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Abstract. We study the two party problem of randomly selecting a stamgpng
all the strings of lengtm. We want the protocol to have the property that the
output distribution has higantropy even when one of the two parties is dishonest
and deviates from the protocol. We develop protocols thiaiese high, close to
n, entropy.

In the literature the randomness guarantee is usually sgpdeas being close to
the uniform distribution or in terms of resiliency. The rotiof entropy is not
directly comparable to that of resiliency, but we estabfistonnection between
the two that allows us to compare our protocols with the @gsbnes.

We construct an explicit protocol that yields entrapy- O(1) and hastlog* n
rounds, improving over the protocol of Goldreich et al. [Bht also achieves
this entropy but need®(n) rounds. Both these protocols ne€dn?) bits of
communication.

Next we reduce the communication in our protocols. We shevetistence, non-
explicitly, of a protocol that has 6 round®n + 8logn bits of communication
and yields entropy: — O(logn) and min-entropy:/2 — O(log n). Our proto-
col achieves the same entropy bound as the recent, alsoxpbioite protocol of
Gradwohl et al. [4], however achieves much higher min-gytra /2 — O(log n)
versusO(logn).

Finally we exhibit very simple explicit protocols. We comtéhe security param-
eter of these geometric protocols with the well studied Kakgoblem motivated
by harmonic analysis and analytical number theory. We alg alle to prove
that these protocols have entropy /4 but still n/2 — O(log n) min-entropy.
Therefore they do not perform as well with respect to theiekplonstructions
of Gradwohl et al. [4] entropy-wise, but still have much betnin-entropy. We
conjecture that these simple protocols achieve o(n) entropy. Our geometric
construction and its relation to the Kakeya problem follamveew and differ-
ent approach to the random selection problem than any ofrthequsly known
protocols.


https://core.ac.uk/display/301647724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

We study the following communication problem. Alice and Bednt to select arandom
string. They are not at the same location so they do not settivather player does.
They communicate messages according to some protocol ahd and they output a
string ofn bits which is a function of the messages communicated. Thigsshould
be as random as possible, in our case we measure the amowamdafimness by the
entropy of the probability distribution that is generateudiiis protocol.

The messages they communicate may depend on random exptyitine players
perform and on messages sent so far. The outcome of an exgmiisrknown only to
the party which performs it so the other party cannot vefify butcome of such an
experiment or whether the experiment was carried out aCale or both the parties
may deviate from the protocol and try to influence the setestdéng Chea). We are
interested in the situation when a party honestly follovesgiotocol and wants to have
some guarantee that the selected string is indeed as rarsdoossible. The measure of
randomness we use is teatropyof probability distribution that is the outcome of the
protocol.

In this paper we present protocols for this problem. In patéir we show a proto-
col that achieves entropy — O(1) if at least one party is honest and that uséss™ n
rounds and communicate$-+O(n log n) bits. The round complexity of our protocol is
optimal up-to a constant factor; the optimality followsrfra result of Sanghvi and Vad-
han [8]. We further consider the question of reducing the momication complexity
of our protocols. We show non-constructively that therepacgocols with linear com-
munication complexity that achieve entropy- log n in just 3 rounds, and in 6 rounds
achieves in addition min-entropy/2 — O(log n) which is close to the optimal bound of
n/2, that follows from Goldreich et al. [3] and from a bound on guan coin-flipping
due to Kitaev (see [2]). We propose several explicit and ganple protocols that have
entropy3n /4 and we conjecture that they have entrepy o(n). Our proofs establish
a connection between the security guarantee of our prat@ecal the well studied prob-
lem of Kakeya over finite fields motivated by Harmonic anayesid analytic number
theory (see [5, 6] for background information on Kakeya IRrot). Although these con-
structive protocols do not achieve the same parametergdset known constructive
protocols (see next section), our (geometric) protocagyaite different in nature and
much simpler to implement and still yield much higher mirtrepy.

1.1 Previous work

There is a large body of previous work which considers thdlera of random string
selection, and related problems such as a leader selectibfaalt-tolerant computa-
tion. We refer the reader to [8] for an overview of the liteirat In this paper we assume
that both parties have unlimited computational power, ge.calledfull information
model Several different measures for the randomness guarahtée @rotocol are
used in the literature. The most widely used is thee)-resilience and the statistical
distance from the uniform distribution. Informally a prot is (u, €)-resilient if for
every setS C {0, 1}™ with densityu (cardinality z2™), the output of the protocol is
in S with probability at mosk. In this paper we study however another very natural



randomness guarantee, namely the entropy of the resullitpgibdistribution. There is
a certain relationship between the entropy and resiliemaethese parameters are not
interchangeable.

In [3], Goldreich et al. constructs a protocol that js ,/z:)-resilient for all;. > 0.
This protocol runs ifO(n) rounds and communicaté€x(n?) bits. We show that their
security guarantee also implies entrapy- O(1). Hence, our first protocol, that uses
4log” n is an improvementin the number of rounds with respect to tii@py measure
over that protocol.

Sanghvi and Vadhan [8] give a protocol for every constant0 thatis(u, v/ + 0)-
resilient and that has constant statistical distance ftoenuniform distribution. This
type of resilience essentially guarantees security omséts of constant density. In-
deed, their protocol allows the cheating party to bias thipwiudistribution so that a
particular string has a constant probability of being thgati Hence, their protocol
only guarantees constamtin-entropyand entropy(1 — €)n for e > 0. Sanghvi and
Vadhan also show a lower bourd®(log* ) on the number of rounds of any random
selection protocol that achieves constant statisticahdce from the uniform distribu-
tion. We show that entropy — O(1) implies being close to uniform distribution so the
lower bound translates to our protocols.

Recently, Gradwohl et al. [4], who also considered proteeoth more than 2 play-
ers, constructed for eagha O (log™ n)-round protocol that i$y, O(,/x))-resilient and
that uses linear communication. Our results are not coelglebmparable with those
of [4]; the protocols of [4] only achieve entropy — O(logn) whereas the entropy
n — O(1) of our protocol implies onlyx, O(1/log(1/w)))-resilience for ally > 0.
Their(1/n2, O(1/n))-resilient protocol, non-explicit matches our non-exificotocol
from Section 4.1 in terms of entropy but our protocol can bemsted to also achieve
high (n/2 — O(log n)) min-entropy at the cost of additional 3 rounds.

This extensibility comes from the fact that all our protacate asymmetric. When
Bob is honest (and Alice dishonest) the min-entropy of thpuotis guaranteed to be as
high asn — O(log n), which implies, by the aforementioned result of Kitaev [2itthe
min-entropy is onlyO(log n) when Bob is dishonest (and Alice honest). The protocols
of Gradwohl et al. in general do not have this feature. Whentheir protocols achieve
high (n — O(log n)) entropy the min-entropy is oni§(log n).

Finally our explicit geometric protocol only obtaids/4 entropy and thus per-
forms worse than the explicit protocol from [4], that actg@eoru = 1/ logn entropy
n — o(n). Our explicit protocols though still have min-entropy2 — O(log n) outper-
forming [4], that only gets min-entrop®(log n).

The paper is organized as follows. In the next section weevetine notion of en-
tropy and of other measures of randomness, and we estabirshrelationships among
them. Section 3 contains our protocol that achieves entropyO(1). In Section 4 we
address the problem of reducing the communication complexiour protocols. Due
to space limitations we omit almost all the proofs from thiteaded abstract.



2 Preliminaries
LetY be a random variable with a finite ran§e Theentropy ofY is defined by:

Z Pr[Y = s| - log Pr[Y = s].
ses

If for somes € S, Pr[Y = s] = 0 then the corresponding term in the sum is considered
to be zero. All logarithms are based two.

Let X,Y be (possibly dependent) jointly distributed random vddakith ranges
T, S, respectively. Thentropy ofY conditional toX is defined by:

H(Y|X) =Y Pr[X =tH(YX =1),
teT
whereY|X = ¢ stands for the random variable whose rangé iand which takes
outcomes € S with probabilityPr[Y = s|X = ¢].
The following are basic facts about the entropy:

H(f(Y)) < H(Y) for any functionf , 1)
H(Y) < log|S], (2)
H(Y[X) < H(Y), 3)
H((X,Y)) = H(Y|X) + H(X), 4)
( ) < H({Y, X)) (follows from (4)), (5)
H(Y,X)) < H(Y ) H(X) (follows from (3) and (4)) (6)

Here(Y, X) stands for the random variable with ran§e 7', which takes the outcome
(s, t) with probabilityPr[X = ¢,'Y = s]. We will abbreviate7 ((Y, X)) asH(Y,X)
in the sequel.

The following corollaries of these facts are used in the séqu

1. LetY; be random variables with the same rasgend letY be obtained by picking
an indexi € {1,...,n} uniformly at random and then drawing a random sam-
ple according toY;. ThenH(Y) > 1 3"  H(Y;). (Indeed, lefX stand for the
random variable uniformly distributed ifll,...,n}. ThenH(Y) > H(Y|X) =
LS H(Y)) |

2. Let/ > 1 be an integer ang : S — T be a function from a sef to a set
T. LetY be a random variable with rang® If Vt € T, |f~1(t)] < ¢ then
H(f(Y)) > H(Y) — log/. (Indeed, letX be the index ofY in f~1(Y). Then
H(Y) = H(f(Y),X) < H(f(Y)) + H(X) < H(f(Y)) +log ).

Themin-entropyof a random variabl& with a finite ranges is
Ho(X) = min{—logPr[X =s]:s€ S}.

The statistical distancdetween random variablég, Y with the same finite range
S is defined as the maximum

|Pr[X € A] — Pr[Y € A|



over all subsets! of S. It is easy to see that the maximum is attained4aronsisting
of all s with Pr[X = s] > Pr[Y = s| (as well as for its complement). For every integer
n > 1, we denote byU,, the uniform probability distribution of string, 1}.

In order to apply a lower-bound from [8] to show that our mamotpcol needs
2(log™ n) rounds we establish a relation between entropy and corstatigtical dis-
tance.

Lemma 1. For every realc there is a realy < 1 such that the following holds. X is
a random variable with rang¢€0, 1} and H(X) > n — c then the statistical distance
of X andU,, is at mosty.

Definition. Let r, n be natural numbers. A deterministic strategy of a playeicgAl
or Bob) is a function that maps each tugdg, . . ., z;) of binary strings where < r to
a binary string (the current message of the player provided . ., z;) is the sequence
of previous messages). A randomized strategy of a play@dAl Bob) is a probability
distribution over deterministic strategies.

A protocol running inr roundsis a functionf that maps eachtuple (z1, ..., z,)
of binary strings to a binary string of length(the first stringe; is considered as Alice’s
message, the second string as Bob’s message and so on) and a pdix, Sg) of
randomized strategies.

If S4,Sp are deterministic strategies of Alice and Bob then the auteof the pro-
tocol for S, Sg is defined ag (z1, . . ., z,.) wherex, ..., x, are defined recursively:
241 = SA(<I1, . ,I2i>) andx2i+2 = SB(<SC1, - ,I2i+1>).

If S4,Sp are randomized strategies of Alice and Bob then the outcdntegro-
tocol is a random variable generated as follows: selectiaddently Alice’s and Bob'’s
strategiesS 4, Sg with respect to probability distributior, andS 5, respectively, and
output the result of the protocol fét4, Sp.

We say that Alice follows the protocol (lones}if she uses the strate@y, . We say
that Alice deviates from the protocall{eat$ if she uses any other randomized strategy.
Similarly for Bob.

We say that a protocd? for random string selection s, /)-good if the following
properties hold:

1. If both Alice and Bob follow the protocol then the outcomaifully random string
of lengthn.

2. If Alice follows the protocol and Bob deviates from it thitre outcome has entropy
at leastk.

3. If Bob follows the protocol and Alice deviates from it thire outcome has entropy
at leastl.

(End of Definition.)
Throughout the paper we use the following easy observatiahholds for every
protocol:

Lemma 2. Assume that Alice’s strate@y, guarantees that the entropy of the outcome
is at leasta for all deterministic strategies of Bob. Then the same gaszea holds for
all randomized strategies of Bob as well. A similar statenmetrue for min-entropy in
place of entropy.



In [8], Sanghvi and Vadhan establish that any protocol foidcan selection that
guarantees a constant statistical distance of the outpuot the uniform distribution
requires at leas(log" n) rounds. Hence we obtain the following corollary to the pre-
vious lemma.

Corollary 1. If P is a protocol thatisn — O(1),n — O(1))-good thenP has at least
22(log™ n) rounds.

For u, e > 0, a random string selection protodBlis (u, ¢)-resilientif for any setS
of size at mosj:2", the probability that the output d? is in S is at most, even if one
of the parties cheats.

In order to compare our results with previous work we stagefdfiowing claim.

Lemma 3. For a random selection protocd? the following holds.

1. If Pis (u, duc)-resilient for some constantsd > 0 and anyu > 0 thenP is
(n—0(1),n —O(1))-good.

2. If Pis (n — O(1),n — O(1))-good then for some constaditand anyu > 0 it is
(1, d/ log(1/w)))-resilient.

3 The main protocol

In this section we construct a protocol thatis— O(1), n — O(1))-good. We start with
the following protocol.

Lemma 4. There is a(n — 1,n — logn)-good protocolP, running in 3 rounds and
communicating:? + n + logn bits. If Bob is honest then the outcomeRyfhas min-
entropy at least, — logn.

Proof. The protocolP, (A4, B) is as follows:

1. PlayerA pickszy, 2o, ...,2, € {0,1}™ uniformly at random and sends them to
PlayerB.

2. PlayerB picksy € {0, 1}" uniformly at random and sends it to Playér

3. PlayerA picks an index € {1,...,n} uniformly at random and sends it 3.

4. The outcom® of the protocol isz; @ y, i.e., the bit-wise xor of; andy.

Note that the entropy bounds are tight as a cheating Bob dap se x; in the
protocol and thedl (R) = n — 1. Similarly, a cheating Alice can enforce the fitsg n
bits of the outcome to be all zero bits 86 R) = n — logn in that case.

1) It is easy to verify that the outcon® of the protocolP,(Alice, Bob) is uni-
formly distributed if both Alice and Bob follow the protocahd hence it has entropy
n.

2) Assume that Alice follows the protocol and Bob is tryingcteeat. Hence, Alice
picks uniformly at random,...,z, € {0,1}". Bob picksy. Then Alice picks a
random index € {1,...n} and they seR = z; & y. Clearly,H (z1, ... ,z,) = n?,

thus

nQZH(Ila7xn)§H('r17axnay)SH(Il®y77xn®y)+H(y)



<H@ Dy,...,xn DY) +n.

Here the first inequality holds by (5), the middle one by (1 &), and the last one by
(2). Therefore,

(n*—n)/n < H(m®y, ..., z,0y)/n <> H(z:0y)/n= H(z;oylj) < H(z;oy).
=1

Here the second inequality holds by (6), the equality haddsAlice chooseg uni-
formly, and the last inequality is true by (3).

3) Assume that Bob follows the protocol and Alice is tryingcteeat. Hence, Alice
carefully selects;, . .., z,, Bob picks a random string € {0, 1}" and Alice carefully
chooseg € {1,...,n}. ThusH (y|{z1,...,z,)) = n and hence

H(z; ©y) > H(zj ©yl(z, .. 2n)) 2 H(yl[(er, .o xn) = H(G 1, 20))
> H(y|{(x1,...,zn)) — H(j) > n — logn.

Here the second inequality holds by (1) and (6). Verifying libwer bound on the min-
entropy is straightforward.

Our protocol achieves our goal of having entropy of the ootealose to if Alice
is honest. However if she is dishonest she can fix ulgo bits of the outcome to
her will. Clearly, Alice’s cheating power comes from thetftitat she can choose up-to
log n bits in the last round of the protocol. If we would reduce thenber of strings
x; she can choose from in the last round, her cheating abilityldvdecrease as well.
Unfortunately, that would increase cheating ability of Bblence, there is a trade-off
between cheating ability of Alice and Bob. To overcome théswill reduce the number
of strings Alice can choose from but at the same time we wsibdimit Bob’s cheating
ability by replacing hisy by an outcome of yet another run of the protocol played
with Alice’'s and Bob’s roles reversed. By iterating this el times we can obtain the
following protocol.

Letlog* n stand for the number of times we can apply the funcfilog =] until we
get 1 fromn. For instancelog™ 100 = 4.

Theorem 1. There is aln — 2, n — 3)-good protocol running ir2 log™ n+ 1 rounds and
communicating:? + O(n log n) bits. Depending om, either if Alice or Bob is honest
then the min-entropy of the protocol is at least O(logn).

Proof. Let k = log" n — 1. Definely = n and?; = [log¢;_1],fori =1,... k, so
U1 € {3,4} and/, = 2.

Fori =1,...,k we define protocoP; (A, B) as follows.
1. PlayerA picksz1, z2, ...,z € {0,1}™ uniformly at random and sends them to
PlayerB.

2. PlayersA and B now run protocolP;_; (B, A) (note that players exchange their
roles) and sey to the outcome of that protocol.
3. PlayerA picks anindex € {1,...,¢;} uniformly at random and sends it 1.



4. The outcom&; of this protocol isz; & y.
We claim that the protocols afe — 2, n — log 4¢;)-good:

Lemma5. Forall i =0,1,..., k the following is true.

1. If both Alice and Bob follow the protocél (Alice, Bob) then its outcom®,; sat-
isfiesH(R;) = n.

2. If Alice follows the protocaP; (Alice, Bob) then the outcomR,; satisfiesd (R;) >
n — 2.

3. If Bob follows the protocoP;(Alice, Bob) then the outcom®,; of the protocol
satisfiesH (R;) > n — log 4¢;.

All the bounds on the entropy are valid also when conditiaorethe tuple consisting of
all strings communicated before runnify. Furthermore, ifi is even and Bob is honest
or i is odd and Alice is honest théii.. (R;) > n — 23111 .

Proof. The first claim is straightforward to verify. We prove the @thwo simultane-
ously by an induction on. Fori = 0 the claims follow from Lemma 4. So assume that
the claims are true far— 1 and we will prove them foi.

If Alice follows the protocolP;(Alice, Bob) then she picks:, . .., z,, uniformly
at random. Then the protocé}_, (Bob, Alice) is invoked to obtainy = R;_;. We
can reason just as in the proof of Lemma 4. However this timéave a better lower
bound forH (x4, ..., zs,,y). Indeed, by induction hypothesis, since Alice follows the
protocol,

H(y|lx,...,x0,) > n—logdl,—1 >n — 2¢;.

Here the last inequality holds for all< k as¢;_; > 4 in this case and hen&¥; >
2logl;—1 > log4l;_;. Fori = k we havel;,_, € {3,4} and¢; = 2 and the inequality
is evident.

Thus,

H(z1,...,20,,y) = H(z1,...,20;,) + Hylz1, ..., @,) > lin — 2¢; + n.

Just as in Lemma 4, this implies

-~

H(zj ®y) > H(z; @ ylj) :Z (zs ®y)/
> (H(z1,. .. :zrgl,y) H(y)/t; > (lin—20;+n—n)/l; =n—2.

Assume that Bob follows the protocs} ( Alice, Bob) but Alice deviates from it by
carefully choosinges, . .., z¢, andj. Then the protocoP;_;(Bob, Alice) is invoked
to obtainy = R;_;. By induction hypothesi#f (y|x1,...,x¢,) > n — 2. Now Alice
chooseg € {1,...,¢;}. Similarly as in the proof of Lemma 4, we have

H(‘Tj @y) > H(xj EBy|<£C1,...,.’L'gi>) > H(y|<x17""xéi>) _H(j|<xla""xfi>)
> H(y[(z1,...,2ze,)) — H(j) 2 n—2—log;.

The claim about min-entropy follows by induction.



By the lemma, the protocd?; is (n —2,n—3) good. It runs ik +3 = 2(log™ n—
1) + 3 rounds.
The number of communicated bits is equal to

k
n? +n+logn + Z(n& +logt;)
i=1

All ¢;’s in the sum are at mosbg n and decrease faster than a geometric progression.
Hence the sum is at most its largest termdg n) times a constant.

4 Improving communication complexity

In the previous section we have shown a protocol for AliceBold that guarantees that
the entropy of the selected string is at leastO(1). The protocol has an optimal (up-to
a constant factor) number of rounds and communic@tesg) bits. In this section we
will address the possibility of reducing the amount of commiation in the protocol.

We focus on the basic protocéh (A4, B) as that protocol contributes to the com-
munication the most. The protocol can be viewed as follows.

PlayerA picksz € {0, 1} uniformly at random and sends it to Player
PlayerB picksy € {0,1}™5 uniformly at random and sends it to Playér
PlayerA picks an index € {0, 1}m’4 uniformly at random and sends it 8.

A fixed functionf : {0,1}™4 x {0,1}"5 x {0,1}"4 — {0,1}" is applied taz, y
andj to obtain the outcomé(x, y, 5).

PowbdPR

We will denote such a protocol by (4, B, f). In the basic protocol the parameters
are:my = n?, mp = n andm/, = logn. We would like to find another suitable
function f with a smaller domain.

We note first that three rounds in the protocol are necessavyder to obtain the
required guarantees on the output of the protocol. In anydaad protocol at least one
of the parties can force the output to have entropy at mgat+ O(logn). (In a two
round protocol, if for some:, the range off (z, -) is smaller tham2"/? then Alice can
enforce entropy:/2 + logn by picking thisz. On the other hand if (z, -) has a large
range for allz, then Bob can cheat by almost always enforcing the outpig io b set
of size2"/2. Bob’s cheatingset can be picked at random.)

4.1 Non-explicit protocol

The following claim indicates that finding a suitable functif should be feasible.

Lemma6. If £ : {0,1}" x {0,1}" x {0,1}8°8™ — [0, 1}" is taken uniformly at
random among all functions then with probability at leag®, Py(A, B, f) satisfies:

1. If both Alice and Bob follow the protocdl, (Alice, Bob, f) then its outcom&®
satisfiesH (R) =n — O(1).



2. If Alice follows the protocal, (Alice, Bob, f) then the outcomR satisfiesH (R) >
n—O(1).

3. If Bob follows the protocaP, (Alice, Bob, f) then the outcom& of the protocol
satisfiesH (R) > n — O(logn) and Hx(R) > n — O(logn).

The question is how to find an explicit functighof similar properties. We propose
the following three functions that we believe have the resfliproperties. We prove
several results in that direction.

1. frot : {0,1}™ x {0,1}" x {1,...,n} — {0,1}" defined byf(z,y,j) = 27 ®
y, wherex/ is the j-th rotation ofz, 2/ = zjzj11 - zpx1---x;_1. Heren is
assumed to be a prime.

2. fin: FFIxFFxF — F* whereF = GF[2'°¢"], k = n/lognandf(d,y,j) =
(1,d1,...,dk,1)*j+(y1,...,yk).

3. fmu: F xFxH— F,whereF = GF[2"],H C F,|H| =n,andf(z,y,j) =
T*j+y.

In particular the functionf,.; is interesting as it would allow very efficient im-
plementation. We conjecture that f@r € { fiot, fiin, fmui} Protocol Py(A, B, f) is
(n — o(n),n — O(logn))-good.

Lemma 7. Py(A, B, frot) is (n/2 — 3/2,n — logn)-good whenn is prime and the
min-entropy of the outcome is at least- O(log n) when Bob follows the protocol.

A similar lemma holds also for our other two candidate fuorcsi.

Averaging the asymmetry One of the interesting features of our protocols is the asym-
metry of cheating power of the two parties. We used this asgtnnto build the pro-
tocol with entropyn — O(1). One can also use this asymmetry fav&raging their
cheating powers in the following simple way. Given a prota@q(A, B) for selecting
ann bit string, Alice and Bob first select the firat/2 bits of the string by running
the protocol?,, /2 (Alice, Bob) and then they select the other half of the string by run-
ning the protocoly,, »(Bob, Alice). If the protocolQ,, is (k(n),l(n))-good then the
averagingprotocol is(k(n/2) + 1(n/2), k(n/2) 4+ 1(n/2))-good. Similarly if the min-
entropy when Alice follows the protocol is bounded from beloy 4., (n) and when
Bob follows the protocol by, (n), then the min-entropy of the outcome of the averag-
ing protocol is at least (n/2) + loo(n/2).

Hence from Lemma 7 we obtain the following corollary.

Corollary 2. There is a5-round protocol for random string selection that communi-
cates2n + O(logn) bits, that is(3n/4 — O(logn), 3n/4 — O(logn))-good and that
has min-entropy at least/2 — O(logn) when at least one of the parties follows the
protocol.

In the next section we show for a variantBf(A, B, fi,) @ similar security guar-
antee.



4.2 Geometric protocols and the problem of Kakeya

We exhibit here a variant of the protocB) (A, B, fin) and show that it achieves en-
tropy at leas3n/4 — O(1) if at least one party is honest. Fix a finite fiefdand a
naturalm > 2. Letq = |F|. We rephrase the protocol as follows:

1. Alice picks at random a vectdr= (1, ds,...,d,,) € F™ and sends it to Bob.
2. Bob picks at random = (z1,...,z,,) € F™ and sends it to Alice.

3. Alice picks at random € F' and sends it to Bob.

4. The output of the protocol is

y=x+td= (1 +t,xo +tda,..., Ty + tdy).

The geometric meaning of the protocol is as follows. Alicekgiat random a direc-
tion of an affine line in then-dimensional spacé™ over F'. Bob chooses a random
affine line going in that direction. Alice outputs a randoninpdying on the line.

It is easy to lower bound the entropy of the outpudf this protocol assuming that
Bob is honest.

Lemma 8. If Bob is honest then the outcomef the protocol satisfies
H(y) > Heo(y) > (m — 1) logg.

Note that Alice can cheat this much. For example, Alice cainefg; = 0 by choosing
alwayst = —x;.

In the case when Alice is honest we are able to prove the balpd > (m/2 +
1)log ¢g—O(1). We do not know whether Bob indeed can cheat this much. Thaston
is related to the following problem known as Kakeya problemnfihite fields.

Kakeya problem. Let L be a collection of affine lines ifi"™ such that for each
direction there is exactly one line ih going in that direction. Le®;, denote points in
lines fromL. How small can béPy,|?

For a family L of lines letX;, denote the random variable i, that is a random
point on a random line ih. That is, to generate an outcomeXf,, we pick a random
line ¢ in L (all the lines are equiprobable) and then pick a random pmirtt (all the
points on? are equiprobable).

Call any set of lined. satisfying the conditions of Kakeya problem a Kakeya fam-
ily and let H(m, q) stand for the minimun¥{ (X;,) over all Kakeya familied.. Let
H.(m, q) stand for the similar value for min-entropy.

Lemma 9. Assume that Alice is honest. Then the outcome of the proabeays satis-
fiesH (y) > H(m,q) and there is Bob’s strategy such thd{y) = H(m, ¢). The same
is true for min-entropy in place of entropy.

Proof. Let Y g stand for the outcome of the protocol provided Bob uses amétéstic
strategyS. There is an onto functio§' — L from deterministic Bob’s strategies to
Kakeya sets such tha;, coincides withY g.



Indeed, assume that Bob uses a deterministic stratedyhat is, for eachi =
(1,dg,...,d,) Bob chooses: = z(d) deterministically. Thus Bob defines a Kakeya
family L consisting of all lines of the form

{z(d)+td |t e F}.

ObviouslyX; = Y.
Conversely, for every Kakeya sétthere is Bob’s strateg§ mapped by this func-
tion to L (choose any point in the line ih going in directiond specified by Alice).
This implies the statement of the lemma for deterministi&tegies. For randomized
strategies it follows from Lemma 2.

Note that for every family of lined we haveH (Y;,) < log|Py|. Thus to prove
that the entropy of the outcome is at leas{provided Alice is honest) we need to
show the lower boun{lP;,| > 2% for Kakeya problem. The best known lower bound
for |Py| is £2(¢™/?*1) [6,5] (and it is conjectured thdtP; | must be close tg™).
Note that this bound does not immediately imply thafY ) > (m/2 + 1) logq for
every Kakeya sel, as the entropy of a random variable can be much less than the
log-cardinality of the set of outcomes. However, the keypoition from the proof of
the bound P | = £2(¢™/%*+1) presented in [5] indeed allows to prove a slightly weaker
inequalityH(Y ) > (m/2+ 1)logqg — O(1).

Proposition 1 ([5]). Let L be a collection of affine lines "™ such that every 2-
dimensional plane has at magt- 1 lines fromL. Let P be a subset of*. Then

{1)[le L, pe P pel}| <C-(P|"?|ILP*FIY* + |P| + |L|)
for some constan®.
This proposition allows to prove the following

Theorem 2. If Alice is honest then the outcome of the geometric protsetisfies
H(y) > (m/2+1)logq—O(1) and Ho, (y) > log q provided thain? log® ¢/q € O(1).

Proof. The second statement is obvious. Let us prove the first ond.eByma 9 it
suffices to show thall (X 1) > (m/2 + 1) log g — O(1) for every Kakeya familyL.

Let o stand forg~™/2~1¢ wherec > 1 is a constant to be defined later. We will
show thatd (X)) > —loga — O(1). For eachy € Py, letp, stand for the probability
thatX; = y: that is,p, is equal to the number of lines ih containingy divided by
q™. We classifyy’s according to the value gf, as follows.

Let @ denote the set of thogee P, with

Dy S
ands; fori =1,2,...,—loga the set of thosg € P, with

a2l < Py < a2’



The entropy ofX . is the average value of log p,. For ally in Q we have—logp, >
—loga. For ally in S; we have—logp, > —loga — i. ThusH(Xy,) can be lower
bounded by

H(XL) Z—lOgQ—Zi-(Zpy) > —1ogoz—Zi-|Si|-oz2i.

[ yeS; 7

Thus we need to show that

> i8] - a2h = 0(1). (7)

To this end we need to upper boufit]|. We are able to show the following bound.
Lemma 10. For all i we haveS;| - a2t = O(27%) or |S;| - a2 = O(q™1).
As the serie$ ", i2% converges and~! - (— log® o) € O(1) these bounds obviously
imply (7).
Proof. Note that every 2-dimensional plane has at ngostl lines fromL (the number

of different directions in every plane is equald¢et+ 1). Apply Proposition 1 ta. and
P = S;. We obtain

{(p,) [ l€ L, pe S, pel} <C-(ISi|V2LI**¢"* +|8i| + |L])
=C - (|S;|/2qBm=D/4 115, 4+ g™ Y.

Every point inS; belongs to more than2'~'¢™ lines in L hence
{(p,) |l €L, peS;, pel}>|Si|a2i~ g™
Combining the inequalities we obtain
|Sila2'q™ < C - (1S:V/2q®m 2/ 418, + g™ 7).
If the last term in the right hand side is greater than therathes, we have
|Si|a2" < 3C - ¢t
If the second term in the right hand side is greater than theraines, we have
a2iq™ < 3C.

Note that, sincen > 2,7 > 1, we havea2i¢™ = 2icg™/?~' > 2¢. Therefore this
cannot be the case, if we let> 1.5C.

In the remaining case (the first term in the right hand sideésigr than the other
ones) we have

|Si|1/2 < 302—ia—1q—m/4—1/2 = |Sz| < 96v22—21'04—2q—1n/2—17

and . . .
|S;i]a2t < 90?2 ta g™ ™/21 = 90?27,
The last equality holds by the choice®f Therefore,
|S;|a2f < 9C?27°.



If we choosen = 4 then the lower bounds fd# (y) in the cases when Alice cheats
and Bob cheats coincide and are equa fog ¢ — O(1). Thus we get:

Theorem 3. There is a(3n/4 — O(1),3n/4 — O(1))-good 3-round protocol that com-
municate2n bits.

Using averaging we obtain the following corollary:

Theorem 4. There is a(3n/4 — O(1),3n/4 — O(1))-good 6-round protocol that com-
municate€n bits and guarantees the min-entropy at leag2 — O(1) for both players.
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