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We investigate the frequency of complete sets for various complexity 

classes within Ii f.? under several polynomial-time reductions in the sense of 

resource-bounded measure. We show that these sets arc scarce: The sets that 

are ~!>-n-cornplete for . I '.Jf!. the levels of the polynomial-time hierarchy. 

and .1'.'1.1'.cF(,fi have p2-measurc zero for any constant :x< I; The ~~>-T

complete sets for I! f.;P have p 2 -mcasure zero for any constant c; Assuming 

. II.cl =f. Ii :'J'.1', the ~ f,-completc sets for Ii f.<!' have p-measure zero. A key 

ingredient is the Small Span Theorem. which states that for any set A in 

Ii f.1' at least one of its lower span (i.e .. the sets that reduce to A) or its upper 

span (i.e .. the sets that A reduces to) has fJ2-measure zero. Previous to our 

work, the best published theorem along these lines held for ~ bu-rcductions. 

We establish it for ~ ;, .. 111_,,-rcductions. 1999 Academic; Press 

1. INTRODUCTION 

Lutz introduced resource-bounded measure [ 16] to formalize the notions of 

scarceness and abundance in complexity theory. His approach makes it possible to 
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express statements like '"only a few" or ''most" sets in a complexity class (f, have 
property P. Many papers investigate resource-bounded measure in relation with 
complexity theory [ 14, 20, 22, I, 21, 25, 19, 2]. 

We can also use resource-bounded measure as a tool for separating complexity 
classes. For example, if we could show that the complete sets in complexity class ((, 
have measure zero and the complete sets in 9 do not, we would have separated (6 

from r.t. 
In this paper we follow that line of research. We investigate complete and hard 

sets for. t ·.J/, the levels of the polynomial-time hierarchy, .!J'H'.!l.c-/r6ff, and fJf.JfJ, 
and give some evidence that they have p2 -measure zero. On the other hand, the 
results of Bennett and Gill [ 8] imply that the ::::;; ft-hard sets for .YJ.1!1.1/1 do not have 
Pi-measure zero; Allender and Strauss [ l] even showed they have p2 -measure I in 
(J .'/'.!/'. 

We use three different approaches to obtain our results. Two of them yield 
unhypothesized statements on the border of what is provable by relativizable 
techniques. First, we significantly improve the Small Span Theorem of Juedes and 
Lutz [ 14]. The Small Span Theorem for a reducibility ~ ~ states that for any set 
A in {J .'J'.J/, either the class of sets that ::::;; ~-reduce to A (called the lower span of A), 
or the class of sets that A ::::;; ~-reduces to (the upper span of A), or both have 
p2 -measure 0. Since the degree of a set is the intersection of its lower and upper 
spans, it implies that every ~~-degree has p 2 -measure zero, and in particular the 
::::;; ~-complete degree of any complexity class within f; .'/'.J/. The strongest Small 
Span Theorem previous to our work was due to Ambos-Spies, Neis, and Terwijn 
[ 4 ], who proved it for :::; l:tt-reductions. The extension to reductions with a non
constant number of queries was a notorious open problem in the area. We establish 
the Small Span Theorem for :::; ;. .. 111_tt-reductions, i.e., for nonadaptive reductions 
that make a subpolynomial number of queries. Longpre [ 15] informed us that he 
obtained a Small Span Theorem for :::; f08 .. 111n-tt-reductions at the end of 1995 using 
the compressibility method [9]. 

Lutz [ 18] obtained a Small Span Theorem for non uniform reductions w.r.t. 
pspace-measure. Similar to his proof, our Small Span Theorem follows from the fact 
that most sets in !f.'/'.f> have a :::; ;. .. 111.u-upper span with p 2-measure zero. We 
actually establish this fact for ~ ;."-tt-reductions for any constant Cl:< 1. This way, 
we get stronger results on the scarceness of complete sets than the ones that follow 
from the Small Span Theorem: Any ~~·-n-degree within f;f.:Y' has p 2 -measure 
zero. Previously, it was only known for ~ l:tt-reductions that the Pi-measure of the 
complete sets for IJ.1'.1!1 have p 2-measure zero [4, JO]. We also obtain that the 
Pi-measure of the :::; ;.._n·hard sets for IJ and o.'t.11 is zero. 

Then we take a look at ff.'[.'!', in particular, and use an ad hoe technique to 
improve the results of the first approach for this particular case. We show that the 
:::; ;., -T-complete sets for o .1'.'I' have p 2 -measure zero for any constant c. Our proofs 
relativize and are on the edge of the scope of relativizable techniques: Showing the 
last theorem for unbounded growing exponent c would separate .!-d.'l'.Jf' from f; .'/'.!/'. 

Therefore, we next look at what we can show under a nonrelativizing reasonable, 
but yet unproven, complexity theoretic hypothesis, namely the assumption that 
. //.e>/ =I (J/t.!J'. Babai, Fortnow, Nisan, and Wigderson [ 5] established the existence 
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of a pseudo-random generator that can be used to simulate .YJ.f1' in subexponential 

time for infinitely many input lengths, unless . II r/ = f;.f.1'. Using this pseudo

random generator, Buhrman. Van Melkebeek, Regan, Sivakumar. and Strauss [ 12] 

showed that the dass of ~ft-complete sets for each of the J-levels of the polyno

mial-time hierarchy has p-mcasure zero, unless Ii /{.1' =.II.cl. Combining our 

second approach with theirs and some new ingredients, we are able to prove that 

the complete sets for 1'! .'/'.'!' under ~~-reductions that make their queries in 

lexicographic order, have p-measure zero unless /;.'/'.'!'=.II.cl. In particular, the 

::::;; i~ -complete sets for f; f.'!' have p-measure zero unless Ii f.J> =.!le/. 

Summarizing our results: 

• We prove a Small Span Theorem for ~ ;,,,,,,_tt-reductions. 

• We show that the ~;,, _ tt-complete sets for . I .JJ, the levels of the polyno

mial-time hierarchy, and /./.'//fc/'f,f; have p 2 -measure zero for any x < !. 

• We show that the ~;,'-tt-hard sets for I: and 0.1.!f> have p 2 -measure zero 

lor any x <I. 

• We show that the ~ ;,, T-complete sets for 0.i'.J> have p 2 -measure zero for 

any constant c. 

• We show that the ~ft-complete sets for n.i'.Y' have p-measure zero unless 

.11.r/ = 1: f.J> (and the polynomial-time hierarchy collapses). 

The organization of this paper is as follows. We first give the necessary back

ground on resource-bounded measure and on pseudo-random generators. Section 3 

describes our results for arbitrary subclasses of 0.'/'.'11. Then we discuss our results 

particular to 0.'!"f Section 4 contains those without any complexity theoretic 

assumption; Section 5 contains those using the hypothesis . II.cl# f; .'!'.'11. Finally, we 

give some comments and mention remaining open problems. 

2. NOTATION AND PRELIMINARIES 

Most of our complexity theoretic notation is standard. We refer the reader to the 

textbooks by Balcazar, Diaz. and Gabarr6 [7, 6], and by Papadimitriou [24]. 

A reduction of a set A to a set B is a polynomial-time oracle Turing machine M 

such that /v/ 8 =A. We say that A reduces to B and we write A~~ B ("T' for 

Turing). The reduction AI is 1101111t!aptire if the oracle queries M makes on any 

input are independent of the oracle. In that case we write A ::::;; ft B ( "tt" for truth

table ). IC in addition, the number of queries on an input of length 11 is bounded by 

i/(11 ), we write A::::;; ~lnl-tt B. For a reducibility ::::;; ;. , we define the /mrer ,11wn of a set 

A as .;,;;.(A ) = i B I B::::;;;. A), and the upper spa11 of A as .!f> .~- 1 (Al = ( B I A ::::;; ;. B}. The 

~;.-degree of A equals .;,;;.(A) n .1' ,- 1 (A ). 

An uutoreductiun /vl is a reduction that never queries its own input; i.e .. for any 

input x and any oracle B, M 8 with input x does not query x. A set A is auto

rl!ducih/e if there is an autoreduction of A to itse!C 
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2.1. Background 011 Reso11rce-Bo1111ded Measure 

For our purposes, we only have to define what it means to have resource-bounded 

measure zero. 

DEFINITION 2.1. A supernwrtingale is a function d: I:* -+ [ 0, w) satisfying 

I d(1vO) + d( 1d) 
C(H') ~ 2 ( l ) 

for every 11' E J:*. If equality holds in (I) for all 11', dis called a martingale. A super

martingale succeeds on a sequence wEJ:oc, ifd(w)=iimsupw~w.w .... wd(ll')= 'X,. It 
corers a class rr, of sequences if it succeeds on every sequence in re;. 

A martingale d describes a strategy for an infinite one-person betting game. At 
the beginning of the game, an infinite bit sequence w is fixed but not revealed. The 
player starts with initial capital d(I.). and in each round guesses the next bit of w 
and bets some of his capital on that outcome. Then the actual value of the bit is 
revealed. On a correct guess, the player earns the amount of money he bet; 
otherwise he loses it. The value of d( ir) equals the capital of the player after being 
revealed the bit sequence 11·. The player wins on w if he manages to make his capital 
arbitrarily high during the game. A supermartingale describes a similar game, but 
now the player is allowed to throw away some of his capital in every round. 

Martingales yield the following characterization. 

THEOREM 2.2. A class rr, £;; rw has Lebesgue measure :era (ff it can be covered h y 
a martingale (ff' it can he cmiered hy a supermartingale. 

We obtain a resource bounded variant by putting resource bounds on the 
martingales. 

DEFINITION 2.3 [ 17]. A (super )martingale d is a p-( super )martingale ( resp. 
JJi-(super)martingale) if we can compute d(w) in time polynomial in lwl (resp. in 
time 2108 0(

11 lwl). A system d; of (super)martingales is p-uniform (resp. Pi-uniform) if 
we can compute d;(w) in time polynomial in !iv!+ i (resp. in time 210g 0111 <lwl +n). 
A class rr, £;; J:'f:C has p-measure ( resp. p2-measure) zero if it can be covered by a 
p-supermartingale (resp. JJi-supermartingale). We denote this by /lp(<f,) =0 (resp. 
/lpl(((,) = 0). 

As in the unbounded case, the resource-bounded measure-zero relations are 
monotone and closed under union. The following resource bounded version of 
closure under countable unions holds. 

THEOREM 2.4 [ 17 J. Let d; be a p-uniform ( resp. Pi-un({orm) system of supermar
tingales such that d; coi'ers the class r6;. Then U; r6; hasp-measure ( re.1p. p2 -measure) 
:ero. 

Characteristic sequences provide the link between resource-bounded measure and 
complexity theory: We associate with a set A £;1:* its characteristic sequence XA = 

A(.1·0) A(s1) A(s2) ···,where s0 , .1· 1• s2 • ... is the enumeration of I:* in lexicographical 
order. 



HARD SETS ARE HARD TO FIND 331 

The crucial property of the resource-bounded measure-zero concepts not shared 
with the Lebesgue measure-zero concept, is that /-lp( 8) ;:6 0 and Jlp 2( 8.'J'.1>) ;:6 O [ 17]. 

2.2. Background on Pseudo-Random Generators 

DEFINITION 2.5 [23]. The hardness HA(n) of a set A at length n is the largest 
integer s such that for any circuit C of size at most s with n inputs 

where x is uniformly distributed over x;n. A pseudo-random generator is a function 
G that, for each 11, maps I" into x;r(nl, where r( n) > n. The sernrity S G( n) of G at 

length n is the largest integer s such that for any circuit C of size at most s with 
r(n) inputs 

1 I Pr [ C( x) = I ] - Pr [ C( G( y J) = I ] I ~ - • 
x y s 

where x is uniformly distributed over x;r<nl and y over 2". 

For our purposes, we will need a pseudo-random generator computable in ff that 
stretches seeds superpolynomially and has superpolynomial security at infinitely 
many lengths. We will use the one provided by the following theorem. 

THEOREM 2.6. ff'. //.r.:/ ;:6 /j .1'.'fJ, there is a pseudo-random generator G computable 
in f, irith r( 11) E 11H(log n) such that ji1r any integer k, SG( 11) ~ nk .fin· infinitely many n. 

The proof follows directly from the next results of Babai, Fortnow. Nisan, and 
Wigderson [5], and Nisan and Wigderson [23], combined with some padding. 

THEOREM 2.7 [ 5 J. If' . //,e>/ ;:6 !, f.1>, there is a set A E /j .'/'.'/> such that .fin· any 
integer k. H A(n) ~ nk .fi1r i1~//J1ite/y many n. 

THEOREM 2.8 [ 23]. Given any set A E fJ f.f>. there i.1· a pseudo-random generator 
G computahle in 8.1'.1> ll"ith r(11)E11 1100gnJ such that S0(n)EQ(HA(fal/n). 

3. COMPLETE SETS UNDER NON-ADAPTIVE REDUCTIONS WITH 
n° QUERIES AND A SMALL SPAN THEOREM 

In this section, we establish our results on the measure of complete and hard sets 
for complexity classes within (fff The following theorem forms the main 
ingredient. It states that most sets in 6.1'.:J> have a small upper span under ~~"-tt
reductions for constant :x < I. Later we also show a strong connection with the 

Small Span Theorem. 

THEOREM 3.1. For any :x < 1, 
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A B 

QAf,i Wi: 
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FIG. I. !:letting strategies at stage i. 

We first give an outline of the proof. Fix a ::( ;;, "-reduction M running in time 
11' for some constant c > 0, and a set A E Ii .1"./1. We would like to construct a 
Pc-martingale that succeeds on any set B for which M 11 =A. Suppose we are given 
the initial segment ir; of 1 8 corresponding to all strings of length less than m ,. See 
Fig. I. We can select an input x of length 11 1 =111) ' for some constant i; > 0 and 
divide the available capital uniformly among the extensions w;+ 1 of ll'; correspond
ing to all strings of length less than 1111+ 1 (111 1+ 1 ;:::n;) for which M":.i(x)=A(x). 

This way, our capital at the end of stage i is definitely not smaller than at the 
beginning. and in case only half or fewer of the extensions pass the consistency test 
on x, we actually double it or better. In order to be able to bet on the sets A E /; .1.l/ 
for which this strategy fails on some set B such that M fl =A. we will perform the 
consistency check, not for a single input x of length 11 1, but for a certain collection 
! 11. 1 of 117 +I inputs x of length 11 1• We distribute the available capital uniformly 
over all extensions i<+ 1 for which M";. 1 (.r) =A( x) for every x E /.H. 1. If there is an 
input x E I 11. / for which only half or fewer of the extensions 11·; , 1 satisfy M"; ' ( x) = 

A(x). we gain a factor of 2 or more in stage i while betting on B. We will try this 
strategy at every stage i, and we succeed on B if the latter situation occurs for 
infinitely many of them. 

Now, suppose that for some B to which Af reduces A, this situation only occurs 
for finitely many stages. So for almost all stages i, on any input x E IM. 1 more 
than half of the extensions iV:+ 1 of 1\' 1 satisfy M";, 1 (x) = A(x). We would like to 
construct a p-martingale that succeeds on any such A E 11 f./1 by betting on these 
x's according to the majority vote of the extensions. We do not know the prefix 11·, 

of/ /1 we need for that, but we can guess the values of the bits in this prefix which 
l'vf queries on inputs x E I.11. ,. I.e., we divide our capital uniformly over all possible 
corresponding strategies. In order for this to work, we will make sure that the set 
/.11 . / consists of n~ + I strings of length 11 1 on which /vl makes the same queries of 
length less than Ill;. This implies we have to distribute our capital among no more 
than 211

: strategies, and at least one of them will realize a relative gain of 21 1\/ ,1 = 
211

; + 1 = 2 · 2<. So. if we do this at every stage with ~ of the capital available at the 
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beginning of that stage. and leave the other ~ intact we succeed on A; at almost 

all stages, we increase our capital with a factor of~· 2 = ~. and at the finitely many 

other stages. we do not lose all of it. 

We define the stages as follows: 

m 0 = I 

(2) 

n; = 111) 1"'. 

Note that. no matter for what constant c the reduction M runs in time nc. the 

stages do not interfere at sufficiently high levels, i.e .. 111;+ 1 :::; 11~· for i sufficiently 

large. 

Next. we show that for sufficiently large i. the sets IM.; exist for any :::; ;,, _ tt

reduction M. and that we can construct them efficiently. Here we need the fact 

that :x < I. 

LEMMA 3.2. Let :x < I, i: E ( O. I - :x ), and 111; and 11; de.fined hy ( 2 ). There is an 

intez;;er i0 such that .fi!I· any i;:: i0 and for any :::; ;,, __ tt-reduction M, there is a set of 

strings QM.; such that 

11·here QM(x) denotes the set of queries M makes on i11put x. Moreorer, 11·e can .find 

the /exicographirn/ly .first set QM,; and the /exicographirnl/y .fi'rst suhset IM., of' 

{ x E J;"; I Q M( .\') n I< 111; = Q M.;} 

11·itlz II M.; I= n~ +I in time 2211•. 

Proof' of Le111111a 3.2. For sufficiently large i, the number of possible values of 

QM(X) n.2..,'<m, for XEl·n, is bounded by 

( 3) 

from which the existence of QM.; f()l!ows. A brute force search does the job. I 

We now formalize the above outline. 

Proo/of Theornn 3.1. We use the notation from Lemma 3.2. Fix A E DT!ME[2"k]. 

Let 

( I, 
n _; 

A. M - ( Pr"' c;;i " [ Vx E IM. ; : Mw( x) = A ( x)], 

if lwl<2"'•o, 
if 2m;ll:::; 2m;:::; I wl < 2m,+ I. 

(4) 
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We define the martingale dA, M as 

d A, M().) = I , 

{ 
2 · TC A. M( wh ) I . 

----~--~~ ' (A M( \I ), 

I TC A, M( \l'/J) + TCA, M( ll'fJ) '. 
i A, A:r( \\'/J) = 

dA, AI(\\'), otherwise. 

This means that for any sufficiently large i (such that i;;: i0 and stage i + I docs not 
interfere with stage i) and for any prefix 11· 1 of length 2"'• - I, the martingale d .. 1• M 

distributes 2 2""' 1··2"'1 
• dA. M( n· 1) uniformly over all extensions ir;+ 1 of ll'1 with Ill';+ 1 I 

= 2"' 1+ 1 - I for which AP<+ 1 and A agree on the membership of every string in IM. 1. 

The defining predicate of TC A. M depends on at most If Af.i I · 117 E 0( (log I H'I )2"' 1
") 

positions of w not fixed by 11-. It follows that TCA. AI and dA, M can be computed in 
time 211og lwlJ011>+k1•1. 

We distinguish between two cases for the behavior of Mand A: Either there are 
infinitely many stages i such that no matter what the prefix \1' 1 is, there is always 
an input in IM,, on which only half or fewer of the extensions pass the consistency 
check between Mand A: or else for almost all stages i, there is a prefix ll', such that 
for any input from f M, ,. a strict majority of the extensions of 11·, make M and A 
agree on that input. 

Case I. 3,.i, \7'11·El'12"''l-I, 3.\'EfM,i: Prw::;:iw[M'0(x)=A(x)]:::;~. Then for any 
w =I. 8 such that M reduces A to B, and for any sufficiently large stage i for which 
the Case I condition holds, 

where llj represents the prefix of w of length 2"'1 - 1. This is because at least half of 
the extensions ir; + 1 of H', with I 11·; + 1 I = 2m1+ 1 - I fail some consistency test. It 
follows that d A. M{ w) = x and that 

fir/ {BI M reduces A to B}) = 0. ( 5) 

Case 2. V"'i, :ill'EI'12"''l-I, VxEIM,;:Prw::::iw[Mw(x)=A(x)]>~. For any 
stage i and any h E l'IQ,,,,,I, let (j M. ;, " be the m~~tingale with initial capital 1 that 
only bets on strings of f M, ;, and for such a string x E f M., bets all of its money 
according to the majority of M'"( x) over all sequences w ;;i r ;, where 1'; is the 
characteristic string of length 2"'1 - I in which the bit corresponding to the jth 
element of QM.; equals thejth bit of h, and all other bits are, say, 0. Ties are broken 
arbitrarily. The martingale 
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has initial capital I and is computable in time 0( l11fl. It has the property that 

') II.11. 1 I 

cl M. i (/A 1 i ',,, + 1 ) ~ ;1 QM} ~ 2 = 2r) Af.i ( l A I 2> ,,, ), 

provided i satisfies the Case 2 condition. Since almost all i's do, the following 

p-martingale <5 M succeeds on A: During stage i, it uses d M. i as a strategy on ~ of 

the capital it has at the beginning of stage i, and does nothing with the other ~-

Fix an enumeration M; of all :::;: ;;,_u-reductions such that we can compute M;(x) 

in time polynomial in 21x1 + f. Then the martingale system r5 M is p-uniform, so ti1ere 
. i 

is a p-rnartingale rl that succeeds on all sets A for which Case 2 applies for some 

:::;: ;,, "-reduction M. Consider any set A E !: I.f> not covered by r5. Since the 

martingale system dA. M, is p 2 -uniform, Eq. (5) implies that the p 2 -measure of 

.f>,-;-,!tt(.4) is zero. I 

Luc Longpre noticed that Theorem 3.1 also holds for ~ f,q-reductions that make 

their queries in lexicographical order. It actually suffices that the queries are made 

in length nondecreasing order. 

THEOREM 3.3. Let ~ f denote the reducihility hy poly1w111ial-ti111e Turing machines 

t/1111 query 110 nwre 1/w11 11" .1·1ri11gs on inputs of' length 11.fi1r some con.1·ra11t x <I, and 

nwke rhese querie.1· in length nmulecreasing order. Then, 

Proof' Skerch. We can extend Lemma 3.2 as follows. 

LEMM/\ 3.4. Lei x < I, 1: E ( 0, I -- :x ), and 111 i oll!l 11 i he defined hy ( 2 ). There is wz 

infeger i 0 such rhclt j{Jr any i?: i 0 , fin· any :::;: f-reduction M, andf(Jr any h E 1:11 :, there 

i.1· u set of' strings Q,vI.i.h such rhut 

11'11ere Q ~~:'~(x) denotes rhe set of' 11uerie.1· (~/'length less than 111; which Af nwke.1· on 

input .Y 11'hen the jth-hit of' h i.1· giren as the anmer to the j th query of' length less than 

111 i· Aforcorer, \t'C can find the lexicographically j/rst set Q M. i, h and the le.Yicographi

rnlly jlrst subset IM. i, b of' 

I . )ll, IQ <mi( •J _ Q l l .\ E ~ M. b .\ - - M. i, h 

11·ith I IM. i. h I = < + I in time 22"'. 

Note that Q :/~(Y) in Lemma 3.4 is well defined, because the queries of length 

less than 111i which M"' makes on input x only depend on the prefix of w of length 

2"'' - L since M"' makes its queries in length nondecreasing order. More specifically, 
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these queries only depend on the part of the prefix that specifies the answers to 

them. i.e .. on h. 
The betting strategy for .1' 1 

1(A) is the same as in Theorem JI, except that we 
use the set IM,;,,, of Lemma 3.4, instead of the set IM. h of Lemma 3.2 in formula ( 4 ), 
where h is determined by the prefix of 11· of length 21111 - I. 

The martingale 6 M.,. is the average over several strategies. Now there is one 
strategy 15 M. ;, h corresponding to every h E rnI, namely one with initial capital I that 
only bets on strings of IM.;. 1>· On such a string x EI M. ;, h· it bets all of its money 
according to the majority of M"'(x) over all sequences w ::;i v;,h, where r,.,h is the 
characteristic string of length 2m, - l in which the bit corresponding to the jth 
query of Iv! on input x equals the jth bit of h. and all other bits are say 0. 

The rest of the construction and the analysis arc essentially the same as in the 
proof of Theorem 3. I. I 

Our results on the measure of complete sets follow directly from Theorem 3. I. By 
Theorem 3.3, they also hold for the more general reducibility introduced in 
Theorem 3.3. 

COROLLARY 3.5. For any x < l and C E (~.:{.I/', the ~ ~"-- 11 -degree of C has 
P:-1ncusure ::ero. In partirnlar, the classes uf' ~ ;,, tt-co111p!ete setsjiJr. I ·.I/', the fl'l"els 
of the po~)'/Wlllilll-time hierarchy, .;J!!f'.1'.c/<(,f,' lllld nf.1J al! /wee P2-IJWil.\'Ure ::cro. 

Proof: Suppose not. then for any set A in the ~ ;,, __ u-dcgree of C, the p 2 -measure 
of .1J ,~,!u( A) is not zero. since it contains the ~ ;,, __ 11 -degree of C. But, by Theorem 3. I 
this would imply that the p-mcasure of the ~ ;,,_tt-degree of C is zero. I 

For the class of ~ ;,, __ u -hard sets, we get 

COROLLARY 3.6. For any x < 1 and any complexiry class'(, such that /Ip('(, n (~f.'!') 
# 0, the c!ass of ~ ;,, 11 -/wrd sets .fin· ((, has p 2 -measure ::ero. In partirnlar, the 
~ ;,, . t1-hard sets fin· r1 and r1.t.1J lwL'l' p2 -measure ::.ero. 

Prout: By definition, for any set A E (f,, the ~ ;,, __ u-hard sets for'(, are contained 
in .1J ,,,!u( A). If the class of ~ ;,, _ u-hard sets for '0 does not have J12-tneasurc zero, 
Theorem 3.1 yields that f.lp('0 n 0.f.I/') = 0. I 

The ~ ;;, . tt-hard sets for . t .1J, the levels of the polynomial-time hierarchy. and 
.'/'.'///1.c/'0 0 also have 172-mcasure zero. provided these classes themselves do not 
have p-measurc zero. 

From Theorem 3. I, we can also deduce a Small Span Theorem. However. we 
have to settle for a more restrictive reducibility than ~ ;,'-tt• because we need trans
itivity in the proot: and ~ ;,, _ tt is in general not transitive for any constant x > 0. 
It suffices to keep the number of queries subpolynomial. i.e .. asymptotically smaller 
than 11' for any c > 0. We write A~ ;,,,111_u B if there exists a subpolynomial function 
f(n) such that A~/ini-ttB. 

THEOREM 3.7 (Small Span Theorem). For any set A, at least one of the fiJ!loH'ing 
holds: ;1pi;J;,,,01_u(A) n /;f,I/') = 0 or J<p2(.1',-;;./1,_tt(A)) = 0. 
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Proof: We distinguish between t\VO cases: 

• .y;,,,, 1,_tt( A) contains a set B such that /Ip,( .:1;;.}1 '-tt( B)) = 0. Then the trans
itivity of ~ ;,,,111.tt and the monotonicity of JJrmeas-ure imply that ;1 "2( .'.1 1 ~;,,11 1 _1t( A))= 0. 

• .y;,,,,11_tt(A)n<'!.1'.:I is included in (BE<'l.'/'.:Pl;1p,(.:P;;:.!u(B))¥0] for any 
x>O. Then Theorem3.l says that11P(.y;,,,,1,_tt(A)n<'lf.1')~0. I 

For any set A E <'! f.1', Theorem 3. 7 states that at least one of its lower span or 
upper span under ~ ;, .. 11,_11 -reductions is smalL 

4. COMPLETE SETS FOR Ii.'/'.:! UNDER ADAPTIVE REDUCTIONS 
WITH nc QUERIES 

We now show how, in the case of f:.:r.J>, we can extend the results of the previous 

section on the measure of complete sets from ~ ;,, _ tt-reductions for any x < 1 to 
~ ;,. y-reductions for any constant c: 

THEOREM 4.1. For any constant c, the class of'~;,. -T-complete sets Jin· Ii f.:! has 

p1 -n1eus11/'e :::eru. 

The proof technique differs significantly. We exploit the diagonalization power of 
f, .1'.1' against ~ ;,. - r-reductions to show that all ~ ;,. -r-complete sets for !Li'.:! 

share a structural property that allows the construction of a p 2 -martingale succeed
ing on all of them. We first establish the structural property. 

Let .M 1 , M 2 , ... be an enumeration of ~;,._T-reductions, where M; runs in 
time 1/ 

LEMMA 4.2. For any constant c and jiJr any ~ ;,. T-co111p/ete set C j(1r II f.:!, 

!here is an indcs j such that 

The right-hand side of (6) denotes the least probable value of Mj°( (01, .r)) when 
(1J is uniformly distributed over all extensions of the initial segment of :z c corre
sponding to all strings of length up to /1. Ties are broken in some fixed way, say 
always 0. 

Proof of' Lcm111a 4.2. Let 

D={(O;,x)I Pr [M:"((O;,x))=lJ<il-
w:Jxcl~,-::1,1 

The above probability is a weighted sum of the accepting leaves of the reduction 
tree of M; on input (O;, x). The weight of a leaf is only nonzero if on its path P 

all queries of length less than 1-rl are answered consistent with C, and in that case 
its weight equals 2--iitP 1, where qi P) denotes the number of other queries made 

along P. W.l.o.g. we are assuming here that on no path the reduction asks the same 
query more than once. So, we can decide D on instances ( O;, x) of length n in time 



338 BUHRMAN AND VAN MELKEBEl:'K 

2"' ( 11'" • lime c(!z) + 11,. ). Since C E 1': f.:J!, this implies DE f; .'/.1', and since C is 
~;,,_T-hard for li.f'.1', that there is a ~;,._,-reduction A11 reducing D to C The 
index j satisfies ( 6 ), because tor any x E l.'11 , 

Mr( ( Oi, x) ) = 1 <=> ( Oi, x) E D 

<=> Pr [ .Mj"( < (Y, x)) = 1] < ~ 
w=:JxclJ.:<n 

Lemma 4.2 provides a consistency test that eliminates at least half of the remaining 
possibilities. We now use it in a straightforward way to construct a p2-martingale 
covering all ~ ;,. T-cornplete sets for <~f.1'. 

Proof of Theon:m 4.1. For any index j. we construct a (uniform) p2 -rnartingale 
d1 that succeeds on any set C for which ( 6) holds. The martingale di has initial 
capital 1. and works in stages defined by 

ni+·I =(n,.+j)i. 

The ith stage starts when the martingale has to bet on the string()";. Let 11·,. denote 
the prefix seen up to that moment. During stage i, d; distributes 22'"· 1 - 2";·d;(11·,.) 

uniformly over all extensions i<+ 1 of 11·,. with Ii<+ 1 [ = 211;, 1 - I for which 
M ;'i+ 1 ( ( Oi. ()";)) =minority w c:i "' [ A-17( < Oi. 0 11•) ) ]. 

Note that for any set C satisfying ( 6 ), d1 at least doubles its capital along C at 
every stage, so it succeeds on any such C. Therefore. by Lemma 4.2. the martingale 
system ( d; Jj'= 1 covers the class of ~ ;,. T-complete sets for r: .'J'.'I. 

Using the approach of Lemma 4.2, we can compute the minority and the 
probabilities underlying di( 11·) in time 0( 2110g lwl +ii' (log J 11·[ + j)i ). So. the martingale 

system (di)/= 1 is p 2 -unif'orm. I 

In an analogous way, we get the following theorem for Ii. 

THFOREM 4.3. For any constant c. r!ie class o/ ,,::; ~n-T-comp/ere sets j(Jr Ii has 
JHneu.rnre :::cro. 

Ambos-Spics informed us recently that he and Lernpp have a new prool' of 
Theorems 4.1 and 4.3 [ 3]. 

5. COMPLETE SETS FOR li.'l'.I}) UNDER ADAPTIVE REDUCTIONS 

Theorem 4.1 cannot be improved using relativizable techniques, since it foils for 
unbounded growing exponent c in a world where .11.'l.1' = /U'.J,ll and such a world 
exists [ 13]. This follows from the relativizable result of Allender and Strauss [I] 
that the class of sets that are not ~~--hard for BPP hasp-measure zero. In this 
section. we will sec what results we can get on the measure of the Ii .'/Y-complete 
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sets for polynomial-time reductions without an explicit bound on the number of 

queries, under the likely but unrelativizing hypothesis . //.r:/ #- (,f.I/'. We obtain 

TmoRF\1 5.1. Thi! class of .1ets complete fi1r 1C: .1·_y; (or <J) under ~ r;.-reductiun.1· 

rhat 11wki! their queries in !cxicogruphicul ordl!r, has p-111easure ::.ero unless 1~ f.7 = 

-11.r:/'. In parricular, the class of' ~ f,-complete sets ji1r Ii.'{.? (or 1~) has /HJJeasure 

::em 1111/css (, f_JJl = _ // .c/. 

Buhrman, Van Melkebeek, Regan, Sivakumar, and Strauss [ 12] used the hypo

thesis . //.c-/ =I- <J.'.(.J! to show that the class of autoreducible sets under the same type 

of reductions has p-measure zero. We will use the same idea, namely applying 

pseudo-random generators to approximate e11iciently the probabilities underlying 

the martingales constructed in the previous section, and that way mimic their 

behavior by an easier-to-compute martingale. The pseudo-random generators 

whose existence is known to follow from the assumption _ //.r:/ i= <J -1'./l by Theorem 2.6, 

have superpolynomial security at infinitely many lengths. They will allow us to 

approximate the underlying probabilities well enough, but only at infinitely many 

lengths. Therefore. in order for the mimicking martingale to succeed, we will make 

sure we make a lot of money on these lengths. We will use the following lemma 

instead of Lemma 4.1 to do so. 

LEMMA 5.2. Fix a pseudo-random generator computahle in time 2an .fin· sonic 

constant a> l, and ll'ith stretching r( /1 ). There is an oracle Turing machine T running 

in time 22"" 11·ith the ji1l!o1ring property: For any set C complete fi;r (,.'{_!/' under 

~ r;.-rt'duction.1· that 11/ake their c1ueries in lexicographic order, there is an index j of' 

such a reduction Mi such that _/(Jr any string x, 

(7) 

11·/Jcre n=lxl um/ / 11 ={1,2, ... ,3lognf, proridcd r(n), Sc;(n)?ni+I and 11 is 

.111//iciently large. 

Lemma 5.2 also holds if we substitute "length nondecreasing" for "lexicographic." 

Proof' of' Le//11/1(/ 5.2. Consider an input x E Z 11 • a prefix \j' E ;;2"- 1, a string 

h E Z 310g 11 • and an index j such that /l.fi makes its queries in length nondecreasing 

order. Recall that Mi runs in time ni. We can compute the probability 

rri(.Y, ll',h)= Pr ['v'iE/11 : M}'((Ol,x,fY)l=h1] 
lV :;J H 

as the fraction of strings Ji E l.' 111 +' such that the predicate underlying ni holds when 

the oracle queries of length less than n are answered according to 11\ and the kth 

different query of length at least n is answered as /Jk. The predicate depends on 

o( 11i+ 1 ) bits of the prefix 11· in total, because the queries of length less than n made 

by M are the same for any p. It follows that the test circuit has size ni + 1 for suf-· 

ficiently large n. Therefore, we can approximate rri(x, 1r, h) to within an additive 
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term of I /11 4 using the pseudo-random generator G at length n, provided r( 11) ~ nj + 1 

and Sa(n) ~n.i+ 1• 

On input < Oi, x, O;), the machine T 11' will compute these approximations 
iij(x, 11', h) to rrj(x, w, h) for every hEX:310g", select the lexicographically first value 
h for h that minimizes iij(x, 1r, h ), and output the ith bit of h. T can do this in 
time 22"". 

Note that there is a setting h* E X:310g" such that nj{x, 11', h*) ~ l/11 3. Inductively 
set h;* such that at least half of the extensions w ;;i 11· satisfying Mj"( < Oj, x, Ok>)= 
h[, for I ~ k < i, fail the test Mj1( ( O.i, x, O;)) = h ;*. Therefore, 

- I ::s;11)X,\l',h*)+4 

I 2 
~-+~ 113 114 

2 
~3· 

11 

11 

which establishes the first part of ( 7) for any set C. 
Now fix a set C complete for Ii .1'.JJ under ~ t-reductions that make their queries 

in lexicographic order, and consider the set 

Since C E f!, .1'.1', we can also decide D in !f.'J'.JJ, and since C is hard for Ii f.JJ under 
~ t-reductions that make their queries in lexicographic order, there is such a 
reduction M.i reducing D to C. This establishes the second part of ( 7 ). I 

Lemma 5.2 gives a consistency test that eliminates a fraction at least 1 - (2/11 3 ) 

of the possibilities, and therefore multiplies the capital by a factor of 11 3 /2. For 
Lemma 4.2 these figures are ~ and 2, respectively. We will now see how we can 
exploit the larger increase in capital to construct a p-martingale that succeeds on 
the complete sets for f!, .'/'.1' under ::s; t-reductions that make their queries in 
lexicographical order, using the above pseudo-random generator once more. 

Pro<!l <!I' Theorem 5.1 jiJr I, .1'.1'. Fix a ::s; t-reduction M_; running in time ni that 
makes its queries in lexicographical order. Let T be the oracle Turing machine 
given by Lemma 5.2 based on the pseudo-random generator G that follows from 
the hypothesis .11.r:I i= I, .'J'.1' by Theorem 2.6. 

Let 

rr1,m(H')= Pr ['v'iE/,,.: M.f'((Oi,Om,01 ))=T"'nr<"'((Oi,0"',01 ))], 
w~w 
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The function c/1. 111 (11") is computable in time 2onog1+ 1 lwll, and so is d1(1r)= 

I.,;i = 1 ( I /m 2 ) d1. ,,,( lt" ). They are non negative and satisfy the supermartingale inequality 

( 1 ) for all strings 11-, except possibly for those of length 2"' - l. In case of a set C satisfy

ing ( 7) for x = 0"', the inequality also holds for 11" ~I c of length 2"' -- J. Moreover, 

d1.mU.cl=m3, and di(/.cl= :r. 
We now want to construct (super)martingales 171,,,, and tfi that behave like d1.m 

and d1 along/ c and are computable uniformly in time I 11·1" for some constant a, i.e., 

independent of the running time of A11. The key idea is to approximate efficiently 

the probability n;.,,, using the pseudo-random generator G as we did in the proof 

of Lemma 5.2. Following that approach for some constant a 1 , we ean compute in 

time l1rl" 1 an approximation if;,,,,(1r) ot' n:1.m(ll') to within 1:1.m=111- 11 + 4 i, provided 

r( 111) ? m 1+ 1 and Sc;( m) ~mi+ 4 . By Theorem 2.6 (assuming . //.c/ =fa If f.'!'), infinitely 

many /11 satisfy the latter conditions: we call such m's good. 

There are still two technical problems we have to solve in order to make sure 

that 171."' is a supennartingale: First, what to do along sets C for which ( 7) does not 

hold for .\" = O"', and what if Ill is not good? We will deal with that in a moment. 

Second. even for a good 111 along a set C satisfying ( 7) for x = O"', just replacing ni. m 

with ni."' in the definition of di.,,, might not work. For example, if n1."' under

estimates n:1.,,, on input 11" and overestimates it on input 1rO and id, condition ( 1) 

is violated. Note that such a situation can only occur in case the string correspond

ing to the position right after i1· is a query Af~' makes on some input of the form 

( Oi, O"', O;) for some ii::/"' and some w ;;;;i 1r. As the q ucries are made in 

lexicographical order, we can ef1iciently check the latter condition on \\' by running 

1\4)'' on every input < Oi, 0"'. O;) for ii::!,,,, and there can be no more than 3111 1 log m 

prefixes ll' satisfying it along any sequence w. Since the limit 1:1. m on the estimation 

error is such that ( 3m1 log n1) · i:J. m remains bounded, we can remedy this problem 

by accumulatively subtracting a term 21:1.m from the approximation for nJ.m· and 

adding a constant to the resulting approximation for d1. ,,,. The former modification 

guarantees that condition ( 1 ) is met: the latter is needed after the former in order 

to keep the values nonnegative. More precisely. we define 

if lil"I ~ 2m, 

otherwise, 
(8) 

where i//. m( i1·) denotes the number of positions in ir that correspond to a query M;" 
makes on an input of the form ( O/, om, W) for some ii:: /,w Note that 0 ~ c;i. ,,,( ll' l ~ 

111• ,,,( w) ~ 3m/ log n1 and that we can efficiently compute iJJ. ,,,( 11· J. 
We solve the first problem by explicitly checking for each prefix H' that the values 

dj m proposes for the one-bit extensions 11"0 and II' I satisfy the defining conditions 
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of a supermartingale. If they do, we accept them; otherwise, we enforce the condi
tions by not betting. So, we define the function 'Ji.,,, as 

if d1,,,(1t'0) ;?:0 and dfm(wl):;?: 0 and 

d1,,,(11'0) + dJ ,,,( H'l) ~ 2Jj,m( a·) 

otherwise. 

(9) 

It follows that d1,,,, is a supermartingale computable in time 111'1"2 for some constant 
u2 independent of M; and 111. 

CLAIM 5.3. llm is good and si1fflciently large, d1.,,,( ll') =df 111(11·) j(Jr uny ll' i;;;;; /c, 
where C i.1· a set sotisf)·ing ( 7 ). 

Proof" of' Claim 5.3. We show that d1. "'( ll') = d1~ 111( ll') for any 11· i;;;;; / c by induc
tion on 111'1. Clearly, the statement holds for 1r = / .. So, it suffices to argue for any 
string 11· that the conditions on the right-hand side of ( 9) are met, assuming that 
d;,m( H') = dtm( ll'). 

If I 1\'I < 2"' - l, this is true because c!J. ,,,( r) = 4 for k I < 2"'. If I 11·1 ? 2"' - l, the 
first two conditions on the right-hand side of ( 9) are satisfied, since for any string 
r of length lr I :;?: 2m, 

. 6 log 111 
d,*,,,( r)?: l - 2q1 m( t) m3c:;. "'?: l - 61:1. ,,,nr1 + 3 Jog nz =I----, , . . , " Ill 

which is positive for sufficiently large 111. In case lwl = 2m- I, the remaining condi
tion is met, because 

dj~ ,,,( 11{)) + d1~ ,,,(it'\ ) ~ m 3( ii1, m( lt'O) + ii1, ,,,( 1rl ) ) + 2 

~ m3(n;.m( ll'0) + n1. "'( 11'1) + 21:;,ml + 2 

= 2111 3 ( nj. m( \\') + 1;/, m) + 2 

~2(2 + l +I) 

In case I wl :;?: 2,,,, the remaining condition certainly holds if d1m(1rO) = d! m( \\'I ) = 

d! m( II'). Otherwise, ifJ. m( 11'0) = l/;, ,,,(a· I ) =if;,,,,( H') + 1, and we have that 

dj~ 111 (H'0) + d!m( 11'1) =m 3(ii;.m( 11'0) + iij,m( 11'1))+2 - 2(ifJ,m( 11'0) + i/;.m(ll'I )) 117 311;.m 

~ m 3(nj,n1( 11·0) + nj,lt,(11'1) + 2i:j,m) + 2-4(if). m( H') +I) lll 3C:;,m 

= 2111 3( n1. m( II') - I:;. m) + 2 - 4q1. ,,,(II') m 3e1. m 

~ 2m 3ii;. ,,,( ll') + 2 - 4q1, m( IV) 111 31;1, m 

= 2d!m( It') 

= 2cL.,,( a·). 1 
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So, for a good and sufficiently large m we get that 

for any set C satisfying ( 7 ). Since there are infinitely many good rn's and 

di, mV cl= nr'. this implies that 1fi = L.;~ = 1 (I /111 2 ) d1, m is a supermartingale that 

succeeds on any such set C. It is computable in time livl" for some constant a 

independent ofj. 

Since for a standard enumeration 1'vf;. including all :::; t-reductions that make 

their queries in lexicographical order and such that M,.(x) is computable in time 

( 21x1 + i) 011 1, the superrnartingale system :-1; is p-uniform. Lemma 5.2 finishes the 

proof of the theorem. I 

6. DISCUSSION AND OPEN PROBLEMS 

The question of whether Theorem 3. l holds for some constant x? I, remams 

open. A positive answer would be the best result provable by relativizable techni

ques, just as our results in Section 4 are optimal. By the same token. relativizable 

techniques cannot establish the Small Span Theorem for :::; ft -reductions. 

It seems unlikely that our approach allows one to establish Theorem 3.1 for 

x? 1, because of Lemma 3.2. For some constant 1; > 0 and a given :::; ~' _ u-reduction 

M. this would require the construction of a set JM.,. containing 11~ + 1 strings of 

length n; and a set Q M,; or size 11~. such that all queries of length less than n~ that 

M makes on inputs from IM.; are in Q,,.,1, 1. However, the following argument shows 

that for x;?; 1, it is not even possible for 11 A!.i I to equal IQ M.; I when for every input 

.r i:: 2', the queries are chosen from I <n; in a Kolrnogorov random way. The con

catenation a of all these queries is a Kolmogorov random string of length 2 111 11~+". 

Given a listing of the elements of Q M. ;. we can describe the queries for elements of 

IM.; by pointers to that list. Assuming I !Au I = IQ M. 1 I = q, this leads to a descrip

tion of a of length at most lfll~ + q( 11 1 +11~ log q) + ( 2111 - if l 11~ +t: + O(log q), which is 

asymptotically less than I al. as long as log q:::; en~ for some constant c < 1. Since we 

have log if i:: O(log n;). we get a contradiction to the Kolmogorov randomness of a. 

Ambos-Spies, Neis, and Terwijn [ 4] focused on p-measure, and they established 

the equivalent of Theorem 3.1 and the Small Span Theorem within 6 for :(f_u

reductions for any constant k. A similar Kolmogorov argument as above indicates 

that our techniques are not powerful enough to extend these results to stronger 

reductions. Even the :::; 6u-case remains open. 
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