1

N
logP

(
M (N) > Na

)
= a− %+ − a log

a

%+
.

For a ≤ a− := %−,

lim
N→∞

1

N
logP

(
M (N) < Na

)
= a− %− − a log

a

%−
.

Example 1. Consider, with d = 2, the scenario λ1 = 2, µ1 = 3, λ2 = µ2 = 1; as a conse-
quence %1 = 2

3 and %2 = 1, such that i+ = 2. It is readily verified that k = 2 (such that
i1 = 1 and i2 = 2), whereas I1 = 1

2 and I2 = 1.

Using Thm. 1, we find that the ‘maximizing path’ f+ is in state 1 until t+1 , and state 2

thereafter, where t+1 is given by

t+1 =
1

3
log

(
2
3 − 0
2
3 −

1
2

)
=

2

3
log 2.
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As a consequence,

C+(t) = κ(f+) =


2

3
(1− e−3t), t ∈ [0, t+1 ),

1

2
e−(t−t+1 ) + (1− e−(t−t+1 )), t ∈ [t+1 ,∞);

the expression for t ≥ t+1 simplifies to 1 − 1
2

3
√

4 e−t. Observe that, in agreement with our
results, C+(t) ↑ %i+ = %2 as t→∞. It is easily verified that C+(t) is continuous in t = t+1 .

The corresponding ‘minimizing path’ can be found analogously; it turns out that f− is in
state 2 until time log 2, and in state 1 thereafter. It requires some elementary algebra to
find that

C−(t) := κ(f−) =


1− e−t, t ∈ [0, log 2),

2

3
− 4

3
e−3t, t ∈ [log 2,∞);

observe that C−(t) ↑ %1 as t→∞, as expected.
The corresponding large deviations now immediately follow from Thm. 2. ♦

3. FAST TIMESCALE REGIME

In this section, the process M (N)(t) results from scaling λ, as before, by a factor N , but
now also the background process J is sped up. The crucial idea is that J is scaled by a
factorN1+ε, for some ε > 0, and hence jumps at a faster time scale than the arrival process.
The key finding of this section is that in this regime, as N tends to∞, the tail asymptotics
of M (N)(t) increasingly behave as those of an M/M/∞ queue with arrival rate Nλ∞ and
service rate µ∞, where the definitions on λ∞ and µ∞ are given in (3). The results and the
proofs in this section are similar as in [1], except of course for the approximation of the
Poisson parameter of the scaled background process.
We denote the N -scaled background process by (J (N1+ε)(t))t∈R. Let L(N1+ε)(t1, t2) be the
empirical distribution of the background process in [t1, t2) (with t1 < t2); its i-th com-
ponent is the fraction of time spent in state i, for i = 1, . . . , d (where obviously the d
components are non-negative and sum to 1), that is

L
(N1+ε)
i (t1, t2) :=

1

t2 − t1

∫ t2

t1

1{J (N1+ε)(s) = i} ds.

By L(t1, t2) we denote the counterpart of L(N1+ε)(t1, t2) for the non-scaled background
process, where we recall the useful distributional identity:

L(N1+ε)(t1, t2)
d
= L(N1+εt1, N

1+εt2).

It is well known that the following law of large numbers applies: for any S ⊂ Rd+ such
that π is contained in the interior of S , it holds that P(L(0, t) ∈ S ) → 1 as t → ∞. It
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is also a standard result (see e.g. [7, Thm. 3.1.6]) that L(0, t) satisfies a large deviations
principle with rate function

(12) I(x) := sup
u>0

(
−

d∑
i=1

xi log

∑d
j=1 qijuj

ui

)
;

this function is positive except when x = π. Under mild regularity conditions imposed
on the set S , this large deviations principle means that

lim
t→∞

1

t
logP(L(0, t) ∈ S ) = − inf

x∈S
I(x).

Considering the case that S does not contain π, then the immediate consequence of this
result is that the probability P(L(0, t) ∈ S ) decays essentially exponentially.
In the sequel, we use the notation

(13) %(t) :=
λ∞
µ∞

(1− e−µ∞t).

As in the previous section, we wish to characterize the probability that M (N)(t) exceeds
Na, given that the system starts off empty. It is known that N−1M (N)(t) → %(t), a.s.
for N → ∞; see [2, Lemma 3]. In this paper, we are concerned with the rare event that
the number of jobs exceeds a level Na, with a ≥ %(t). The following theorem states that
the corresponding large deviations are those of Poisson random variables with parameter
%(t).

Theorem 3. For a ≥ %(t),

lim
N→∞

1

N
logP

(
M (N)(t) ≥ Na

)
= −%(t) + a+ a log

%(t)

a
.

Proof: Our starting point is again

P
(
M (N)(t) ≥ Na

)
= P

(
P (N)

(
κ
(
J (N1+ε)

))
≥ Na

)
.

For δ > 0, we define ∆(π) as a hypercube (of ‘radius’ δ) around π:

∆(π) := (π1 − δ, π1 + δ)× · · · × (πd − δ, πd + δ).

Also introduce, for ζ > 0, the event

Eδ(ζ,N) :=

{
L(N1+ε)

(
0,

t

N ζ

)
∈ ∆(π), . . . ,L(N1+ε)

(
dN ζe − 1

N ζ
t, t

)
∈ ∆(π)

}
.

Lower bound. Intersecting the event of our interest with a second event evidently leads to
a lower bound. Following this idea, we determine the decay rate of the obvious lower
bound

P
({

P (N)
(
κ
(
J (N1+ε)

))
≥ Na

}
∩ Eδ

(
1

2
, N

))
.

The idea behind considering this intersection, is that we focus on the scenario that the
empirical distribution of the background process is during [0, t] in ∆(π), and hence sys-
tematically close to π.
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To this end, first realize that, for any ξ ∈ (0, 1) and N sufficiently large, by virtue of the
law of large numbers for the empirical distribution of the background process, see e.g. [7,
Thm. 3.1.6]:

P
(

Eδ

(
1

2
, N

))
≥
d
√
Ne∏

i=1

min
ji∈{1,...,d}

P
(
L
(

0, tN
1
2

+ε
)
∈ ∆(π)

∣∣∣ J(0) = ji

)
≥ (1− ξ)d

√
Ne.

It is a direct consequence that

lim inf
N→∞

1

N
logP

(
Eδ

(
1

2
, N

))
= 0.

We are thus left with determining a lower bound on the decay rate

lim inf
N→∞

1

N
logP

(
P (N)

(
κ
(
J (N1+ε)

))
≥ Na

∣∣∣Eδ (1

2
, N

))
.

Now the crucial observation is that the Poisson random variable is stochastically increas-
ing in its parameter. As a result, we need to find a lower bound on Nκ(J (N1+ε)), condi-
tional on the event Eδ(

1
2 , N). By picking in every segment and for every state (a) a lower

bound on the state probability (still in ∆(π)), as well as (b) the lower bound on the Poisson
rate in this segment, it is readily verified that the following (deterministic!) lower bound
applies:

(14) %N (t) := t
√
N

d∑
j=1

b
√
Nc∑

i=1

(πj − δ)λj exp

− t√
N

d∑
`=1

d
√
Ne∑

k=b1+(s/t)
√
Nc

(π` + δ)µ`

 .

We thus obtain the lower bound

P
(
P (N)

(
κ
(
J (N1+ε)

))
≥ Na

∣∣∣Eδ (1

2
, N

))
≥ e−%N (t) (%N (t))dNae

dNae!
.

Applying Stirling’s factorial approximation, this leads to

lim inf
N→∞

1

N
log

(
e−%N (t) (%N (t))dNae

dNae!

)
≥ lim inf

N→∞

1

N

(
−%N (t) +Na+Na log

%N (t)

Na

)
.

Define λ̄ :=
∑d

i=1 λi, and µ̄ :=
∑d

i=1 µi. From the expression for %N (t) in (14), and realizing
that (recognize a Riemann integral!)

t√
N

d∑
`=1

d
√
Ne∑

k=b1+(s/t)
√
Nc

(π` + δ)µ` → (t− s)(µ∞ + δµ̄),

it is observed that, as N →∞,

%N (t)

N
→
∫ t

0
(λ∞ − δλ̄)e−(t−s)(µ∞+δµ̄)ds =

λ∞ − δλ̄
µ∞ + δµ̄

(
1− e−t(µ∞+δµ̄)

)
=: %(δ)(t).

It follows that

lim inf
N→∞

1

N
logP

(
P (N)

(
κ
(
J (N1+ε)

))
≥ Na

∣∣∣Eδ (1

2
, N

))
≥ −%(δ)(t) + a+ a log

%(δ)(t)

a
.

The claimed lower bound follows by letting δ ↓ 0.
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Upper bound. Again, we focus on scenarios in which the empirical distribution is consis-
tently close to π. To this end, we consider the obvious upper bound

P
({
P (N)

(
κ
(
J (N1+ε)

))
≥ Na

}
∩ Eδ

(ε
2
, N
))

+ P
(
Eδ
(ε

2
, N
)c )

.

Due to the union bound,

P
(
Eδ
(ε

2
, N
)c )

≤ dN ε/2e
(

max
j∈{1,...,d}

P
(
L
(

0, tN1+ ε
2

)
6∈ ∆(π)

∣∣∣ J(0) = j
))

.

Standard large deviations results imply that

lim
N→∞

1

N1+ ε
2

logP
(
L
(

0, tN1+ ε
2

)
6∈ ∆(π)

∣∣∣ J(0) = j
)

= − inf
x/∈∆(π)

I(x) < 0,

and hence

lim sup
N→∞

1

N
logP

(
Eδ
(ε

2
, N
)c )

= −∞.

Using [7, Lemma 1.2.15], it now suffices to prove that

lim sup
N→∞

1

N
logP

(
P (N)

(
κ
(
J (N1+ε)

))
≥ Na

∣∣∣Eδ (ε
2
, N
))
≤ −%̄(δ)(t) + a+ a log

%̄(δ)(t)

a
,

with %̄(δ)(t) such that %̄(δ)(t)→ %(t) as δ ↓ 0. The remainder of the proof settles this issue.
To this end, we determine a (deterministic!) upper bound, conditional on Eδ(

ε
2 , N), on the

random variable Nκ(J (N1+ε)). Using a similar reasoning as in (14), it is readily verified
that the following upper bound applies:

%̄N (t) := tN1− ε
2

d∑
j=1

dN
ε
2 e∑

i=1

(πj + δ)λj exp

− t

N
ε
2

d∑
`=1

bN
ε
2 c∑

k=d1+(s/t)N
ε
2 e

(π` − δ)µ`

 .

Chebycheff’s inequality on the cumulant generating function of Poisson random variables
[7, p. 30] gives

lim sup
N→∞

1

N
logP

(
P (N)

(
κ
(
J (N1+ε)

))
≥ Na

∣∣∣Eδ (ε
2
, N
))

≤ lim sup
N→∞

1

N

(
−%̄N (t) +Na+Na log

%̄N (t)

Na

)
.

Pick δ sufficiently small that µ∞ > δµ̄. Combining the above findings, leads to the desired
upper bound, realizing that, using the same reasoning as in the lower bound,

%̄N (t)

N
→ %̄(δ)(t) :=

λ∞ + δλ̄

µ∞ − δµ̄

(
1− e−t(µ∞−δµ̄)

)
as N →∞; the claim follows immediately from %̄(δ)(t)→ %(t) as δ ↓ 0. 2

The following corollary follows from the the Gärtner-Ellis theorem, in conjunction with
the duality between the cumulant function and the Legendre-Fenchel transform.
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Corollary 2. The limiting cumulant function of M (N)(t) corresponds to that of a Poisson random
variable:

lim
N→∞

1

N
logE exp

(
ϑM (N)(t)

)
= %(t)(eϑ − 1).

The above result directly carries over to the steady-state counterpart M (N) of M (N)(t).
To this end, we define % := limt→∞ %(t) = λ∞/µ∞, and realize that M (N) has a Poisson
distribution with mean

N

∫ 0

−∞
λJ(s)e

−
∫ 0
s µJ(r)drds;

see e.g. [6]. Then the proof of the corollary below is essentially the same as the one for the
transient case.

Corollary 3. For a ≥ %,

lim
N→∞

1

N
logP

(
M (N) ≥ Na

)
= −%+ a+ a log

%

a
.

In addition, N−1 logE exp
(
ϑM (N)

)
→ %(eϑ − 1) as N →∞.
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