
High Entropy Random Selection Protocols
[Extended Abstract]

Harry Buhrman1, Matthias Christandl2, Michal Koucký3, Zvi Lotker4, Boaz
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Abstract. We study the two party problem of randomly selecting a stringamong
all the strings of lengthn. We want the protocol to have the property that the
output distribution has highentropy, even when one of the two parties is dishonest
and deviates from the protocol. We develop protocols that achieve high, close to
n, entropy.
In the literature the randomness guarantee is usually expressed as being close to
the uniform distribution or in terms of resiliency. The notion of entropy is not
directly comparable to that of resiliency, but we establisha connection between
the two that allows us to compare our protocols with the existing ones.
We construct an explicit protocol that yields entropyn − O(1) and has4 log∗ n
rounds, improving over the protocol of Goldreich et al. [3] that also achieves
this entropy but needsO(n) rounds. Both these protocols needO(n2) bits of
communication.
Next we reduce the communication in our protocols. We show the existence, non-
explicitly, of a protocol that has 6 rounds,2n + 8 log n bits of communication
and yields entropyn − O(log n) and min-entropyn/2 − O(log n). Our proto-
col achieves the same entropy bound as the recent, also non-explicit, protocol of
Gradwohl et al. [4], however achieves much higher min-entropy: n/2−O(log n)
versusO(log n).
Finally we exhibit very simple explicit protocols. We connect the security param-
eter of these geometric protocols with the well studied Kakeya problem motivated
by harmonic analysis and analytical number theory. We are only able to prove
that these protocols have entropy3n/4 but still n/2 − O(log n) min-entropy.
Therefore they do not perform as well with respect to the explicit constructions
of Gradwohl et al. [4] entropy-wise, but still have much better min-entropy. We
conjecture that these simple protocols achieven − o(n) entropy. Our geometric
construction and its relation to the Kakeya problem followsa new and differ-
ent approach to the random selection problem than any of the previously known
protocols.
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1 Introduction

We study the following communication problem. Alice and Bobwant to select a random
string. They are not at the same location so they do not see what the other player does.
They communicate messages according to some protocol and inthe end they output a
string ofn bits which is a function of the messages communicated. This string should
be as random as possible, in our case we measure the amount of randomness by the
entropy of the probability distribution that is generated by this protocol.

The messages they communicate may depend on random experiments the players
perform and on messages sent so far. The outcome of an experiment is known only to
the party which performs it so the other party cannot verify the outcome of such an
experiment or whether the experiment was carried out at all.One or both the parties
may deviate from the protocol and try to influence the selected string (cheat). We are
interested in the situation when a party honestly follows the protocol and wants to have
some guarantee that the selected string is indeed as random as possible. The measure of
randomness we use is theentropyof probability distribution that is the outcome of the
protocol.

In this paper we present protocols for this problem. In particular we show a proto-
col that achieves entropyn − O(1) if at least one party is honest and that uses4 log∗ n
rounds and communicatesn2+O(n log n) bits. The round complexity of our protocol is
optimal up-to a constant factor; the optimality follows from a result of Sanghvi and Vad-
han [8]. We further consider the question of reducing the communication complexity
of our protocols. We show non-constructively that there areprotocols with linear com-
munication complexity that achieve entropyn− log n in just 3 rounds, and in 6 rounds
achieves in addition min-entropyn/2−O(logn) which is close to the optimal bound of
n/2, that follows from Goldreich et al. [3] and from a bound on quantum coin-flipping
due to Kitaev (see [2]). We propose several explicit and verysimple protocols that have
entropy3n/4 and we conjecture that they have entropyn − o(n). Our proofs establish
a connection between the security guarantee of our protocols and the well studied prob-
lem of Kakeya over finite fields motivated by Harmonic analysis and analytic number
theory (see [5, 6] for background information on Kakeya Problem). Although these con-
structive protocols do not achieve the same parameters as the best known constructive
protocols (see next section), our (geometric) protocols are quite different in nature and
much simpler to implement and still yield much higher min-entropy.

1.1 Previous work

There is a large body of previous work which considers the problem of random string
selection, and related problems such as a leader selection and fault-tolerant computa-
tion. We refer the reader to [8] for an overview of the literature. In this paper we assume
that both parties have unlimited computational power, i.e., so calledfull information
model. Several different measures for the randomness guarantee of the protocol are
used in the literature. The most widely used is the(µ, ǫ)-resilience and the statistical
distance from the uniform distribution. Informally a protocol is (µ, ǫ)-resilient if for
every setS ⊂ {0, 1}n with densityµ (cardinalityµ2n), the output of the protocol is
in S with probability at mostǫ. In this paper we study however another very natural



randomness guarantee, namely the entropy of the resulting output distribution. There is
a certain relationship between the entropy and resilience,but these parameters are not
interchangeable.

In [3], Goldreich et al. constructs a protocol that is(µ,
√

µ)-resilient for allµ > 0.
This protocol runs inO(n) rounds and communicatesO(n2) bits. We show that their
security guarantee also implies entropyn − O(1). Hence, our first protocol, that uses
4 log∗ n is an improvement in the number of rounds with respect to the entropy measure
over that protocol.

Sanghvi and Vadhan [8] give a protocol for every constantδ > 0 that is(µ,
√

µ + δ)-
resilient and that has constant statistical distance from the uniform distribution. This
type of resilience essentially guarantees security only for sets of constant density. In-
deed, their protocol allows the cheating party to bias the output distribution so that a
particular string has a constant probability of being the output. Hence, their protocol
only guarantees constantmin-entropyand entropy(1 − ǫ)n for ǫ > 0. Sanghvi and
Vadhan also show a lower boundΩ(log∗ n) on the number of rounds of any random
selection protocol that achieves constant statistical distance from the uniform distribu-
tion. We show that entropyn−O(1) implies being close to uniform distribution so the
lower bound translates to our protocols.

Recently, Gradwohl et al. [4], who also considered protocols with more than 2 play-
ers, constructed for eachµ aO(log∗ n)-round protocol that is(µ, O(

√
µ))-resilient and

that uses linear communication. Our results are not completely comparable with those
of [4]; the protocols of [4] only achieve entropyn − O(log n) whereas the entropy
n − O(1) of our protocol implies only(µ, O(1/ log(1/µ)))-resilience for allµ > 0.
Their(1/n2, O(1/n))-resilient protocol, non-explicit matches our non-explicit protocol
from Section 4.1 in terms of entropy but our protocol can be extended to also achieve
high (n/2 − O(log n)) min-entropy at the cost of additional 3 rounds.

This extensibility comes from the fact that all our protocols are asymmetric. When
Bob is honest (and Alice dishonest) the min-entropy of the output is guaranteed to be as
high asn−O(log n), which implies, by the aforementioned result of Kitaev [2] that the
min-entropy is onlyO(log n) when Bob is dishonest (and Alice honest). The protocols
of Gradwohl et al. in general do not have this feature. Whenever their protocols achieve
high (n − O(log n)) entropy the min-entropy is onlyO(log n).

Finally our explicit geometric protocol only obtains3n/4 entropy and thus per-
forms worse than the explicit protocol from [4], that achieves forµ = 1/ logn entropy
n− o(n). Our explicit protocols though still have min-entropyn/2−O(log n) outper-
forming [4], that only gets min-entropyO(log n).

The paper is organized as follows. In the next section we review the notion of en-
tropy and of other measures of randomness, and we establish some relationships among
them. Section 3 contains our protocol that achieves entropyn − O(1). In Section 4 we
address the problem of reducing the communication complexity of our protocols. Due
to space limitations we omit almost all the proofs from this extended abstract.



2 Preliminaries

Let Y be a random variable with a finite rangeS. Theentropy ofY is defined by:

H(Y) = −
∑

s∈S

Pr[Y = s] · log Pr[Y = s].

If for somes ∈ S, Pr[Y = s] = 0 then the corresponding term in the sum is considered
to be zero. All logarithms are based two.

Let X,Y be (possibly dependent) jointly distributed random variable with ranges
T, S, respectively. Theentropy ofY conditional toX is defined by:

H(Y|X) =
∑

t∈T

Pr[X = t]H(Y|X = t),

whereY|X = t stands for the random variable whose range isS and which takes
outcomes ∈ S with probabilityPr[Y = s|X = t].

The following are basic facts about the entropy:

H(f(Y)) ≤ H(Y) for any functionf , (1)

H(Y) ≤ log |S|, (2)

H(Y|X) ≤ H(Y), (3)

H(〈X,Y〉) = H(Y|X) + H(X), (4)

H(X) ≤ H(〈Y,X〉) (follows from (4)), (5)

H(〈Y,X〉) ≤ H(Y) + H(X) (follows from (3) and (4)). (6)

Here〈Y,X〉 stands for the random variable with rangeS×T , which takes the outcome
〈s, t〉 with probabilityPr[X = t,Y = s]. We will abbreviateH(〈Y,X〉) asH(Y,X)
in the sequel.

The following corollaries of these facts are used in the sequel

1. LetYi be random variables with the same rangeS and letY be obtained by picking
an indexi ∈ {1, . . . , n} uniformly at random and then drawing a random sam-
ple according toYi. ThenH(Y) ≥ 1

n

∑n
i=1 H(Yi). (Indeed, letX stand for the

random variable uniformly distributed in{1, . . . , n}. ThenH(Y) ≥ H(Y|X) =
1
n

∑n
i=1 H(Yi).)

2. Let ℓ ≥ 1 be an integer andf : S → T be a function from a setS to a set
T . Let Y be a random variable with rangeS. If ∀t ∈ T , |f−1(t)| ≤ ℓ then
H(f(Y)) ≥ H(Y) − log ℓ. (Indeed, letX be the index ofY in f−1(Y). Then
H(Y) = H(f(Y),X) ≤ H(f(Y)) + H(X) ≤ H(f(Y)) + log ℓ).

Themin-entropyof a random variableX with a finite rangeS is

H∞(X) = min{− logPr[X = s] : s ∈ S} .

Thestatistical distancebetween random variablesX,Y with the same finite range
S is defined as the maximum

|Pr[X ∈ A] − Pr[Y ∈ A]|



over all subsetsA of S. It is easy to see that the maximum is attained forA consisting
of all s with Pr[X = s] > Pr[Y = s] (as well as for its complement). For every integer
n ≥ 1, we denote byUn the uniform probability distribution of strings{0, 1}n.

In order to apply a lower-bound from [8] to show that our main protocol needs
Ω(log∗ n) rounds we establish a relation between entropy and constantstatistical dis-
tance.

Lemma 1. For every realc there is a realq < 1 such that the following holds. IfX is
a random variable with range{0, 1}n andH(X) ≥ n − c then the statistical distance
of X andUn is at mostq.

Definition. Let r, n be natural numbers. A deterministic strategy of a player (Alice
or Bob) is a function that maps each tuple〈x1, . . . , xi〉 of binary strings wherei < r to
a binary string (the current message of the player provided〈x1, . . . , xi〉 is the sequence
of previous messages). A randomized strategy of a player (Alice or Bob) is a probability
distribution over deterministic strategies.

A protocol running inr roundsis a functionf that maps eachr-tuple〈x1, . . . , xr〉
of binary strings to a binary string of lengthn (the first stringx1 is considered as Alice’s
message, the second stringx2 as Bob’s message and so on) and a pair〈SA,SB〉 of
randomized strategies.

If SA, SB are deterministic strategies of Alice and Bob then the outcome of the pro-
tocol forSA, SB is defined asf(x1, . . . , xr) wherex1, . . . , xr are defined recursively:
x2i+1 = SA(〈x1, . . . , x2i〉) andx2i+2 = SB(〈x1, . . . , x2i+1〉).

If SA,SB are randomized strategies of Alice and Bob then the outcome of the pro-
tocol is a random variable generated as follows: select independently Alice’s and Bob’s
strategiesSA, SB with respect to probability distributionsSA andSB, respectively, and
output the result of the protocol forSA, SB.

We say that Alice follows the protocol (ishonest) if she uses the strategySA. We say
that Alice deviates from the protocol (cheats) if she uses any other randomized strategy.
Similarly for Bob.

We say that a protocolP for random string selection is(k, l)-good if the following
properties hold:

1. If both Alice and Bob follow the protocol then the outcome is a fully random string
of lengthn.

2. If Alice follows the protocol and Bob deviates from it thenthe outcome has entropy
at leastk.

3. If Bob follows the protocol and Alice deviates from it thenthe outcome has entropy
at leastl.

(End of Definition.)
Throughout the paper we use the following easy observation that holds for every

protocol:

Lemma 2. Assume that Alice’s strategySA guarantees that the entropy of the outcome
is at leastα for all deterministic strategies of Bob. Then the same guarantee holds for
all randomized strategies of Bob as well. A similar statement is true for min-entropy in
place of entropy.



In [8], Sanghvi and Vadhan establish that any protocol for random selection that
guarantees a constant statistical distance of the output from the uniform distribution
requires at leastΩ(log∗ n) rounds. Hence we obtain the following corollary to the pre-
vious lemma.

Corollary 1. If P is a protocol that is(n − O(1), n − O(1))-good thenP has at least
Ω(log∗ n) rounds.

Forµ, ǫ > 0, a random string selection protocolP is (µ, ǫ)-resilient if for any setS
of size at mostµ2n, the probability that the output ofP is in S is at mostǫ, even if one
of the parties cheats.

In order to compare our results with previous work we state the following claim.

Lemma 3. For a random selection protocolP the following holds.

1. If P is (µ, dµc)-resilient for some constantsc, d > 0 and anyµ > 0 thenP is
(n − O(1), n − O(1))-good.

2. If P is (n − O(1), n − O(1))-good then for some constantd and anyµ > 0 it is
(µ, d/ log(1/µ)))-resilient.

3 The main protocol

In this section we construct a protocol that is(n−O(1), n−O(1))-good. We start with
the following protocol.

Lemma 4. There is a(n − 1, n − log n)-good protocolP0 running in 3 rounds and
communicatingn2 + n + log n bits. If Bob is honest then the outcome ofP0 has min-
entropy at leastn − log n.

Proof. The protocolP0(A, B) is as follows:

1. PlayerA picksx1, x2, . . . , xn ∈ {0, 1}n uniformly at random and sends them to
PlayerB.

2. PlayerB picksy ∈ {0, 1}n uniformly at random and sends it to PlayerA.
3. PlayerA picks an indexj ∈ {1, . . . , n} uniformly at random and sends it toB.
4. The outcomeR of the protocol isxj ⊕ y, i.e., the bit-wise xor ofxj andy.

Note that the entropy bounds are tight as a cheating Bob can set y = x1 in the
protocol and thenH(R) = n− 1. Similarly, a cheating Alice can enforce the firstlog n
bits of the outcome to be all zero bits soH(R) = n − log n in that case.

1) It is easy to verify that the outcomeR of the protocolP0(Alice, Bob) is uni-
formly distributed if both Alice and Bob follow the protocoland hence it has entropy
n.

2) Assume that Alice follows the protocol and Bob is trying tocheat. Hence, Alice
picks uniformly at randomx1, . . . , xn ∈ {0, 1}n. Bob picksy. Then Alice picks a
random indexj ∈ {1, . . . n} and they setR = xj ⊕ y. Clearly,H(x1, . . . , xn) = n2,
thus

n2 = H(x1, . . . , xn) ≤ H(x1, . . . , xn, y) ≤ H(x1 ⊕ y, . . . , xn ⊕ y) + H(y)



≤ H(x1 ⊕ y, . . . , xn ⊕ y) + n.

Here the first inequality holds by (5), the middle one by (1) and (6), and the last one by
(2). Therefore,

(n2−n)/n ≤ H(x1⊕y, . . . , xn⊕y)/n ≤
n

∑

i=1

H(xi⊕y)/n = H(xj⊕y|j) ≤ H(xj⊕y).

Here the second inequality holds by (6), the equality holds,as Alice choosesj uni-
formly, and the last inequality is true by (3).

3) Assume that Bob follows the protocol and Alice is trying tocheat. Hence, Alice
carefully selectsx1, . . . , xn, Bob picks a random stringy ∈ {0, 1}n and Alice carefully
choosesj ∈ {1, . . . , n}. ThusH(y|〈x1, . . . , xn〉) = n and hence

H(xj ⊕ y) ≥ H(xj ⊕ y|〈x1, . . . , xn〉) ≥ H(y|〈x1, . . . , xn〉) − H(j|〈x1, . . . , xn〉)
≥ H(y|〈x1, . . . , xn〉) − H(j) ≥ n − log n.

Here the second inequality holds by (1) and (6). Verifying the lower bound on the min-
entropy is straightforward.

Our protocol achieves our goal of having entropy of the outcome close ton if Alice
is honest. However if she is dishonest she can fix up-tolog n bits of the outcome to
her will. Clearly, Alice’s cheating power comes from the fact that she can choose up-to
log n bits in the last round of the protocol. If we would reduce the number of strings
xj she can choose from in the last round, her cheating ability would decrease as well.
Unfortunately, that would increase cheating ability of Bob. Hence, there is a trade-off
between cheating ability of Alice and Bob. To overcome this we will reduce the number
of strings Alice can choose from but at the same time we will also limit Bob’s cheating
ability by replacing hisy by an outcome of yet another run of the protocol played
with Alice’s and Bob’s roles reversed. By iterating this several times we can obtain the
following protocol.

Let log∗ n stand for the number of times we can apply the function⌈log x⌉ until we
get 1 fromn. For instance,log∗ 100 = 4.

Theorem 1. There is a(n−2, n−3)-good protocol running in2 log∗ n+1 rounds and
communicatingn2 + O(n log n) bits. Depending onn, either if Alice or Bob is honest
then the min-entropy of the protocol is at leastn − O(log n).

Proof. Let k = log∗ n − 1. Defineℓ0 = n andℓi = ⌈log ℓi−1⌉, for i = 1, . . . , k, so
ℓk−1 ∈ {3, 4} andℓk = 2.

For i = 1, . . . , k we define protocolPi(A, B) as follows.

1. PlayerA picksx1, x2, . . . , xℓi
∈ {0, 1}n uniformly at random and sends them to

PlayerB.
2. PlayersA andB now run protocolPi−1(B, A) (note that players exchange their

roles) and sety to the outcome of that protocol.
3. PlayerA picks an indexj ∈ {1, . . . , ℓi} uniformly at random and sends it toB.



4. The outcomeRi of this protocol isxj ⊕ y.

We claim that the protocols are(n − 2, n − log 4ℓi)-good:

Lemma 5. For all i = 0, 1, . . . , k the following is true.

1. If both Alice and Bob follow the protocolPi(Alice, Bob) then its outcomeRi sat-
isfiesH(Ri) = n.

2. If Alice follows the protocolPi(Alice, Bob) then the outcomeRi satisfiesH(Ri) ≥
n − 2.

3. If Bob follows the protocolPi(Alice, Bob) then the outcomeRi of the protocol
satisfiesH(Ri) ≥ n − log 4ℓi.

All the bounds on the entropy are valid also when conditionedon the tuple consisting of
all strings communicated before runningPi. Furthermore, ifi is even and Bob is honest
or i is odd and Alice is honest thenH∞(Ri) ≥ n − ∑i+1

j=1 ℓj .

Proof. The first claim is straightforward to verify. We prove the other two simultane-
ously by an induction oni. For i = 0 the claims follow from Lemma 4. So assume that
the claims are true fori − 1 and we will prove them fori.

If Alice follows the protocolPi(Alice, Bob) then she picksx1, . . . , xℓi
uniformly

at random. Then the protocolPi−1(Bob, Alice) is invoked to obtainy = Ri−1. We
can reason just as in the proof of Lemma 4. However this time wehave a better lower
bound forH(x1, . . . , xℓi

, y). Indeed, by induction hypothesis, since Alice follows the
protocol,

H(y|x1, . . . , xℓi
) ≥ n − log 4ℓi−1 ≥ n − 2ℓi.

Here the last inequality holds for alli < k asℓi−1 > 4 in this case and hence2ℓi ≥
2 log ℓi−1 > log 4ℓi−1. For i = k we haveℓi−1 ∈ {3, 4} andℓi = 2 and the inequality
is evident.

Thus,

H(x1, . . . , xℓi
, y) = H(x1, . . . , xℓi

) + H(y|x1, . . . , xℓi
) ≥ ℓin − 2ℓi + n.

Just as in Lemma 4, this implies

H(xj ⊕ y) ≥ H(xj ⊕ y|j) =

li
∑

s=1

H(xs ⊕ y)/li

≥ (H(x1, . . . , xℓi
, y) − H(y))/ℓi ≥ (ℓin − 2ℓi + n − n)/ℓi = n − 2.

Assume that Bob follows the protocolPi(Alice, Bob) but Alice deviates from it by
carefully choosingx1, . . . , xℓi

andj. Then the protocolPi−1(Bob, Alice) is invoked
to obtainy = Ri−1. By induction hypothesisH(y|x1, . . . , xℓi

) ≥ n − 2. Now Alice
choosesj ∈ {1, . . . , ℓi}. Similarly as in the proof of Lemma 4, we have

H(xj ⊕ y) ≥ H(xj ⊕ y|〈x1, . . . , xℓi
〉) ≥ H(y|〈x1, . . . , xℓi

〉) − H(j|〈x1, . . . , xℓi
〉)

≥ H(y|〈x1, . . . , xℓi
〉) − H(j) ≥ n − 2 − log ℓi.

The claim about min-entropy follows by induction.



By the lemma, the protocolPk is (n−2, n−3) good. It runs in2k+3 = 2(log∗ n−
1) + 3 rounds.

The number of communicated bits is equal to

n2 + n + log n +
k

∑

i=1

(nℓi + log ℓi)

All ℓi’s in the sum are at mostlog n and decrease faster than a geometric progression.
Hence the sum is at most its largest term (n logn) times a constant.

4 Improving communication complexity

In the previous section we have shown a protocol for Alice andBob that guarantees that
the entropy of the selected string is at leastn−O(1). The protocol has an optimal (up-to
a constant factor) number of rounds and communicatesO(n2) bits. In this section we
will address the possibility of reducing the amount of communication in the protocol.

We focus on the basic protocolP0(A, B) as that protocol contributes to the com-
munication the most. The protocol can be viewed as follows.

1. PlayerA picksx ∈ {0, 1}mA uniformly at random and sends it to PlayerB.
2. PlayerB picksy ∈ {0, 1}mB uniformly at random and sends it to PlayerA.
3. PlayerA picks an indexj ∈ {0, 1}m′

A uniformly at random and sends it toB.
4. A fixed functionf : {0, 1}mA ×{0, 1}mB ×{0, 1}m′

A → {0, 1}n is applied tox, y
andj to obtain the outcomef(x, y, j).

We will denote such a protocol byP0(A, B, f). In the basic protocol the parameters
are:mA = n2, mB = n andm′

A = log n. We would like to find another suitable
functionf with a smaller domain.

We note first that three rounds in the protocol are necessary in order to obtain the
required guarantees on the output of the protocol. In any tworound protocol at least one
of the parties can force the output to have entropy at mostn/2 + O(log n). (In a two
round protocol, if for somex, the range off(x, ·) is smaller thann2n/2 then Alice can
enforce entropyn/2 + log n by picking thisx. On the other hand iff(x, ·) has a large
range for allx, then Bob can cheat by almost always enforcing the output to lie in a set
of size2n/2. Bob’scheatingset can be picked at random.)

4.1 Non-explicit protocol

The following claim indicates that finding a suitable functionf should be feasible.

Lemma 6. If f : {0, 1}n × {0, 1}n × {0, 1}8 log n → {0, 1}n is taken uniformly at
random among all functions then with probability at least1/2, P0(A, B, f) satisfies:

1. If both Alice and Bob follow the protocolP0(Alice, Bob, f) then its outcomeR
satisfiesH(R) = n − O(1).



2. If Alice follows the protocolP0(Alice, Bob, f) then the outcomeR satisfiesH(R) ≥
n − O(1).

3. If Bob follows the protocolP0(Alice, Bob, f) then the outcomeR of the protocol
satisfiesH(R) ≥ n − O(log n) andH∞(R) ≥ n − O(log n).

The question is how to find an explicit functionf of similar properties. We propose
the following three functions that we believe have the required properties. We prove
several results in that direction.

1. frot : {0, 1}n × {0, 1}n × {1, . . . , n} → {0, 1}n defined byf(x, y, j) = xj ⊕
y, wherexj is the j-th rotation ofx, xj = xjxj+1 · · ·xnx1 · · ·xj−1. Heren is
assumed to be a prime.

2. flin : F k−1×F k×F → F k, whereF = GF [2log n], k = n/ logn andf(d, y, j) =
(1, d1, . . . , dk−1) ∗ j + (y1, . . . , yk).

3. fmul : F × F × H → F , whereF = GF [2n], H ⊆ F , |H | = n, andf(x, y, j) =
x ∗ j + y.

In particular the functionfrot is interesting as it would allow very efficient im-
plementation. We conjecture that forf ∈ {frot, flin, fmul} protocolP0(A, B, f) is
(n − o(n), n − O(log n))-good.

Lemma 7. P0(A, B, frot) is (n/2 − 3/2, n − log n)-good whenn is prime and the
min-entropy of the outcome is at leastn − O(log n) when Bob follows the protocol.

A similar lemma holds also for our other two candidate functions.

Averaging the asymmetry One of the interesting features of our protocols is the asym-
metry of cheating power of the two parties. We used this asymmetry to build the pro-
tocol with entropyn − O(1). One can also use this asymmetry for “averaging” their
cheating powers in the following simple way. Given a protocol Qn(A, B) for selecting
an n bit string, Alice and Bob first select the firstn/2 bits of the string by running
the protocolQn/2(Alice, Bob) and then they select the other half of the string by run-
ning the protocolQn/2(Bob, Alice). If the protocolQn is (k(n), l(n))-good then the
averagingprotocol is(k(n/2) + l(n/2), k(n/2) + l(n/2))-good. Similarly if the min-
entropy when Alice follows the protocol is bounded from below by k∞(n) and when
Bob follows the protocol byl∞(n), then the min-entropy of the outcome of the averag-
ing protocol is at leastk∞(n/2) + l∞(n/2).

Hence from Lemma 7 we obtain the following corollary.

Corollary 2. There is a5-round protocol for random string selection that communi-
cates2n + O(log n) bits, that is(3n/4 − O(log n), 3n/4 − O(log n))-good and that
has min-entropy at leastn/2 − O(log n) when at least one of the parties follows the
protocol.

In the next section we show for a variant ofP0(A, B, flin) a similar security guar-
antee.



4.2 Geometric protocols and the problem of Kakeya

We exhibit here a variant of the protocolP0(A, B, flin) and show that it achieves en-
tropy at least3n/4 − O(1) if at least one party is honest. Fix a finite fieldF and a
naturalm ≥ 2. Let q = |F |. We rephrase the protocol as follows:

1. Alice picks at random a vectord = (1, d2, . . . , dm) ∈ Fm and sends it to Bob.
2. Bob picks at randomx = (x1, . . . , xm) ∈ Fm and sends it to Alice.
3. Alice picks at randomt ∈ F and sends it to Bob.
4. The output of the protocol is

y = x + td = (x1 + t, x2 + td2, . . . , xm + tdm).

The geometric meaning of the protocol is as follows. Alice picks at random a direc-
tion of an affine line in them-dimensional spaceFm overF . Bob chooses a random
affine line going in that direction. Alice outputs a random point lying on the line.

It is easy to lower bound the entropy of the outputy of this protocol assuming that
Bob is honest.

Lemma 8. If Bob is honest then the outcomey of the protocol satisfies

H(y) ≥ H∞(y) ≥ (m − 1) log q.

Note that Alice can cheat this much. For example, Alice can forcey1 = 0 by choosing
alwayst = −x1.

In the case when Alice is honest we are able to prove the boundH(y) ≥ (m/2 +
1) log q−O(1). We do not know whether Bob indeed can cheat this much. This question
is related to the following problem known as Kakeya problem for finite fields.

Kakeya problem. Let L be a collection of affine lines inFm such that for each
direction there is exactly one line inL going in that direction. LetPL denote points in
lines fromL. How small can be|PL|?

For a familyL of lines letXL denote the random variable inPL that is a random
point on a random line inL. That is, to generate an outcome ofXL, we pick a random
line ℓ in L (all the lines are equiprobable) and then pick a random pointon ℓ (all the
points onℓ are equiprobable).

Call any set of linesL satisfying the conditions of Kakeya problem a Kakeya fam-
ily and let H(m, q) stand for the minimumH(XL) over all Kakeya familiesL. Let
H∞(m, q) stand for the similar value for min-entropy.

Lemma 9. Assume that Alice is honest. Then the outcome of the protocolalways satis-
fiesH(y) ≥ H(m, q) and there is Bob’s strategy such thatH(y) = H(m, q). The same
is true for min-entropy in place of entropy.

Proof. Let YS stand for the outcome of the protocol provided Bob uses a deterministic
strategyS. There is an onto functionS 7→ L from deterministic Bob’s strategies to
Kakeya sets such thatXL coincides withYS .



Indeed, assume that Bob uses a deterministic strategyS. That is, for eachd =
(1, d2, . . . , dm) Bob choosesx = x(d) deterministically. Thus Bob defines a Kakeya
family L consisting of all lines of the form

{x(d) + td | t ∈ F}.

ObviouslyXL = YS .
Conversely, for every Kakeya setL there is Bob’s strategyS mapped by this func-

tion toL (choose any point in the line inL going in directiond specified by Alice).
This implies the statement of the lemma for deterministic strategies. For randomized

strategies it follows from Lemma 2.

Note that for every family of linesL we haveH(YL) ≤ log |PL|. Thus to prove
that the entropy of the outcome is at leastα (provided Alice is honest) we need to
show the lower bound|PL| ≥ 2α for Kakeya problem. The best known lower bound
for |PL| is Ω(qm/2+1) [6, 5] (and it is conjectured that|PL| must be close toqm).
Note that this bound does not immediately imply thatH(YL) ≥ (m/2 + 1) log q for
every Kakeya setL, as the entropy of a random variable can be much less than the
log-cardinality of the set of outcomes. However, the key proposition from the proof of
the bound|PL| = Ω(qm/2+1) presented in [5] indeed allows to prove a slightly weaker
inequalityH(YL) ≥ (m/2 + 1) log q − O(1).

Proposition 1 ([5]). Let L be a collection of affine lines inFm such that every 2-
dimensional plane has at mostq + 1 lines fromL. LetP be a subset ofFm. Then

|{(p, l) | l ∈ L, p ∈ P, p ∈ l}| ≤ C · (|P |1/2|L|3/4|F |1/4 + |P | + |L|)

for some constantC.

This proposition allows to prove the following

Theorem 2. If Alice is honest then the outcome of the geometric protocolsatisfies
H(y) ≥ (m/2+1) log q−O(1) andH∞(y) ≥ log q provided thatm2 log2 q/q ∈ O(1).

Proof. The second statement is obvious. Let us prove the first one. ByLemma 9 it
suffices to show thatH(XL) ≥ (m/2 + 1) log q − O(1) for every Kakeya familyL.

Let α stand forq−m/2−1c wherec ≥ 1 is a constant to be defined later. We will
show thatH(XL) ≥ − logα − O(1). For eachy ∈ PL let py stand for the probability
thatXL = y: that is,py is equal to the number of lines inL containingy divided by
qm. We classifyy’s according to the value ofpy as follows.

Let Q denote the set of thosey ∈ PL with

py ≤ α

andSi for i = 1, 2, . . . ,− log α the set of thosey ∈ PL with

α2i−1 < py ≤ α2i.



The entropy ofXL is the average value of− log py. For ally in Q we have− log py ≥
− log α. For all y in Si we have− log py ≥ − log α − i. ThusH(XL) can be lower
bounded by

H(XL) ≥ − log α −
∑

i

i ·
(

∑

y∈Si

py

)

≥ − logα −
∑

i

i · |Si| · α2i.

Thus we need to show that
∑

i

i · |Si| · α2i = O(1). (7)

To this end we need to upper bound|Si|. We are able to show the following bound.

Lemma 10. For all i we have|Si| · α2i = O(2−i) or |Si| · α2i = O(q−1).

As the series
∑

i i2−i converges andq−1 · (− log2 α) ∈ O(1) these bounds obviously
imply (7).

Proof. Note that every 2-dimensional plane has at mostq +1 lines fromL (the number
of different directions in every plane is equal toq + 1). Apply Proposition 1 toL and
P = Si. We obtain

|{(p, l) | l ∈ L, p ∈ Si, p ∈ l}| ≤ C · (|Si|1/2|L|3/4q1/4 + |Si| + |L|)
= C · (|Si|1/2q(3m−2)/4 + |Si| + qm−1).

Every point inSi belongs to more thanα2i−1qm lines inL hence

|{(p, l) | l ∈ L, p ∈ Si, p ∈ l}| > |Si|α2i−1qm.

Combining the inequalities we obtain

|Si|α2iqm < C · (|Si|1/2q(3m−2)/4 + |Si| + qm−1).

If the last term in the right hand side is greater than the other ones, we have

|Si|α2i < 3C · q−1.

If the second term in the right hand side is greater than the other ones, we have

α2iqm < 3C.

Note that, sincem ≥ 2, i ≥ 1, we haveα2iqm = 2icqm/2−1 ≥ 2c. Therefore this
cannot be the case, if we letc ≥ 1.5C.

In the remaining case (the first term in the right hand side is greater than the other
ones) we have

|Si|1/2 < 3C2−iα−1q−m/4−1/2 ⇒ |Si| < 9C22−2iα−2q−m/2−1,

and
|Si|α2i < 9C22−iα−1q−m/2−1 = 9C22−i.

The last equality holds by the choice ofα. Therefore,

|Si|α2i ≤ 9C22−i.



If we choosem = 4 then the lower bounds forH(y) in the cases when Alice cheats
and Bob cheats coincide and are equal to3 log q − O(1). Thus we get:

Theorem 3. There is a(3n/4−O(1), 3n/4−O(1))-good 3-round protocol that com-
municates2n bits.

Using averaging we obtain the following corollary:

Theorem 4. There is a(3n/4−O(1), 3n/4−O(1))-good 6-round protocol that com-
municates2n bits and guarantees the min-entropy at leastn/2−O(1) for both players.
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