
LDBC Graphalytics: A Benchmark for LargeScale Graph
Analysis on Parallel and Distributed Platforms

Alexandru Iosup△ Tim Hegeman△ Wing Lung Ngai△ Stijn Heldens△ Arnau Prat Pérez2

Thomas Manhardt3 Hassan Chafi3 Mihai Capotă⊙ Narayanan Sundaram⊙

Michael Anderson⊙ Ilie Gabriel TănaseΨ Yinglong Xia⊗ Lifeng Nai⊕ Peter Boncz∇

3Oracle Labs ⊙Intel Labs ΨIBM Research ⊗Huawei Research America
△Delft University of Technology 2UPC Barcelona ⊕Georgia Tech ∇CWI Amsterdam

ABSTRACT
In this paper we introduce LDBC Graphalytics, a new in-
dustrial-grade benchmark for graph analysis platforms. It
consists of six deterministic algorithms, standard datasets,
synthetic dataset generators, and reference output, that en-
able the objective comparison of graph analysis platforms.
Its test harness produces deep metrics that quantify multiple
kinds of system scalability, such as horizontal/vertical and
weak/strong, and of robustness, such as failures and perfor-
mance variability. The benchmark comes with open-source
software for generating data and monitoring performance.
We describe and analyze six implementations of the bench-
mark (three from the community, three from the industry),
providing insights into the strengths and weaknesses of the
platforms. Key to our contribution, vendors perform the
tuning and benchmarking of their platforms.

1. INTRODUCTION
Responding to increasingly larger and more diverse graphs,

and the need to analyze them, both industry and academia
are developing and tuning graph analysis software platforms.
Already tens of such platforms exist, among them Power-
Graph [17], GraphX [39], and PGX.D [23], but their perfor-
mance is often difficult to compare. Moreover, the random,
skewed, and correlated access patterns of graph analysis,
caused by the complex interaction between input datasets
and applications processing them, expose new bottlenecks
on the hardware level, as hinted at by the large differences
between Top500 and Graph500 rankings. Addressing the
need for fair, comprehensive, standardized comparison of
graph analysis platforms, in this work we propose the LDBC
Graphalytics benchmark.
The Linked Data Benchmark Council (ldbcouncil.org,

LDBC), is an industry council formed to establish standard
benchmark specifications, practices and results for graph
data management systems. Its goal is to inform IT profes-

sionals on the properties of the various solutions available
on the market; to stimulate academic research in graph data
storage, indexing, and analysis; and to accelerate the matur-
ing process of the graph data management space as a whole.
LDBC organizes a Technical User Community (TUC) that
gathers benchmark input and feedback, and as such has
investigated graph data management use cases across the
fields of marketing, sales, telecommunication, production,
publishing, law enforcement and bio-informatics. LDBC
previously introduced the Social Network Benchmark [13]
(SNB), which models a large social network but targets
database systems (graph, SQL or SPARQL) that provide
interactive updates and query answers. However, the LDBC
scope goes beyond such database workloads: it also includes
graph analysis frameworks that facilitate complex and holis-
tic graph computations which may not be easily modeled as
database queries, but rather as (iterative) graph algorithms,
such as global metrics (e.g., diameter, triangle count) or
clustering. Algorithmically analyzing large graphs is an im-
portant class of problems in “Big Data” processing, with ap-
plications such as the analysis of human behavior and pref-
erences in social networks, root cause analysis in large-scale
computer and telecommunication networks, and interactions
between biological compounds and genetic structures.

In this paper, LDBC introduces Graphalytics, a bench-
mark for evaluating graph analysis platforms, that builds on
the data generators from LDBC SNB and Graph500, mak-
ing the following original contributions:

1. The first industrial-grade graph analysis benchmark spec-
ification. We carefully motivate the choice of algo-
rithms in the benchmark, using the LDBC TUC and
literature surveys to ensure good coverage of scenarios.
Graphalytics consists of six core algorithms: breadth-
first search, PageRank, weakly connected components,
community detection using label propagation, local
clustering coefficient, and single-source shortest paths.
The workload includes real and synthetic datasets, which
are classified into intuitive “T-shirt” sizes (e.g., XS, S,
M, L, XL). The benchmarking process is made future-
proof, through a renewal process.

2. A detailed process for running the benchmark. Our
test harness characterizes performance and scalability
with deep metrics (vertical vs. horizontal and strong
vs. weak scaling), and also characterizes robustness by
measuring SLA compliance, performance variability,
and crash points.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301647733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3. A comprehensive tool-set developed using modern soft-
ware engineering practices released as open-source bench-
marking software, including a harness capable of sup-
porting many types of target-systems, the scalable LDBC
social-network generator Datagen, and the versatile
Granula performance evaluation tool.

4. An extensive experimental evaluation of six state-of-
the-art graph analysis systems: three community-driven
(Giraph, GraphX, and PowerGraph) and three industry-
driven (PGX.D, GraphMat, and OpenG). Benchmark-
ing and tuning of the industry-driven systems in our
evaluation has been performed by their respective ven-
dors.

We describe the first three contributions, which combine
the conceptual and technical specification of Graphalytics,
in Section 2. The experimental evaluation is split among
Section 3, which introduces the tested platforms and the
benchmarking hardware, and Section 4, which presents and
analyzes the real-world benchmarking results. We cover re-
lated work in Section 5, before concluding in Section 6.

2. Graphalytics
Graphalytics tests a graph analysis framework, consist-

ing of a software platform and underlying hardware system.
Graphalytics models holistic graph analysis workloads, such
as computing global statistics and clustering, which run on
the entire dataset on behalf of a single user.

2.1 Requirements
A benchmark is always the result of a number of design

choices, responding to a set of requirements. In this sec-
tion we discuss the main requirements addressed by LDBC
Graphalytics:

(R1) Target platforms and systems: benchmarks must
support any graph analysis platform operating on any hard-
ware system. For platforms, we do not distinguished be-
tween programming model and support different models, in-
cluding vertex-centric, gather-apply-scatter, and sparse ma-
trix operations. For systems, we target the following envi-
ronments: distributed systems, multi-core single-node sys-
tems, many-core GPU systems, hybrid CPU-GPU systems,
and distributed hybrid systems. Without R1, a benchmark
could not service the diverse industrial following of LDBC.

(R2) Diverse, representative benchmark elements:
data model and workload selection must be representative
and have good coverage of real-world practice. In particu-
lar, the workload selection must not only include datasets
or algorithms because experts believe they cover known sys-
tem bottlenecks (e.g., they can stress real-world systems),
but also because they can be shown to be representative
of the current and near-future practice. Without represen-
tativeness, a benchmark could bias work on platforms and
systems towards goals that are simply not useful for improv-
ing current practice. Without coverage, a benchmark could
push the LDBC community into pursuing cases that are
currently interesting for the industry, but not address what
could become impassable bottlenecks in the near-future.

(R3) Diverse, representative process: the set of exper-
iments conducted by the benchmark automatically must be
broad, covering the main bottlenecks of the target systems.

In particular, the target systems are known to raise various
scalability issues, and also, because of deployment in real-
world clusters, be prone to various kinds of failures, exhibit
performance variability, and overall have various robustness
problems. The process must also include possibility to vali-
date the algorithm output, thus making sure the processing
is done correctly. Without R3, a benchmark could test very
few of the diverse capabilities of the target platforms and
systems, and benchmarking results could not be trusted.

(R4) Include a renewal process: unlike many other
benchmarks, benchmarks in this area must include a re-
newal process, that is, not only a mechanism to scale up
or otherwise change the workload to keep up with increas-
ingly more powerful systems (e.g., the scale parameters of
Graph500), but also a process to automatically configure
the mechanism, and a way to characterize the reasonable
characteristics of the workload for an average platform run-
ning on an average system. Without R4, a benchmark could
become less relevant for the systems of the future.

(R5) Modern software engineering: benchmarks must
include a modern software architecture and run a modern
software-engineering process. They must make it possible
to support R1, provide easy ways to add new platforms
and systems to test, and allow practitioners to easily access
the benchmark and compare their platforms and systems
against those of others. Without R5, a benchmark could
easily become unmaintainable or unusable.

2.2 Specification of Benchmark Elements
Addressing requirement R2, the key benchmarking ele-

ments in Graphalytics are the data model, the workload se-
lection process, and the resulting algorithms and datasets.

2.2.1 Data Model
The Graphalytics benchmark uses a typical data model

for graphs; a graph consists of a collection of vertices, each
identified by a unique integer, and a collection of edges, each
consisting of a pair of vertex identifiers. Graphalytics sup-
ports both directed and undirected graphs. Edges in directed
graphs are identified by an ordered pair (i.e., the source and
destination of the edge). Edges in undirected graphs consist
of unordered pairs. Every edge must be unique and connect
two distinct vertices. Optionally, vertices and edges have
properties, such as timestamps, labels, or weights.

To accommodate requirement R2, Graphalytics does not
impose any requirement on the semantics of graphs. That
is, any dataset that can be represented as a graph can be
used in the Graphalytics benchmark if it is representative of
real-world graph-analysis workloads.

2.2.2 TwoStage Workload Selection Process
To achieve both workload representativeness and work-

load coverage, we used a two-stage selection process to se-
lect the workload for Graphalytics. The first stage identifies
classes of algorithms and datasets that are representative for
real-world usage of graph analysis platforms. In the second
stage, algorithms and datasets are selected from the most
common classes such that the resulting selection is diverse,
i.e., the algorithms cover a variety of computation and com-
munication patterns, and the datasets cover a range of sizes
and a variety of graph characteristics.

2

Table 1: Results of surveys of graph algorithms.
Graph Class (selected candidates) # %

Unweighted Statistics (PR, LCC) 24 17.0%
Traversal (BFS) 69 48.9%
Components (WCC, CDLP) 20 14.2%
Graph Evolution 6 4.2%
Other 22 15.6%

Weighted Distances/Paths (SSSP) 17 34%
Clustering 7 14%
Partitioning 5 10%
Routing 5 10%
Other 16 32%

Table 2: Mapping of dataset scale ranges to labels
(“T-shirt sizes”) in Graphalytics.
Scale < 7 [7, 7.5) [7.5, 8) [8, 8.5) [8.5, 9) [9, 9.5) ≥ 9.5
Label 2XS XS S M L XL 2XL

2.2.3 Selected Algorithms
Addressing R1, according to which Graphalytics should

allow different platforms to compete, the definition of the
algorithms of Graphalytics is abstract. For each algorithm,
we define its processing task and provide a reference imple-
mentation and reference output. Correctness of a platform
implementation is defined as output equivalence to the pro-
vided reference implementation.
To select algorithms which cover real-world workloads for

graph analysis platform, we have conducted two compre-
hensive surveys of graph analysis articles published in ten
representative conferences on databases, high-performance
computing, and distributed systems (e.g., VLDB, SIGMOD,
SC, PPoPP). The first survey (conducted for our previous
paper [20]) focused only on unweighted graphs and resulted
in 124 articles. The second survey (conducted for this paper)
focused only on weighted graphs and resulted in 44 articles.
Table 1 summarizes the results from these surveys. Because
one article may contain multiple algorithms, the number of
algorithms exceeds the number of articles. In general, we
found that a large variety of graph analysis algorithms are
used in practice. We have categorized these algorithms into
several classes, based on their functionality, and quantified
their presence in literature.
Based on the results of these surveys, with expert advice

from LDBC TUC we have selected the following five core
algorithm for unweighted graphs, and a single core algorithm
for weighted graphs, which we consider to be representative
for graph analysis in general:

Breadth-first search (BFS): For every vertex, determines
the minimum number of hops required to reach the vertex
from a given source vertex.

PageRank (PR) [32]: Measures the rank (“popularity”) of
each vertex by propagating influence between vertices using
edges.

Weakly connected components (WCC): Determines
the weakly connected component each vertex belongs to.

Community detection using label propagation (CDLP):
Finds “communities” in the graph, i.e., non-overlapping densely
connected clusters that are weakly connected to each other.
We select for community detection the label propagation
algorithm [34], modified slightly to be both parallel and de-
terministic [24].

Table 3: Real-world datasets used by Graphalytics.
ID Name |V | |E| Scale Domain
R1(2XS) wiki-talk [26] 2.39M 5.02M 6.9 Knowledge
R2(XS) kgs [26] 0.83M 17.9M 7.3 Gaming
R3(XS) cit-patents [26] 3.77M 16.5M 7.3 Knowledge
R4(S) dota-league [18] 0.61M 50.9M 7.7 Gaming
R5(XL) com-friendster [26] 65.6M 1.81B 9.3 Social
R6(XL) twitter mpi [9] 52.6M 1.97B 9.3 Social

Table 4: Synthetic datasets used by Graphalytics.
ID Name |V | |E| Scale
D100(M) datagen-100 1.67M 102M 8.0
D100’(M) datagen-100-cc0.05 1.67M 103M 8.0
D100”(M) datagen-100-cc0.15 1.67M 103M 8.0
D300(L) datagen-300 4.35M 304M 8.5
D1000(XL) datagen-1000 12.8M 1.01B 9.0
G22(S) graph500-22 2.40M 64.2M 7.8
G23(M) graph500-23 4.61M 129M 8.1
G24(M) graph500-24 8.87M 260M 8.4
G25(L) graph500-25 17.1M 524M 8.7
G26(XL) graph500-26 32.8M 1.05B 9.0

Local clustering coefficient (LCC): Computes the de-
gree of clustering for each vertex, i.e., the ratio between the
number of triangles a vertex closes with its neighbors to the
maximum number of triangles it could close.

Single-source shortest paths (SSSP): Determines the
length of the shortest paths from a given source vertex to
all other vertices in graphs with double-precision floating-
point weights.

2.2.4 Selected Datasets
Graphalytics uses both graphs from real-world applica-

tions and synthetic graphs which are generated using data
generators. Table 3 summarizes the six real-world graphs in-
cluded in Graphalytics. By including real-world graphs from
a variety of domains, Graphalytics covers users from differ-
ent communities. Our two-stage selection process led to the
inclusion of graphs from the knowledge, gaming, and social
network domains. Within the selected domains, graphs were
chosen to span a variety of sizes and densities.

The real-world graphs in Graphalytics are complemented
by two synthetic dataset generators, to enable performance
comparison between different graph scales. The synthetic
dataset generators are selected to cover two commonly used
graphs: power-law graphs generated by Graph500, and so-
cial network graphs generated using LDBC Datagen (see
Section 2.5.1). The graphs generated for the experiments
are listed in Table 4.

To facilitate performance comparisons across datasets, we
define the scale of a graph in Graphalytics as a function
of the number of vertices (|V |) and the number of edges
(|E|) in a graph: s(V,E) = log10(|V |+ |E|), rounded to one
decimal place. To give its users an intuition of what the scale
of a graph means in practice, Graphalytics groups dataset
scales into classes. We group scales in classes spanning 0.5
scale units, e.g., graphs in scale from 7.0 to 7.5 belong to
the same class. The classes are labelled according to the
familiar system of “T-shirt sizes”: small (S), medium (M),
and large (L), with extra (X) prepended to indicate smaller
and larger classes to make extremes such as 2XS and 3XL
possible.

The reference point is class L, which is intuitively defined
by the Graphalytics team to be the largest class such that

3

the BFS algorithm completes within an hour on any graph
from that class in the Graphalytics benchmark using a state-
of-the-art graph analysis platform on a single common-off-
the-shelf machine. The resulting classes used by Graphalyt-
ics are summarized in Table 2.

2.3 Process
Addressing R3, the goal of the Graphalytics benchmark

is to objectively compare different graph analysis platforms,
facilitating the process of finding their strengths and weak-
nesses, and understanding how the performance of a plat-
form is affected by aspects such as dataset, algorithm, and
environment. To achieve this, the benchmark consists of
a number of different experiments. In this section, we in-
troduce these experiments, which we detail and conduct in
Section 4.
The baseline experiments measure how well a platform

performs for different workloads on a single machine. The
core metric for measuring the performance of platforms is
run-time. Graphalytics breaks down the total run-time into
several components:

• Upload time: Time required to preprocess and con-
vert the graph into a suitable format for a platform.

• Makespan: Time required to execute an algorithm,
from the start of a job until termination.

• Processing time (Tproc): Time required to execute
an actual algorithm as reported by the Graphalytics
performance monitoring tool, Granula (Section 2.5.2).
This does not include platform-specific overhead, such
as allocating resources, loading the graph from the file
system, or graph partitioning.

In our experiments we focus on Tproc as a primary indica-
tion of the performance of a platform. We complement this
metric with two user-level throughput metrics:

• Edges per second (EPS): Number of edges in a
graph divided by Tproc in seconds. EPS is used in
other benchmarks, such as Graph500.

• Edges and vertices per second (EVPS): Num-
ber of edges plus number of vertices (i.e., 10scale, see
Section 2.2.4), divided by Tproc in seconds. EVPS is
closely related to the scale of a graph, as defined by
Graphalytics.

To investigate how well a platform performs when scal-
ing the amount of available resources, the size of the input,
or both, Graphalytics includes scalability experiments. We
distinguish between two orthogonal types of scalability: strong
vs. weak scalability, and horizontal vs. vertical scalability.
The first category determines whether the size of the dataset
is increased when increasing the amount of resources. For
strong scaling, the dataset is kept constant, whereas for
weak scaling, the dataset is scaled. The second category
determine how the amount of resources is increased. For
horizontal scaling, resources are added as additional com-
puting machines, whereas for vertical scaling the added
resources are cores within a single machine. Graphalytics
expresses scalability using a single metric:

• Speedup: The ratio between Tproc for scaled and
baseline resources. We define the baseline for each
platform and workload as the minimum amount of re-
sources needed by the platform to successfully com-
plete the workload.

Finally, Graphalytics assesses the robustness of graph
analysis platforms using two metrics:

• Stress-test limit: The scale and label of the small-
est dataset defined by Graphalytics that the system
cannot process.

• Performance variability: The coefficient of varia-
tion (CV) of the processing time, i.e., the ratio be-
tween the standard deviation and the mean of the re-
peatedly measured performance. The main advantage
of this metric is its independence of the scale of the
results.

For all experiments, Graphalytics defines a service-level
agreement (SLA): generate the output for a given algorithm
and dataset with a makespan of up to 1 hour. A job breaks
this SLA, and thus does not complete successfully, if its
makespan exceeds 1 hour or if it crashes (e.g., due to insuf-
ficient resources).

2.4 Renewal Process
Addressing requirement R4, include in Graphalytics a re-

newal process which leads to a new version of the benchmark
every two years. This renewal process updates the workload
of the benchmark to keep it relevant for increasingly pow-
erful systems and developments in the graph analysis com-
munity. This results in a benchmark which is future-proof.
Renewing the benchmark means renewing the algorithms as
well as the datasets. For every new version of Graphalytics,
we follow the same two-stage workload selection process as
presented in Section 2.2.2.

The algorithms of Graphalytics have been selected based
on their representativeness. However, over time, graph algo-
rithms might lose or gain popularity in the community. For
example, community detection is an active field of graph
research nowadays, even though our label propagation al-
gorithm [34] was only introduced less than a decade ago.
To ensure that algorithms stay relevant, for every version of
the benchmark, we will select a new set of core algorithms
using the same process as presented in Section 2.2.3. We
will perform a new comprehensive survey on graph analy-
sis in practice to determine new algorithm classes and se-
lect new algorithms from these classes using expert advice
from LDBC TUC. If a new algorithm is found to be relevant
which was not part of the set of core algorithms, it will be
added. If an older core algorithm is found to be no longer
relevant, it is marked as obsolete and will be removed from
the specification in the next version.

The datasets of Graphalytics have been selected based on
their variety in size, domain, and characteristics. Using the
same process as described for algorithms, the Graphalyt-
ics team will introduce additional real-world datasets and
synthetic dataset generators as they become relevant to the
community. In addition, with every new version of the spec-
ification the notion of a ”large” graph is reevaluated. In
particular, class L is redefined as the largest class of graphs
such that at a state-of-the-art platform can complete the
BFS algorithm within one hour on all graphs in class L us-
ing a single common-off-the-shelf machine. The selection of
platforms used to determine class L is limited to platforms
implementing Graphalytics that are available to the Graph-
alytics team when the new specification is formalized.

2.5 Design of the Graphalytics Architecture
The Graphalytics architecture, depicted in Figure 1, con-

sists of a number of components, including the system under
test and the testing system.

4

Benchmark
Description

Core
Harness
Services

Monitoring&
Loggging
Granula

Testing System
Results

Database

Driver
(/platform)

1

Results
Analysis&
Modeling

Public
Results

5

89

10

1112

Graphalytics
Team

System
Customer/

DevOp
Results

Validation

Workload Data Driver Code

Workload Generator

Public
Workload
Archives

Granula

Graph500Datagen

IaaS Cloud

Own
Infrastructure

System Under Test
4

Graph-
Processing

Platform3
Policy

Delft Stanford

Public
Driver
RepositoriesDelftGitHub

6 7

Reference
Drivers

Benchmark
Config.

2

Figure 1: Graphalytics architecture, overview.

As input for the benchmark, the Graphalytics team pro-
vides a benchmark description (1). This description includes
definitions of the algorithms, the datasets, and the algo-
rithm parameters for each graph (e.g., the root for BFS or
number of iterations for PR). In addition, the system cus-
tomer, developer, or operator can configure the benchmark
(2). The benchmark user may select a subset of the Grapha-
lytics workload to run, or they may tune components of the
system under test for a particular execution of the bench-
mark.
The workload of Graphalytics is executed on a specific

graph analysis platform (3), as provided by the user. This
platform is deployed on user-provided infrastructure, e.g.,
on machines in a self-owned cluster or on virtual machines
leased from IaaS clouds. The graph analysis platform and
the infrastructure it runs on form the system under test (4).
The graph analysis platform may optionally include policies
to automatically tune the system under test for different
parts of the benchmark workload.
At the core of the testing system are the Graphalytics

harness services (5). The harness processes the benchmark
description and configuration, and orchestrates the bench-
marking process. Two components of the workload, datasets
(6) and algorithm implementations (i.e., driver code (10)),
must be provided by the benchmark user. Datasets can
be obtained through public workload archives, or generated
using a workload generator, such as LDBC Datagen. Ref-
erence drivers can be provided by platform vendors or ob-
tained from public repository. The Graphalytics team also
offers the drivers for an number of platforms (7).
The platform-specific driver (10) integrates with the Graph-

alytics harness, through a well-defined API, and with the
graph analysis platform. The driver is instructed by the har-
ness to upload graphs to the system under test (this may in-
clude pre-processing to transform the provided dataset into
a format compatible with the target platform), to execute
an algorithm with a specific set of parameters on an up-
loaded graph, and to return the output of an algorithm to
the harness for validation.
The final component of the testing system is responsible

for monitoring and logging (8) the system under test, and
storing the obtained information in a results database (9).
Raw monitoring information is gathered using Granula (see
Section 2.5.2), and can be analyzed offline to extract rich
information about the performance of the system under test,
or to validate results produced by the platform (11). Finally,
validated results are stored in an online repository to track

Figure 2: Datagen graphs with a target average clus-
tering coefficient of 0.05 (l) and 0.3 (r). Communi-
ties (colors) detected using the Louvain algorithm.

benchmark results across platforms.
To address the requirement for modern software engineer-

ing practices (R5), all components of the Graphalytics archi-
tecture provided by the Graphalytics team are developed on-
line as open source software. To maintain the quality of the
Graphalytics software, continuous integration is used and
contributions are peer-reviewed by the Graphalytics main-
tainers. Through its development process, Graphalytics also
invites collaboration with platform vendors, as evidenced by
the contributions already made to Graphalytics drivers.

2.5.1 LDBC Datagen: Graph Generation
Graphalytics relies not only on real but also on synthet-

ically generated graphs. Synthetic graph generators pro-
vide a means of testing data configurations not always avail-
able in the form of real datasets (e.g., due to privacy con-
cerns). Thus, Graphalytics adopts the LDBC Social Net-
work Benchmark Data generator (Datagen) [13]1, a scalable,
synthetic social network generator, whose output preserves
many realistic graph features: correlated data (i.e., persons
with similar characteristics are more likely to be connected),
skewed degree distribution (it generates a Facebook-like friend-
ship distribution), non-uniform activity volume, etc. How-
ever, the static nature of Datagen did not allow for the gen-
eration of graphs with different degree distributions or struc-
tural characteristics. Thus, as envisioned previously [8], we
have extended for this work Datagen to generate graphs with
these characteristics. Moreover, we have optimized the crit-
ical execution path of Datagen, to improve its performance
and scalability. We summarize this two-fold contribution as
follows:

Tunable Clustering Coefficient: Besides supporting dif-
ferent degree distributions [8], we now also allow changing
the friendship generation algorithm. With the goal of gener-
ating realistic yet diverse graphs, we have implemented an
edge generator which allows tuning the average clustering
coefficient of the resulting friendship graph. The method
relies on constructing a graph with a core-periphery com-
munity structure. Such communities are ubiquitous in so-
cial networks and their presence is strongly related to other
real-world graph properties, such as a small diameter and
a large connected component. Figure 2 shows two small
graphs generated with Datagen, with two different target
average clustering coefficients of 0.05 (left) and 0.3 (right).
Both graphs exhibit a community structure (shown in dif-
ferent colors, detected by the Louvain method), but we see
that the right one is clearly better defined than the one in
the left, a consequence of the larger average clustering coef-
ficient.

1Available at github.com/ldbc/ldbc snb datagen

5

step0 step1 step2

step0 merge

old:

new:

step1 step2

time

Figure 3: Datagen: old vs new execution flow.

Datagen generates friendships between persons falling in
the same block. For details on how blocks are constructed
please refer to LDBC SNB [13]. Given a block of persons
and their expected degree, the new goal set for this work is to
build communities including these persons, while maintain-
ing the correlated nature of the produced graph (consecutive
persons in a block must have a larger probability to connect)
and achieving a given average clustering coefficient.

Optimization of execution flow: Figure 3 shows the old
versus the new execution flow implemented for the Person-
Person graph generation in Datagen. In the old flow, the
output produced by step i (Persons and all edges generated
in steps from 0 to i) is read by i + 1, which sorts it by
the corresponding correlation dimension and produces new
edges. Thus, the cost of running a step grows as more edges
are produced in previous steps, because more data needs to
be sorted. This is exemplified in the figure with the lengths
of the steps. This design guarantees that no duplicate edges
are generated. In the new flow, each edge generation step
is independent of the rest, and its output is written into
a different file. Later, all files are merged to remove the
duplicates. This approach is more efficient because the cost
of executing a step remains constant, as does the amount of
I/O required for the sorting. As we will see in Section 4.8,
the performance improvements are significant.

2.5.2 Granula: Finegrained Evaluation
Performance evaluation is a critical part in developing a

graph analysis platform, as it helps developers gain a better
understanding of the platform’s performance. However, the
comprehensive evaluation of graph-analysis platforms still
faces many challenges: using a coarse-grained “black-box”
approach does not provide sufficient insight into the plat-
form performance; using a fine-grained approach is too time-
consuming and requires in-depth knowledge of the platform
architecture; and finally it is difficult for users to apply the
results of empirical performance studies for their specific use
cases.
To extend Graphalytics with fine-grained performance eval-

uation, we developed Granula [31]2, a performance evalua-
tion framework consisting of three main modules: the mod-
eler, the archiver, and the visualizer.

Modeler: Fine-grained evaluation of graph-analysis plat-
forms requires domain-specific expertise and can be time-
consuming. The Granula modeler allows experts to explic-
itly define once their evaluation method for a graph analysis
platform, such that the evaluation process can be fully au-
tomated. This includes defining phases in the execution of a
job (e.g., graph loading), and recursively defining phases as a
collection of smaller, lower-level phases (e.g., graph loading
includes reading and partitioning), up to the required level
of granularity. The performance model may also include
other information, such as the number of vertices processed
in a phase.

2Available at github.com/tudelft-atlarge/granula

Archiver: TheGranula archiver uses the performance model
of a graph analysis platform to collect and archive detailed
performance information for a job running on the platform.
Such information is either gathered from log files produced
by the platform, or derived using rules defined in the perfor-
mance model. The archiver produces a performance archive
which encapsulates the comprehensive set of performance
information captured for each job. The archive is complete
(i.e., all observed and derived results are included), descrip-
tive (i.e., all results are described to non-experts) and exam-
inable (i.e., all results are derived from a traceable source).

Visualizer: While a performance archive is sufficiently in-
formative, it is not the most natural way of examining per-
formance results. The Granula visualizer presents the per-
formance archive in a human-readable manner and allows
efficient navigation through the performance results at vary-
ing levels of granularity using an interactive Web interface.
Results presented using the Granula visualizer can be eas-
ily communicated and shared among performance analysts
with different levels of expertise.

In this work, we use Granula to build comprehensive perfor-
mance models for several graph processing platforms, e.g.,
Apache Giraph (see detailed analysis in our technical re-
port [24]). And for each platform, we have developed a basic
performance model which allow us to define, capture, and re-
port fine-grained performance breakdown metrics, e.g., pro-
cessing time (See Section 2.3).

3. EXPERIMENTAL SETUP
A major contribution of this work is the evaluation and

comparison of graph analysis platforms whose development
is industry-driven, and of other, community-driven, plat-
forms. In this section, we present the setup of our experi-
ments.

3.1 Selected Platforms
We evaluate and compare in this work six different graph

analysis platforms, three community-driven (C) and three
industry-driven (I), see Table 5. These platforms are based
on six different programming models, spanning an important
design space for real-world graph analysis.

The platforms can be categorized into two classes: dis-
tributed (D) and non-distributed (S) platforms. Dis-
tributed platforms use when analyzing graphs multiple ma-
chines connected using a network, whereas non-distributed
platforms can only use a single machine. Distributed sys-
tems suffer from a performance penalty because of network
communication, but can scale to handle graphs that do not
fit into the memory of a single machine. Non-distributed
systems cannot scale as well because of the limited amount
of resources of a single machine.

Table 5: Selected graph analysis platforms.
Acronyms: C, community-driven; I, industry-
driven; D, distributed; S, non-distributed.
Type Name Vendor Lang. Model Vers.

C, D Giraph [28] Apache Java Pregel 1.1.0
C, D GraphX [39] Apache Scala Spark 1.6.0
C, D PowerGraph [17] CMU C++ GAS 2.2
I, S/D GraphMat [37, 4] Intel C++ SpMV Feb ’16
I, S OpenG [30] G.Tech C++ Native code Feb ’16
I, D PGX.D [23] Oracle C++ Push-pull Feb ’16

6

Table 6: Experiments used for benchmarks.
Category Sec. Experiment Algorithms Datasets #nodes #threads Metric

Baseline 4.1 Dataset variety BFS, PR All, up to L 1 - Tproc, E(V)PS
4.2 Algorithm variety All R4(S), D300(L) 1 - Tproc

Scalability 4.3 Vertical BFS, PR D300(L) 1 1-32 Tproc, S
4.4 Strong/Horizontal BFS, PR D1000(XL) 1-16 - Tproc, S
4.5 Weak/Horizontal BFS, PR G22(S)-26(XL) 1-16 - Tproc, S

Robustness 4.6 Stress test BFS All 1 - SLA
4.7 Variability BFS D300(M), D1000(L) 1, 16 - CV

Self-Test 4.8 Data Generation - - - - Tgen

Table 7: Hardware specifications.
Component Name

CPU 2 × Intel Xeon E5-2630 @ 2.40 GHz
Cores 16 (32 threads with Hyper-

Threading)
Memory 64 GiB
Disk 2 × 4 TB
Network 1 Gbit/s Ethernet, FDR InfiniBand

Apache Giraph [28] uses an iterative vertex-centric pro-
gramming model similarly to Google’s Pregel. Giraph is
open source and built on top of Apache Hadoop’s MapRe-
duce.

Apache GraphX [39] is an extension of Apache Spark, a
general platform for big data processing. GraphX extends
Spark with graphs based on Spark’s Resilient Distributed
Datasets (RDDs).

PowerGraph [17], developed by Carnegie Mellon Univer-
sity, is designed for real-world graphs which have a skewed
power-law degree distribution. PowerGraph uses a program-
ming model known as Gather-Apply-Scatter (GAS).

GraphMat [37, 4], developed by Intel, maps Pregel-like
vertex programs to high-performance sparse matrix opera-
tions, a well-developed area of HPC. GraphMat supports
two different backends which need to be selected manu-
ally: a single-machine shared-memory backend [37] and a
distributed MPI-based backend [4].

OpenG [30] consists of handwritten implementations for
many graph algorithms. OpenG is used by GraphBIG, a
benchmarking effort initiated by Georgia Tech and inspired
by IBM System G.

PGX.D [23], developed by Oracle, enables vertices to “pull”
(read) data from neighbors, as opposed to conventional graph
analysis systems which only allow vertices to “push” (write)
data. Additionally, PGX.D uses a fast cooperative context-
switching mechanism and focuses on low-overhead, bandwidth-
efficient network communication.

3.2 Environment
Experiments have been performed on the DAS-5 [1] (Dis-

tributed ASCII Supercomputer), consisting of 6 clusters with
over 200 dual 8-core compute nodes. DAS-5 is funded by a
number of organizations and universities from the Nether-
lands and is actively used as a tool for computer science
research in the Netherlands. We use individual clusters for
the experiments and we test all platforms on the same hard-
ware. The hardware specifications of the machines in the
clusters are listed in Table 7.

4. EXPERIMENTAL RESULTS
Graphalytics conducts automatically the complex set of

experiments summarized in Table 6. The experiments are
divided into four categories: baseline, scalability, and
robustness (all introduced in Section 2.3); and self-test.
Each category consists of a number of experiments, for which
Table 6 lists the parameters used for the benchmarks (algo-
rithm, dataset, number of machines, and number of threads)
and the metrics used to quantify the results.

4.1 Dataset Variety
For this experiment, Graphalytics reports the processing

time of all platforms executing BFS and PageRank on a
variety of datasets using a single node. Key findings:

• GraphMat and PGX.D significantly outperform their
competitors in most cases.

• PowerGraph and OpenG are roughly an order of mag-
nitude slower than the fastest platforms.

• Giraph and GraphX are consistently two orders of
magnitude slower than the fastest platforms.

• Across datasets, all platforms show significant variabil-
ity in performance normalized by input size.

The workload consists of two selected algorithms and all
datasets up to class L. We present the processing time (Tproc)
in Figure 4, and the processed edges per second (EPS) and
processed edges plus vertices per second (EVPS) in Figure 5.
The vertical axis in both figures lists datasets, ordered by
scale (results for missing datasets are available in our tech-
nical report [24]).

Figure 4 depicts the processing time of BFS and PageR-
ank for all platforms on a variety of datasets. For both algo-
rithms, GraphMat and PGX.D are consistently fast. Giraph
and GraphX are the slowest platforms and both are two or-
ders of magnitude slower than GraphMat and PGX.D for
most datasets. Finally, OpenG and PowerGraph are gen-
erally slower than both PGX.D and GraphMat, but still
significantly faster than Giraph and GraphX. A notable ex-
ception is OpenG’s performance for BFS on dataset R2(XS).
The BFS on this graph covers approximately 10% of the
vertices in the graph, so OpenG’s queue-based BFS imple-
mentation results in a large performance gain over platforms
that process all vertices using an iterative algorithm.

To better understand the sensitivity of the tested plat-
forms to the datasets, we present normalized processing
times for the BFS algorithm in Figure 5. The left and right
subfigures depict EPS and EVPS, respectively. Ideally, a
platform’s performance should be directly related to the size
of the graph, thus the normalized performance should be
close to constant. As evident from the figure, all platforms
show signs of dataset sensitivity, as EPS and EVPS vary
between datasets.

7

Processing time (s)

D300(L)

G23(M)

R4(S)

R3(XS)

R2(XS)

R1(2XS)

10ms 100ms 1s 30s 2m

10-2 10-1 100 101 102

BFS

10ms 100ms 1s 30s 2m

10-2 10-1 100 101 102

PR

Giraph
GraphX
P'Graph

G'Mat(S)
OpenG
PGX.D

Figure 4: Dataset variety: Tproc for BFS and PR.

Besides Tproc, it is also interesting to look at the makespan
(i.e., time spent on the complete job for one algorithm). This
includes platform-specific overhead such as resource alloca-
tion and graph loading. Table 8 lists the makespan, Tproc,
and their ratio. The percentages show that the overhead
varies widely for the different platforms and is between 66%
and 99.8% of the makespan. However, we note that the plat-
forms have not been tuned to minimize this overhead and in
many cases it could be significantly reduced by optimizing
the configuration.

4.2 Algorithm Variety
The second set of baseline experiments focuses on the

algorithm variety in the Graphalytics benchmark, and on
how the performance gap between platforms varies between
workloads. Note that all algorithms are implemented for
all platforms, with the exception of LCC for PGX.D. Key
findings:

• Relative performance between platforms is similar for
BFS, WCC, PR, and SSSP.

• LCC is significantly more demanding than the other
algorithms, only OpenG and PowerGraph complete it
without breaking the SLA.

• PGX.D’s performance on WCC degrades on a graph
with a large number of components.

• OpenG performs best on CDLP, whereas GraphX is
unable to complete CDLP. Other platforms perform
similarly on CDLP.

Figure 6 depicts Tproc for the core algorithms in Grapha-
lytics on two graphs with edge weights: R4(S), the largest
real-world graph in Graphalytics with edge-weights; and
D300(L). BFS, WCC, PR, and SSSP all show similar results.
PGX.D and GraphMat are the fastest platforms. GraphMat

Table 8: Tproc and makespan for BFS on DG300(L).
Time Giraph GraphX P’Graph G’Mat(S) OpenG PGX.D

Makespan 276.6 s 298.3 s 214.7 s 22.8 s 5.4 s 268.7 s
Tproc 22.3 s 101.5 s 2.1 s 0.3 s 1.8 s 0.5 s

Ratio 8.1% 34.0% 0.9% 1.4% 33.3% 0.2%

BFS

D300(L)

G23(M)

R4(S)

R3(XS)

R2(XS)

R1(2XS)

1k 1m

100 101 102 103 104 105 106 107

Edges per second

1k 1m

100 101 102 103 104 105 106 107

Edges and vertices per second

Giraph
GraphX
P'Graph

G'Mat(S)
OpenG
PGX.D

Figure 5: Dataset variety: EPS and EVPS for BFS.

can run either the S or D backend, but does not select so au-
tonomously; SSSP is not supported in S, so we use D only
for this algorithm. Giraph, GraphX and PowerGraph are
much slower, with GraphX showing the worst performance,
especially on D300(L). OpenG’s performance is close to that
of PGX.D and GraphMat on WCC, and up to an order of
magnitude worse for BFS, PR, and SSSP. The processing
times for CDLP are much closer for all platforms. OpenG
performs best on CDLP, and GraphX fails to complete even
on R4(S). LCC fails for all platforms on the graphs used in
this experiment, except for OpenG and PowerGraph. The
complexity of the LCC algorithm depends on the degrees of
vertices, so failures are expected on dense graphs, such as
R4(S), and on large graphs, such as D300(L).

Processing time (s)

sssp

lcc

pr

cdlp

wcc

bfs

10ms 200ms 2s 30s 5m 30m

10-2 10-1 100 101 102 103 104

R4(S)

F

F
F
F
F
F
NA

F

D

10ms 200ms 2s 30s 5m 30m

10-2 10-1 100 101 102 103 104

D300(L)

F

F
F
F
F
F
NA

F

D

Giraph
GraphX
P'Graph

G'Mat(S)
OpenG
PGX.D

Figure 6: Algorithm variety: Tproc.

8

No. of threads

10-1

100

101

102

103

1 2 4 8 16 32

P
ro

ce
ss

in
g

ti
m

e
(s

)

BFS

1 2 4 8 16 32

1s

10s

30s

2m

5m

15m

PR

Giraph
GraphX
P'Graph

G'Mat(S)
OpenG
PGX.D

Figure 7: Vertical scalability: Tproc vs. #threads.

4.3 Vertical Scalability
To analyze the effect of adding additional resources in a

single machine, we use Graphalytics to run the BFS and
PageRank algorithms on D300(L) with 1 up to 32 threads
on a single machine. Key findings:

• All platforms benefit from using additional cores, but
only PGX.D and GraphMat approach optimal efficiency.

• Most platforms experience minor or no performance
gains from Hyper-Threading.

Figure 7 depicts the processing time for this experiment.
The majority of tested platforms show increasing perfor-
mance as threads are added up to 16, the number of cores.
Adding additional threads up to 32, the number of threads
with hardware support through Hyper-Threading, does not
appear to improve the performance of GraphX, GraphMat,
or OpenG. Giraph and PGX.D benefit slightly from 32 threads.
The maximum speedup obtained by each platform is sum-
marized in Table 9. Overall, PGX.D scales best with a
maximum speedup of 15.0. This means that PGX.D has
the same performance for PageRank as OpenG when using
32 threads, even though PGX.D is significantly slower than
OpenG for a single thread.

4.4 Strong Horizontal Scalability
We use Graphalytics to run BFS and PR for all distributed

platforms on D1000(XL) while increasing the number of ma-
chines from 1 to 16 in powers of 2 to measure strong scala-
bility. Key findings:

• PGX.D and GraphMat show a reasonable speedup.
• Giraph’s performance degrades significantly when switch-

ing from 1 machine to 2 machines, but improves sig-
nificantly with additional resources.

• PowerGraph and GraphX scale poorly; GraphX shows
no performance increase past 4 machines.

The processing times for this experiment are depicted in
Figure 8. Ideally, Tproc halves when the amount of re-
sources (i.e., the number of machines) is doubled given a
constant workload. Giraph suffers a large performance hit
when switching from 1 machine to a distributed setup with
2 machines. For PR, this results in an SLA failure on 2 ma-

Table 9: Vertical scalability: speedup on D300(L)
for 1–32 threads on 1 machine.)
Alg. Giraph GraphX P’Graph G’Mat(S) OpenG PGX.D

BFS 6.0 4.5 11.8 6.9 6.3 15.0
PR 8.1 2.9 10.3 11.3 6.4 13.9

No. of machines

10-1

100

101

102

103

104

1 2 4 8 16

P
ro

ce
ss

in
g

ti
m

e
(s

)

BFS

Giraph
GraphX
P'Graph

G'Mat(D)
OpenG
PGX.D

1 2 4 8 16

1s

10s
30s

2m
5m
15m

PR

Figure 8: Strong scalability: Tproc vs. #machines.

chines, even though it succeeds on 1 machine. At least 4–8
machines are required for Giraph to improve in performance
over the single-machine setup. The speedup obtained by Gi-
raph is 3.3 on BFS and 5.3 on PR. GraphX also scales poorly
for the given workload. It requires 2 machines to complete
BFS, and 4 machines to complete PR. GraphX achieves a
speedup of 2.3 using 8 times as many resources on BFS, and
a speedup of 1.2 with 4 times as many resources on PR.
PowerGraph is able to process the D1000(XL) graph on any
number of nodes, but only scales reasonably for BFS and
poorly for PR. Its speedup is 6.9 for BFS and 1.8 for PR,
compared the ideal of 16. PGX.D fails to complete either al-
gorithm on a single machine. For BFS, PGX.D scales poorly
past 4 nodes, where it already achieves sub-second process-
ing times. PGX.D scales better on PR, up to a speedup of
3.8 using 8 times as many resources as the baseline. Graph-
Mat shows a clear outlier for PR on a single machine, most
likely because of swapping.

4.5 Weak Horizontal Scalability
To measure weak scalability, Graphalytics runs BFS and

PR for all distributed platforms on Graph500 G22(S) through
G26(XL) while increasing the number of machines from 1 to
16 in powers of 2. The amount of work per machine is ap-
proximately constant, as each graph in the series generated
using Graph500 is twice as large as the previous graph. As
the workload per machine is constant, Tproc is ideally con-
stant. Key findings:

• None of the tested platforms achieve optimal weak
scalability.

• Giraph’s performance degrades significantly on 2 ma-
chines, but scales well from 4 to 16 machines.

• GraphMat and PowerGraph scale reasonably, whereas
GraphX scales poorly.

• PGX.D fails in multiple configurations due to memory
limitations.

In Figure 9, GraphX and PowerGraph show increasing

No. of machines

10-1

100

101

102

103

104

1 2 4 8 16

P
ro

ce
ss

in
g

ti
m

e
(s

)

BFS

1 2 4 8 16

1s

10s
30s

2m
5m
15m

1h

PR

Giraph
GraphX
P'Graph

G'Mat(D)
OpenG
PGX.D

Figure 9: Weak scalability: Tproc vs. #machines.

9

Table 10: Stress Test: the smallest dataset that
failed to complete BFS successfully on one machine.)
Platform Giraph GraphX P’graph G’Mat(S) OpenG PGX.D

Dataset G26(XL) G25(L) R5(XL) G26(XL) R5(XL) G25(L)
Scale 9.0 8.7 9.3 9.0 9.3 8.7

processing times as the number of machines increases, peak-
ing at a maximum slowdown (i.e., inverse of speedup) of 15.2
and 8.2, respectively. Similar to the strong scalability exper-
iments, Giraph’s performance is worst with two machines
and a maximum slowdown of 13.3 on PR. Performance im-
proves slightly as more machines are added, for a slowdown
of 6.4 with 16 machines on PR. PGX.D shows bad perfor-
mance and even fails to complete many experiments due
to memory limitations. PGX.D’s performance in the dis-
tributed experiments could be improved by using a different
graph partitioning scheme.

4.6 Stress Test
To test the maximum processing capacity of each plat-

form, we use Graphalytics to run the BFS algorithm on all
datasets, and report the scale of the smallest dataset that
breaks the SLA (Section 6) on a single machine. Key find-
ings:

• GraphX and PGX.D fail to process the largest class L
graph on a single machine.

• Most platforms fail on a Graph500 graph, but suc-
ceed on a Datagen graph of comparable scale. This in-
dicates sensitivity to graph characteristics other than
graph size.

• PowerGraph and OpenG can process the largest graphs
on a single machine, up to scale 9.0.

Table 10 lists the smallest graph, by scale, for which each
platform fails to complete. The results show that both
GraphX and PGX.D are unable to complete the BFS al-
gorithm on Graph500 scale 25, a class L graph. PGX.D
is specifically optimized for machines with large amount of
cores and memory, and thus exceeds the memory capacity
of our machines. PGX.D can be tuned to be more memory-
efficient, but does not do so autonomously. Like GraphX and
PGX.D, Giraph and GraphMat fail on a Graph500 graph.
Both platforms successfully process D1000 with scale 9.0,
but fail on G26 of the same scale. This suggests that char-
acteristics of the graphs affect the performance of graph
analysis platforms, an issue not revealed by the Graph500
benchmark. Finally, PowerGraph and OpenG fail to com-
plete BFS on the Friendster graph, a scale 9.3 graph and
among the largest graphs currently used by Graphalytics.

4.7 Variability
To test the variability in performance of each platform,

Graphalytics runs BFS 10 times on D300(L) with 1 machine
for all platforms, and on D1000(XL) with 16 machines for
the distributed platforms.

• All platforms have a CV of at most 10%, i.e., their
standard deviation is at most 10% of the mean Tproc.

• GraphMat and PGX.D show higher than average vari-
ability in both S and D configurations. However, due
to their much smaller mean, the absolute variability is
small.

The mean and CV for Tproc are reported in Table 11. In
both S and D configurations, PowerGraph shows the least
variability in performance. GraphX has similarly low vari-

Table 11: Variablity: Tproc mean and coefficient of
variation. BFS on 1 (S) and 16 (D) nodes, n = 10.

Giraph GraphX P’graph GraphMat OpenG PGX.D

S Mean 22.3s 101.5s 2.1s 0.3s 2.0s 0.5s
CV 5.0% 2.6% 1.5% 9.7% 4.8% 8.2%

D Mean 38.0s 335.5s 6.6s 0.5s - 0.5s
CV 9.8% 4.5% 4.5% 5.7% - 7.1%

ability, but due to its significantly longer mean processing
time it can deviate by tens of seconds between runs. Con-
versely, GraphMat and PGX.D show much larger variability
between runs, but in absolute values their deviation is lim-
ited to tens of milliseconds.

4.8 Data Generation
We also evaluate the performance and scalability of Data-

gen with the new execution flow presented in Section 2.5.1,
by running several experiments using different cluster con-
figurations and scale factors. We compare this version of
Datagen (v0.2.6) to the latest version not including the per-
formance optimizations discussed in this paper (v0.2.1). We
use the previous generation of DAS, DAS-4 (2 Intel Xeon
E5620, 24 GiB RAM, spinning disks, 1 Gbit/s Ethernet),
to perform the experiments, which leads to conservative re-
sults.

We configure Datagen to run on top of a Hadoop 2.4.1
cluster. For each given cluster configuration, one machine is
kept as master and does just management tasks, while the
rest are workers. The number of mappers is controlled by
Hadoop, and depends on the size of the input files of each
Hadoop job. The number of reducers is set to 6 per worker
(1 per core); e.g., when using 16 machines, we have 1 master
and 15 workers, executing 90 reducers in total. Finally, scale
factors reflect the approximate number of generated edges
in millions.

Figure 10 (l) shows the execution time of v0.2.6 and v0.2.1
in a 16-machine configuration for five different scale factors:
30, 100, 300, 1000 and 3000. Datagen v0.2.6 is able to im-
prove 1.16x, 1,33, 1,83, 2.15 and 2.9x the execution time
with respect to version v0.2.1, respectively. Not only the
new version is faster but also the speedup shows a clear in-
creasing trend with the scale factor. Thus, we have not only
improved the actual execution time, but also the scalability.
Overall, Datagen v0.2.6 takes just 44 minutes to generate
a billion edge graph using 16 machines, which represents
a significant improvement over the 95 minutes required by
v0.2.1.

Figure 10 (r) shows the execution time of Datagen v0.2.6
for different cluster sizes and scale factors (i.e., #edges).
On the one hand, we see that Datagen scales very well. In-

0 500 1000 1500 2000 2500 3000
Millions of edges

0

5000

10000

15000

20000

25000

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

v0.2.6
v0.2.1

0 2000 4000 6000 8000 10000
Millions of edges

0

5000

10000

15000

20000

25000

30000

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

4 machines
8 machines
16 machines

Figure 10: Execution time vs. #edges in the gen-
erated graph for Datagen: (left) v0.2.6 (new in this
this work) vs v0.2.1 (old), for 16 machines; (right)
4 vs. 8 vs. 16 machines on v0.2.6.

10

creasing the scale factor size by a factor of 10 (from 1000
to 10000), increases the execution time by 10.6. As a re-
sult, we are able to generate a 10 billion graph in less than
8 hours, using hardware from 2010. The worse scalability
observed for smaller scale factors is due to the overhead in-
curred by Hadoop when spawning the jobs, which becomes
more negligible the larger the scale factor is. On the other
hand, we also observe very good horizontal scalability. The
speedup obtained from going from 4 to 16 machines, for
scale factors 30, 100, 300 and 1000 is 1.1, 1.4, 2.0 and 3.0,
respectively. This means we can add more hardware to gen-
erate larger datasets faster. To sum up, we see that with
Datagen, we can generate large and complex graphs with
reasonable amounts of time using small sized clusters with
commodity hardware.

5. RELATED WORK
Table 12 summarizes and compares Graphalytics with pre-

vious studies and benchmarks for graph analysis systems.
R1–R5 are the requirements formulated in Section 2.1. As
Table 12 indicates, there is no alternative to Graphalytics
in covering requirements R1–R4. We also could not find
evidence of requirement R5 being covered by other systems
than LDBC. While there have been a few related bench-
mark proposals (marked “B”), these either do not focus on
graph analysis, or are much narrower in scope (e.g., only
BFS for Graph500). There have been comparable studies
(marked “S”) but these have not attempted to define—let
alone maintain—a benchmark, its specification, software,
testing tools and practices, or results. Graphalytics is not
only industry-backed but also has industrial strength, through
its detailed execution process, its metrics that characterize
robustness in addition to scalability, and a renewal process
that promises longevity. Graphalytics is being proposed to
SPEC as well, and BigBench [16, 33] explicitly refers to
Graphalytics as its option for future benchmarking of graph
analysis platforms.
Previous studies typically tested the open-source plat-

forms Giraph [28], GraphX [39], and PowerGraph [17], but
our contribution here is that vendors (Oracle, Intel, IBM) in
our evaluation have themselves tuned and tested their imple-
mentations for PGX.D [23], GraphMat [37] and OpenG [30].
We are aware that the database community has started to
realize that with some enhancements, RDBMS technology
could also be a contender in this area [14, 25], and we hope
that such systems will soon get tested with Graphalytics.
Graphalytics complements the many existing efforts fo-

cusing on graph databases, such as LinkedBench [5],
XGDBench [10], and LDBC Social Network Benchmark [13];
efforts focusing on RDF graph processing, such as LUBM [19],
the Berlin SPARQL Benchmark [7], SP2Bench [36], and
WatDiv [2] (targeting also graph databases); and community
efforts such as the TPC benchmarks. Whereas all these prior
efforts are interactive database query benchmarks, Grapha-
lytics focuses on algorithmic graph analysis and on different
platforms which are not necessarily database systems, whose
distributed and highly parallel aspects lead to different de-
sign trade-offs.

6. CONCLUSION
Responding to an increasing use of large-scale graphs, in-

dustry and academia have proposed a variety of distributed

and highly-parallel graph analysis platforms. To compare
these platforms, but also to tune them and to enable future
designs, the Linked Data Benchmark Council (LDBC) has
been tasked by its industrial constituency to develop an of-
fline (batch) graph analysis workload—the LDBC Graph-
alytics benchmark, which is the focus of this work. We
believe Graphalytics brings both conceptual and technical
contributions. We present implementations on the main
community-driven graph analysis platforms, as well as three
vendor-tuned platforms.

The Graphalytics workload was designed through a two-
stage selection incorporating the concept of choke-point
(expertise-driven) design, and a data-driven selection of rel-
evant algorithms and input datasets. The specification of
Graphalytics is innovative: its metrics go beyond the tra-
ditional performance metrics, and in particular enable deep
studies of two key features of distributed and highly-parallel
systems, scalability and robustness. Graphalytics is the first
graph benchmark to cover stress-testing and performance
variability. The benchmarking process is managed by an
advanced harness, which includes flexible and scalable tools
for data collection, analysis, and sharing, and for distributed
generation of synthetic yet realistic graph datasets. In par-
ticular, the data generator tool Datagen is the first to gen-
erate graphs with a pre-specified clustering coefficient for
benchmarking. Graphalytics also specifies a novel process
for renewing its core parameters, to withstand the test of
time while still being understandable for non-experts.

We present here the open-source implementation of the
harness3, which is able to conduct over ten different exper-
iments, collect in-depth data that can be further used for
tuning, and then extract the relevant benchmarking metrics.
We also provide reference implementations of the drivers and
algorithms for six target systems, which differ widely in dis-
tribution and programming model. Three of the systems
originate from industry: PGX.D from Oracle, GraphMat
from Intel, and Open G from IBM. We hope and believe
Graphalytics to be interesting for academics, IT practition-
ers, industry engineers, and system designers.

7. REFERENCES
[1] DAS-5: Distributed ASCI Supercomputer 5.

www.cs.vu.nl/das5, 2015.
[2] G. Aluç et al. Diversified stress testing of RDF data

management systems. In ISWC, 2014.
[3] K. Ammar and M. T. Özsu. WGB: towards a universal

graph benchmark. In WBDB, 2013.
[4] M. Anderson et al. GraphPad: optimized graph primitives

for parallel and distr. platforms. In IPDPS, 2016.
[5] T. Armstrong et al. LinkBench: a database benchmark

based on the Facebook social graph. In SIGMOD, 2013.
[6] D. Bader and K. Madduri. Design and implementation of

the HPCS graph analysis benchmark on symmetric
multiprocessors. In HiPC, 2005.

[7] C. Bizer and A. Schultz. The Berlin SPARQL benchmark.
Int. J. Semantic Web Inf. Syst., 5(2), 2009.

[8] M. Capota et al. Graphalytics: A big data benchmark for
graph-processing platforms. In GRADES, 2015.

[9] M. Cha et al. Measuring User Influence in Twitter: The
Million Follower Fallacy. In ICWSM, 2010.

[10] M. Dayarathna and T. Suzumura. Graph database
benchmarking on cloud environments with XGDBench.
Autom. Softw. Eng., 21(4), 2014.

3Available at github.com/tudelft-atlarge/graphalytics

11

Table 12: Summary of related work. (Acronyms: Reference type: S, study, B, benchmark. Target system, structure:

D, distributed system; P, parallel system; MC, single-node multi-core system; GPU, using GPUs. Input: 0, no

parameters; S, parameters define scale; E, parameters define edge properties; +, parameters define other graph

properties, e.g., clustering coefficient. Datasets/Algorithms: Rnd, reason for selection not explained; Exp, selection

guided by expertise; 1-stage, data-driven selection; 2-stage, 2-stage data- and expertise-driven process. Scalability tests:

W, weak, S, strong, V, vertical, H, horizontal.)
Reference (chronological order) Target System (R1) Design (R2) Tests (R3) (R4)
Name [Publication] Structure Programming Input Datasets Algo. Scalable? Scalability Robustness Renewal

B
CloudSuite [15],
only graph elements

D/MC PowerGraph S Rnd Exp — No No No

S Montresor et al. [12] D/MC 3 classes 0 Rnd Exp — No No No
B HPC-SGAB [6] P — S Exp Exp — No No No
B Graph5000 P/MC/GPU — S Exp Exp — No No No
B GreenGraph500 P/MC/GPU — S Exp Exp — No No No
B WGB [3] D — SE+ Exp Exp 1B Edges No No No

S Own prior work [20, 21, 8] D/MC/GPU 10 classes S Exp 1-stage 1B Edges W/S/V/H No No

S Özsu et al. [22] D Pregel 0 Exp,Rnd Exp — W/S/V/H No No

B
BigDataBench [29, 38],
only graph elements

D/MC Hadoop S Rnd Rnd — S No No

S Satish et al. [35] D/MC 6 classes S Exp,Rnd Exp — W No No
S Yi et al. [27] D 4 classes S Exp,Rnd Exp — S No No
B GraphBIG [30] P/MC/GPU System G S Exp Exp — No No No
S Cherkasova et al. [11] MC Galois 0 Rnd Exp — No No No

B LDBC Graphalytics (this work) D/MC/GPU 10+ classes SE+ 2-stage 2-stage Process W/S/V/H Yes Yes

[11] A. Eisenman et al. Parallel graph processing: Prejudice and
state of the art. In ICPE, 2016.

[12] B. Elser and A. Montresor. An evaluation study of bigdata
frameworks for graph processing. In Big Data, 2013.

[13] O. Erling et al. The LDBC social network benchmark:
Interactive workload. In SIGMOD, 2015.

[14] J. Fan et al. The case against specialized graph analytics
engines. In CIDR, 2015.

[15] M. Ferdman et al. Clearing the clouds: a study of emerging
scaleout workloads on modern hardware. In ASPLOS, 2012.

[16] A. Ghazal et al. BigBench: towards an industry standard
benchmark for big data analytics. In SIGMOD, 2013.

[17] J. E. Gonzalez et al. PowerGraph: Distributed graph
parallel computation on natural graphs. In OSDI, 2012.

[18] Y. Guo and A. Iosup. The game trace archive. In WNSSG.
IEEE Press, 2012.

[19] Y. Guo et al. LUBM: A benchmark for OWL knowledge
base systems. J. Web Sem., 3(2-3), 2005.

[20] Y. Guo et al. How well do graph-processing platforms
perform? In IPDPS, 2014.

[21] Y. Guo et al. An empirical performance evaluation of
gpu-enabled graph-processing systems. In CCGrid, 2015.

[22] M. Han et al. An experimental comparison of pregel-like
graph processing systems. PVLDB, 7(12), 2014.

[23] S. Hong et al. PGX.D: a fast distributed graph processing
engine. In SC, 2015.

[24] A. Iosup, et al. LDBC Graphalytics: A Benchmark for
Large-Scale Graph Analysis on Parallel and Distributed
Platforms. Technical Report DS-2016-001, Delft University
of Technology, 2016.

[25] A. Jindal et al. Vertexica: your relational friend for graph
analytics! PVLDB, 7(13), 2014.

[26] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection. snap.stanford.edu/data.

[27] Y. Lu et al. Large-scale distributed graph computing
systems: An experimental evaluation. PVLDB, 8(3), 2014.

[28] G. Malewicz et al. Pregel: a system for large-scale graph
processing. In SIGMOD, 2010.

[29] Z. Ming et al. BDGS: A scalable big data generator suite in
big data benchmarking. In WBDB, 2013.

[30] L. Nai et al. GraphBIG: understanding graph computing in
the context of industrial solutions. In SC, 2015.

[31] W. L. Ngai. Fine-grained Performance Evaluation of
Large-scale Graph Processing Systems. Master’s thesis,
Delft University of Technology, the Netherlands, 2015.

[32] L. Page et al. The pagerank citation ranking: bringing
order to the web. 1999.

[33] T. Rabl et al. The vision of BigBench 2.0. In DanaC, 2015.
[34] U. Raghavan et al. Near linear time algorithm to detect

community structures in large-scale networks. Physical
Review E, 76(3), 2007.

[35] N. Satish et al. Navigating the maze of graph analytics
frameworks using massive datasets. In SIGMOD, 2014.

[36] M. Schmidt et al. Spˆ2 bench: a SPARQL performance
benchmark. In ICDE, 2009.

[37] N. Sundaram et al. Graphmat: High performance graph
analytics made productive. PVLDB, 8(11), 2015.

[38] L. Wang et al. BigDataBench: a big data benchmark suite
from internet services. In HPCA, 2014.

[39] R. Xin et al. GraphX: A resilient distr. graph system on
Spark. In GRADES, 2013.

12

