
VRIJE UNIVERSITEIT AMSTERDAM

Multi-Hypothesis Parsing of Tabular
Data in Comma-Separated Values

(CSV) Files

by

Till Roman Döhmen

A thesis submitted in partial fulfillment for the
degree of MSc Artificial Intelligence

in the
Faculty of Science

Vrije Universiteit Amsterdam

Supervisor: Prof.dr. P.A. Boncz
Second Supervisor: Dr. H.F. Mühleisen
Second Reader: Dr. Rinke Hoekstra

August 2016

http://www.vu.nl/
mailto:till.doehmen@gmail.com
http://www.few.vu.nl/
http://www.vu.nl/

VRIJE UNIVERSITEIT AMSTERDAM

Abstract
Faculty of Science

Vrije Universiteit Amsterdam

MSc Artificial Intelligence

by Till Roman Döhmen

Tabular data on the web comes in various formats and shapes. Preparing data for data

analysis and integration requires manual steps which go beyond simple parsing of the

data. The preparation includes steps like correct configuration of the parser, removing

of meaningless rows, casting of data types and reshaping of the table structure. The

goal of this thesis is the development of a robust and modular system which is able

to automatically transform messy CSV data sources into a tidy tabular data structure.

The highly diverse corpus of CSV files from the UK open data hub will serve as a basis

for the evaluation of the system.

http://www.vu.nl/
http://www.few.vu.nl/
http://www.vu.nl/
mailto:till.doehmen@gmail.com

Preface

Going back from working life to studying and research has never felt like a step back but

like an important step forward. I deeply appreciate the new experiences I have made

and the new insights I have gained over the past two years. This thesis can not only be

regarded as product of seven months research but also as product of an entire study and

practical working experience. I especially want to thank my supervisors Peter Boncz

and Hannes Mḧleisen, who made possible that I could write my thesis at such a great

place as the CWI and who have always been there for me to discuss ideas and to guide

me into the right direction. Furthermore I would like to thank Rinke Hoekstra, Benno

Willemsem, Sara Magliacane, Alexander Boer, Davide Ceolin and Hadley Wickham for

their useful input and discussions. Thank you Mark, Robin, Abe and the other table

tennis enthusiasts at CWI - I enjoyed the daily matches at lot! I would also like to

thank my roommates in Uilenstede, my friends and my family who supported me during

my study and graciously respected my busy schedule. I am especially grateful to my

parents, Claudia and Roman, who inspired and supported me in so many ways.

iii

Contents

Abstract ii

Preface iii

Contents iv

1 Introduction 1
1.1 Open Government Data . 2
1.2 Outline . 3

2 Background 4
2.1 Comma-Separated Values . 4

2.1.1 RFC 4180 . 4
2.1.2 Dialects . 5
2.1.3 Parsers . 7
2.1.4 Validation Tools . 8

2.2 Data Frames . 8
2.3 Tidy Data . 10
2.4 Open Data Portal data.gov.uk . 12

3 CSV Parsing Issues 15
3.1 Samples from data.gov.uk . 15
3.2 Categorization of Issues . 20

4 Problem Statement and Research Questions 23

5 Related Work 27
5.1 Data Wrangling Tools . 27
5.2 Database Normalization . 28
5.3 Semantic Enrichment of CSV . 28
5.4 Automatic Table Normalization . 30

5.4.1 Applications . 31
5.4.2 Input Data Formats . 32
5.4.3 Background Knowledge . 34
5.4.4 Table Models . 35
5.4.5 Analysis Methods . 36
5.4.6 Evaluation and Limitations . 39

iv

v

6 Multi-Hypothesis Parser 41
6.1 Architecture . 41
6.2 Parsing/Detection Steps . 43

6.2.1 Encoding . 44
6.2.2 Dialect . 44
6.2.3 Table Area . 45
6.2.4 Table Orientation . 47
6.2.5 Row Functions . 48
6.2.6 Column Functions . 51
6.2.7 Wide and Narrow Data . 53
6.2.8 Data Types . 55

6.3 Quality Assessment . 58
6.3.1 Quality Criteria . 59
6.3.2 Ranking . 61

7 Evaluation 66
7.1 Table Quality . 67
7.2 CSVLint Issues . 74
7.3 Amount of Recovered Data . 76
7.4 Hypothesis Tree Size . 78

8 Discussion 81
8.1 How large does the hypothesis tree grow? 81
8.2 How reliable can the best parsing hypothesis be identified? 82
8.3 What effect do the table normalization steps have on the table quality? . 83
8.4 Does multi-hypothesis parsing lead to better results than linear parsing? . 84
8.5 Future Work . 85

List of Figures 86

List of Tables 89

List of Algorithms 90

A CSV Parser Comparison 91

B Multi-Hypothesis Parser API 93

C Multi-Hypothesis Parser Implementation Details 97

Bibliography 101

Declaration of Authorship 107

Chapter 1

Introduction

Comma-Separated Values are a ubiquitous medium for data exchange across various sys-
tems and platforms. Users value its simplicity and the possibility of reading and editing
it in virtually every environment. However, since the CSV file format has never been
officially standardized, it is often tedious to read a CSV files from unknown sources.
This is due to the fact that crucial parsing information, such as character encoding,
delimiter type, presence of a header line and column data types, are not explicitly given.
They either have to be defined manually or inferred from the file itself. When parsing a
large corpus of CSV files from various sources, such as the 19k corpus from data.gov.uk,
manual parser configuration is not an option. On the other hand are detection heuristics
for encoding, header etc. never 100% reliable, which consequently leads to parsing fail-
ures and misinterpretations, which makes manual configuration of the parser necessary.
Another aspect is that CSV files are made to contain exactly one table with an optional
header row and subsequent data rows. However, many CSV files contain metadata in
the first rows, multiple header rows or even multiple tables. When reading such irreg-
ular files with a regular CSV parser, manual post-processing will almost certainly be
necessary.

Literature states that 80% of the effort in data analysis is spent on data cleaning and
exploration [1]. Our aim is to increase the parsing success and to reduce the effort for
manual post-processing and thereby increase the productivity of data analysts dealing
with irregular CSV files. This shall also serve the overarching goal to integrate large
corpora of CSV files from the web into a coherent, queryable database.

Regular CSV parsers try to determine one most likely parsing hypothesis and in the end
the parsing either fails or succeeds. In contrast to this, we intend to generate multiple
reasonable parsing hypotheses, parse the file accordingly and decide in the end, based on

1

2

a quality metric, which parsing result is the best. This requires a structured procedure
to generate parsing hypotheses and a method to assess the quality of the parsing result.

The goal of this thesis is to design a multi-hypothesis parsing framework which allows
easy generation of parsing hypotheses, and a ranking mechanism, capable of ranking the
parsing results by quality. Ultimately a prototypical multi-hypothesis CSV parser will
be implemented and evaluated on the heterogeneous and issue affected corpus of CSV
files from the open government data portal data.gov.uk

1.1 Open Government Data

Open Government Data is an initiative of various governments to open up public sector
information and make it available as Open Data on the web. One prominent example
is the UK open data portal data.gov.uk which covers various domains, such as traffic,
weather, geographical information, budgeting, policies, health, education, crime and
justice. In many domains public institutions are among the largest data collectors. In
contrast to data collected by private companies, government data is funded by public
funds and citizens demand in return to get access to the publicly funded data sets.
Governments recognized that opening up data brings benefits for them as well and more
and more prefer to open it up over keeping it closed or selling it to third parties. As
summarized by Janssen et al. [2], the benefits can be grouped into political & social,
economic & operational and technical benefits. Major political and social benefits are the
increase of democratic accountability, the gained transparency, the self-empowerment of
citizens and the resulting creation of trust. Economical benefits lie in stimulation of
the development of new citizen services and products around Open Government Data.
Additionally, Open Government Data stimulates the comparison and competitiveness
between different public institutions. From the operational and technical perspective,
benefits lie in the re-use of data (preventing multiple parties from making redundant
efforts) and in gaining new insights from integration of different data sets across different
parties. Lastly, Open Government Data establishes access to the collective problem
solving and analysis capabilities of the public. This leads to new insights rooted in
the curiosity and interests of the public and at the same time works as an external
quality evaluation of the data itself. Nevertheless does data in most of the cases not
produce direct income which makes it, especially for small institutions, harder to justify
investments or assign dedicated resources to it. Nevertheless technical competences are
required to publish data correctly and in appropriate data formats. Often, the lack of
such competences leads to wrong use of data formats, such as CSV, and consequently to
data sets which are not machine readable and require significant manual effort to make

3

them ready for data analysis. This poses a hurdle for data consumers to make efficient
use of the published data.

Janssen et al. emphasize that data consumers often focus on making use of single data
sets, whereas the real value can be found in combining various data sets [2]. Information
may appear irrelevant or benign when considered in isolation, but when linked and
analyzed jointly it can yield important new insights. Janssen et al. point out that no
standard software for processing or integration of open data is available yet.

1.2 Outline

The following chapter will provide background information on Comma-Separated Values,
Data Frames and Tidy Data. Chapter 3 will demonstrate current issues of CSV parser by
the example of files from data.gov.uk and categorize them together with other relevant
issues taken from literature. The succeeding Chapter 4 picks up the stated issues,
proposes a solution and the resulting research questions. Related work will be outlined
in Section 5. In Chapter 6 the concept and implementation aspects of the proposed
multi-hypothesis parsing framework will be explained. Chapter 7 outlines the evaluation
methods and the respective results. Chapter 8 discusses the research questions and
points out possible directions for future work.

Chapter 2

Background

This chapter will provide background information on Comma-Separated Values files and
Data Frames, which are commonly used in statistical programming environments as well
as the Tidy Data principle and the Open Government Data portal data.gov.uk.

2.1 Comma-Separated Values

The first use of Comma-Separated Values dates back more than a decade before the
existence of personal computers. The IBM Fortran compiler under OS/360 already sup-
ported Comma-Separated Values files in 1972 [3]. Nowadays they are used for platform-
and software-independent exchange of tabular data are supported by a large array of
systems. As Comma-Separated Values are plain-text files, they always remain human-
readable, which makes it easy to deal with them even in the absence of software support
and documentation. [4]

2.1.1 RFC 4180

The CSV file format is not officially standardized. However, the IETF Request for
Comments (RFC) 4180 documents "the format that seems to be followed by most im-
plementations [in the year 2005]" [4]. Nowadays the RFC 4180 can be regarded as the
main reference for CSV reader/writer implementations. In summary, it defines a CSV
file as follows: "Each record is located on a separate line, delimited by a line break
(CRLF). [...] There may be an optional header line. [...] Within the header and each
record, there may be one or more fields, separated by commas. [...] The header will
contain names corresponding to the fields in the file and should contain the same number

4

5

of fields as the records in the rest of the file. [...] Each field may or may not be enclosed
in double quotes" [4].

Listing 8 shows an example of a CSV file complying with RFC 4180. The file contains
5 data rows and one header row, separated by carriage return line feed (CRLF) line
terminators. It has 3 columns, each of which have a dedicated header (col_name_a,
col_name_b and col_name_c). The quoting of cell content is optional and only required
if the cell contains CSV syntax elements such as line terminators, delimiter or double
quotes. Line 4 contains an escaped double quote, which gets escaped by placing another
double quote in front of it - not with an backslash ("\") character. Line 6 and 7 actually
represent one data row, because the CRLF in line 6 is enclosed by double quotes.

1 col_name_a , col_name_b , col_name_c CRLF

2 aaa ,bbb ,ccc CRLF

3 "aaa "," bbb "," ccc" CRLF

4 "aaa ","b"" bb"," ccc" CRLF

5 zzz ,yyy ,xxx CRLF

6 "aaa ","b CRLF

7 bb"," ccc" CRLF

Listing 2.1: RFC4180-conform CSV File

In the original RFC 4180 the default charset was defined as ASCII with characters x20-
21, x23-2B and x2D-7E. With the introduction of RFC7111 - a MIME-type definition for
CSV fragments - the default charset for CSV documents was changed to UTF-8 [5] [6].

2.1.2 Dialects

Many different variants and re-interpretations of CSV exist, which deviate from the RFC
4180. The most popular variation is the usage of other delimiters such as semicolons (";")
or tabs ("\t"). Formats with other delimiters than commas are grouped under the term
Delimiter-Separated Values (DSV). However, as the term DSV it is not commonly used,
we will refer to Comma-Separated as well as to (Other) Delimiter-Separated-Values as
CSV throughout this document. Popular possible variations of the original CSV format
are summarized in the following listing:

1. The line ending can be either CRLF (Windows-typical), LF (Linux/Unix-typical)
or CR (Mac OS up to version 9). For example:

aaa ,bbb ,ccc LF

ddd ,eee ,fff LF

zzz ,yyy ,xxx

6

2. Not only commas (",") are used to separate fields from each other. Often, semi-
colons (";") or tabs ("\t") are used instead. For example:
aaa;bbb;ccc CRLF

zzz;yyy;xxx

3. Not only double quotes (") are used to quote fields, but also single quotes (') and
typographic quotes (e.g. ”or ’). For example:
’aaa ’,’bbb ’,’ccc ’ CRLF

zzz ,yyy ,xxx

4. Fields can contain leading or trailing white spaces. For example:
"aaa", "bbb" , "ccc" CRLF

"zzz", "yyy" , "xxx"

5. The file can contain a row index column, which is headerless. For example:
" col_name_a "," col_name_b "," col_name_c " CRLF

1," aaa "," bbb "," ccc" CRLF

2," zzz "," yyy "," xxx"

6. If quotes are used to enclose fields and another quote occurs inside a field, it
must be escaped by another double quote. Alternatively, it is often escaped by a
backslash ("\"). For example:
"aaa ","b\ textbackslash "bb"," ccc"

7. To escape fields which contain line breaks, quotes and delimiter, not only quotes
are used. Alternatively, those characters can be escaped by backslashes ("\"). For
example:
aaa ,b\ textbackslash ,bb ,ccc CRLF

zzz ,yyy ,xxx

8. Comments in CSV files are not uncommon. A comment line mostly starts with a
hashtag (#) or dollar sign ($). For example:
\# this is a comment

aaa ,bbb ,ccc CRLF

zzz ,yyy ,xxx

CSV files can thus occur in many different variations, which is a challenge for CSV
parsers. However, even if a CSV file is RFC 4180-conformant, CSV parsers are challenged
to detect the presence of a header line and column data types. This information is in
CSV files generally not explicitly given. Although this problem has been recognized and
solutions have been proposed (See Section 5.3), the majority of CSV files on the web
does not come with any explicit header or data type information.

7

Table 2.1: Capabilities of different CSV parsers in comparison (empty: not supported,
d: fixed default, x: configurable, a: automatic detection possible)

R Python
native fread readr native pandas messytables

Encoding x x a d x x
Line Terminator a a a a a a
Delimiter x a x x a a
Quotechar x d x x a a
Escaping x d x x x
Comments x x x
Header x a x x a a
Index Col x x
Empty Row d x
Field Whitespace x x x x x x
NA Values x x x x a
Decimal Point x x x x a
Dates d x a a
Boolean d d d x a

2.1.3 Parsers

Producers of CSV parsing libraries are aware of such variations and the under-definition
of CSV. They try to take possible variations into account and provide possibilities to
allow respective configuration of the parsing process or to detect, e.g., the dialect, header
and data types automatically.

The statistical programming language R and the general purpose scripting language
Python are popular among data scientists and both provide native support (utils::read.table1,
csv2) and additional third party libraries for CSV parsing. Popular third party libraries
for R are the data.table library with the containedfread3 implementation and readr4.
Popular packages for Python are pandas5 and messytables6. Table 2.1 provides an
overview of the capabilities of those libraries. A more detailed overview of the available
configuration parameter can be found in Appendix A.

When looking at the table it becomes obvious that there are some dissonances about
possible variations of CSV files. Themessytables library appears to be the most advanced
library in terms of automation, while it is not as configurable as the pandas library. The
Python packages pandas and messytables both use the CSVSniffer7 implementation to

1https://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html
2https://docs.python.org/2/library/csv.html
3http://www.inside-r.org/packages/cran/data.table/docs/fread
4https://cran.r-project.org/web/packages/readr/readr.pdf
5http://pandas.pydata.org/pandas-docs/stable/io.html#io-read-csv-table
6https://messytables.readthedocs.io/en/latest/
7https://fossies.org/dox/Python-3.5.1/csv_8py_source.html

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html
https://docs.python.org/2/library/csv.html
http://www.inside-r.org/packages/cran/data.table/docs/fread
https://cran.r-project.org/web/packages/readr/readr.pdf
http://pandas.pydata.org/pandas-docs/stable/io.html#io-read-csv-table
https://messytables.readthedocs.io/en/latest/
https://fossies.org/dox/Python-3.5.1/csv_8py_source.html

8

detect the dialect. This implementation is also used by the popular command line tool
CSVKit. An alternative dialect guesser was implemented in the Python library anycsv8.
Generally, the Python libraries are the most advanced and configurable, while they have
weaknesses in character encoding detection. The R package readr, again, comes with
a file encoding guesser. The biggest disagreement among different libraries appears to
exist about comments and index columns. Both are not covered by the RFC 4180,
and are only partly adopted by libraries in the Python and R community (R native,
readr, pandas), while being ignored by others (data.table, Python native, messytables).
The above mentioned parsers are using rather simple heuristics, based on RegEx pattern
matches, to determine the presence of header rows and the column data types. Especially
the non-native parsers are robust to unequal numbers of rows and non-closed quotation
marks.

2.1.4 Validation Tools

Apart from parsers, there are also validation tools for CSV files, which are mainly
meant to assist data publishers with validation of CSV files before they publish them
on, e.g. data portals. The Open Data Institute developed a ruby-based CSV validation
tool, called CSVLint9. It can, for example, detect non-UTF8 encoded files, inconsistent
data types and unequal number of columns. The tool Good Tables10 from the Open
Knowledge Foundation is also able to validate CSV files, it is, however, more specialized
towards checking the compliance with a given table schema. The R package testdat11

focuses on sanity checks and automatic repair methods for R data frames, thus after
e.g. a CSV has been read. It has been included because it is able to detect encoding
issues, which might have been caused by false parsing of the CSV file. It also contains
heuristics to detect superfluous whitespaces and data inconsistencies. Table 2.2 provides
an overview of the capabilities of all three different libraries and shows that CSVLint
covers by far most of the issues.

2.2 Data Frames

A Data Frame is a commonly used data structure for tabular data in the statistical
programming language R and the Python package pandas. In both languages a data
frame is a two-dimensional data structure consisting of a rectangular matrix of data cells,

8https://github.com/sebneu/anycsv/blob/master/anycsv/csv.py
9https://github.com/theodi/csvlint.rb

10https://github.com/frictionlessdata/goodtables
11https://github.com/ropensci/testdat

https://github.com/sebneu/anycsv/blob/master/anycsv/csv.py
https://github.com/theodi/csvlint.rb
https://github.com/frictionlessdata/goodtables
https://github.com/ropensci/testdat

9

Table 2.2: Capabilities of different CSV validation tools in comparison.

CSVLint Good Tables testdat
Encoding Issues x x
Inconsistant Line Terminator x
Ragged Rows x x
Stray/Unclosed Quote x
Title Line x
Empty Column Name x x
Duplicated Column Name x x
Blank Rows x
Duplicated Rows x
Field Contains Whitespace x
Inconsistant Values x x
Outlier Values x

accompanied by row and column headers, i.e. a frame. In R a data frame consists of a
list of n equally long, named, and typed column-vectors which again contain m elements
of equal data type and of a row name vector with length m. Pandas data frames are
structured similarly, however in contrast to R data frames, they can contain multiple,
hierarchical row and column headers. Although row headers have been partially adopted
by some CSV parsers in form of row indeces (R native, pandas), they are neither widely
used nor supported and cannot be considered as an integral part of CSV files. Given
the overaching aim to integrate the parsing results in a relational database, which does
also not employ the use of row header, is it not sensible to make use of the concept of
row headers. In whatever tabular shape the input data might be, the goal is to parse
it into a regular table, only consisting of a rectangular data matrix and column headers
(See Figure 2.1).

Figure 2.1: Data Frame (left) and a Regular Table (right)

10

2.3 Tidy Data

Tidy Data is a principle introduced by Wickham [7] which describes the desirable ar-
rangement of tabular data in the context of data analysis. Different software packages for
data analysis require different shapes of the data and Tidy Data proposes an "easy and
effective" arrangement of tabular data, which forms a good starting point for all kinds of
analyses. Because the principle is closely related to Codd’s 3rd Normal Form [8] it can
also be regarded as a good starting point for data integration into a relational database.
Tidy Data thus facilitates data analysis and paves the way to data integration at the
same time.

The Tidy Data principles:

1. One observation per row

2. One variable per column

3. One observation unit per table

Wickham mentions common violations of the tidy data principle, which he often en-
countered during his work with statistical data. One of the most common violation is
that column headers are actually variables. One could refer to this as (too-)wide data.
See Figure 2.2 for the too-wide version and the tidy version of the same data set created
by melting the respective columns and duplicating the other ones.

Figure 2.2: Gathered Wide Data

A second common issue is that multiple variables get stored in the same column. One
could also refer to this as (too-)narrow data. Figure 2.3 shows the too-narrow version
and the tidy version of the same table, which was created by spreading the values and
moving the "min"/"max" column to the column header.

A third and special case is the combination of wide and narrow data where variable
names and variables are stored in both, rows and columns, as shown in Figure 2.4. One
can refer to this as mixed data. To turn this table into a tidy table, first values have to

11

Figure 2.3: Spread Narrow Data

Figure 2.4: Gathered and Spread Mixed Data

be gathered across multiple columns and subsequently the values not belonging to the
same variable have to spread.

Wickham mentions more violations, like multiple variables per cell and multiple ob-
servation units per table, whose detection would most likely exceed the scope of this
thesis. Our aim is to create parsing results which are as tidy as possible, by detecting
too-narrow, too-wide and mixed data. In order to do that, we need to be able to detect:
(a) the presence of variables in the header (b) inhomogeneous variables in columns.

Detecting variables in header names is possible insofar as the variables belong to a class
of data types which are unlikely to be used as variable names, e.g., dates, times or
numeric values. Beyond that, lexical and most likely contextual knowledge is required
to discriminate variables (e.g. city names) from variable names. A detection method
could also benefit from the fact that all values which will be gathered belong to the

12

same variable and should thus have the same data type or even follow a common value
distribution.

Detecting inhomogeneous variables in columns is possible as long as the different vari-
ables do not have the same data type. If this is the case, we have to check if another
column of the table changes synchronously (the column containing the variable names)
and if all other columns repeat (the observation names). If different variables are of
the same data type (See Figure 2.3) and have been mixed in one column, detection of
too-narrow data becomes almost impossible. We could still take a regularly repeating
text column as indication for a potential variable name column, but again, we would
require lexical and contextual knowledge to determine if the column contains actually
contains names or just observations. This is a task for which even humans might require
additional background knowledge about the purpose and meaning of the data.

It is thus very difficult or impossible to automatically generate perfect Tidy Tables, in
which the column headers always contain variables names and columns only contain
values belonging to the same variable (See Figure 2.5). We intent nevertheless to exploit
the described possibilities, in order to make at least some specific types of tables more
tidy.

Figure 2.5: Tidy Table

2.4 Open Data Portal data.gov.uk

Data.gov.uk is the official Open Data portal of the Government of the United King-
dom and one of the largest Open Government Data portals on the web. It contains
data sets on Environment (8,666), Mapping (4,778), Towns & Cities (4,595), Govern-
ment (2,746), Society (2,406), Health (1,656), Government Spending (1,615), Education
(1,179), Transport (940) and Business & Economy (896). (Numbers from May 2016).

The Open Data Institute, which is associated with the maintenance of the data por-
tal, specified in June 2012 that the minimum requirement for data publications on

13

Table 2.3: 5-Star Open Data [10]

Level Description Type

? "make your stuff available on the Web under an open license" PDF
?? "make it available as structured data" XLS
? ? ? "make it available in a non-proprietary open format" CSV
? ? ?? "use URIs to denote things, so that people can point at your stuff" RDF
? ? ? ? ? "link your data to other data to provide context" LOD

data.gov.uk is a Three Star level on the 5-start Data Openness Scale. The 5-star Data
Openness Scale (See Table 2.3) was introduced by Tim Berners-Lee at the Gov 2.0
Expo 2010 [9]. It is a rating which classifies the openness of different data formats on
the web, while promoting the usage of Linked Open Data as 5-Star Open Data. Non-
proprietary unlinked data formats, such as CSV, are ranked as Three Star Open Data,
while proprietary formats like Excel spreadsheets are ranked as Two Star Open Data.

Currently, the most common data formats on data.gov.uk are: HTML (11,437), CSV
(5,368), WMS (4,088), WCS (3,961), XLS (1,893), WFS (1,372), PDF (1,071), XML
(839), SHP (302), KML (260), RDF (233). (Numbers from May 2016). Data sets
tagged with HTML are typically links to websites which require further manual steps to
receive the actual data sets, e.g., by clicking through the website or by filling in a web
form. WMS and WCS and WFS are geographical data formats and the amount of real
Linked Open Data in form of RDF is with 233 data sets still relatively low.

The two most predominant file formats for tabular data are thus CSV and XLS(X), of
which XLS(X) can be considered as legacy data because they are not compliant with
the Three Star Open Data policy [11].

Data, which was previously published as XLS (and CSV) is now only being published as
CSV. One obvious example for this is the data set Workforce Management Information
- HM Revenue & Customs and Valuation Office Agency12. Although CSV is rated as
3-star open data, it does not necessarily mean that CSV data is more accessible than,
for example, Excel spreadsheets. In chapter 3 some examples from data.gov.uk will be
shown, which suggest that data publishers often simply convert Excel spreadsheets to
CSV files, by using the Excel CSV export function13. This leads to serious misuse of the
tabular data structure of CSV files and requires considerable effort on the data consumer
side to make use of the data. Moreover, it appears that other ASCII data formats get
simply labeled as ".CSV", even if they do not or not only contain comma-separated

12https://data.gov.uk/dataset/workforce-management-information-hmrc-voa
13https://support.office.com/en-gb/article/Import-or-export-text-txt-or-csv-files-

5250ac4c-663c-47ce-937b-339e391393ba

https://data.gov.uk/dataset/workforce-management-information-hmrc-voa
https://support.office.com/en-gb/article/Import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba
https://support.office.com/en-gb/article/Import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba

14

values. A potential explanation for that is the lack of technical knowledge and time
constraints on the publisher’s side in combination with the ’Three Star’ policy.

Chapter 3

CSV Parsing Issues

Due to flawed CSV writer implementations, manual editing of CSV files, or likewise,
CSV files get corrupted. State-of-the-art CSV parsers are nevertheless often capable
of parsing the input files properly as long as the errors are not leading to ambiguities.
Those parsers, however, build upon the assumption that the file content is a table with
one column header row and subsequent data rows. Based on this assumption they try
to infer the presence of a header row and column data types. The following section
will show examples of CSV files from data.gov.uk which contradict this expectation and
pose potential hurdles, even for robust CSV parsers. Moreover, we will characterize the
encountered issues and reasonably categorize those and other issues mentioned in related
literature.

3.1 Samples from data.gov.uk

In order to get a better picture of CSV files "in the wild", we have taken a randomized
sample of 100 data sets from data.gov.uk and analyzed them manually. We have used
the ckan API 1 to randomly sample links to CSV files, of which 20 had contents other
than CSV. Figures 3.1, 3.2, 3.3, 3.4 and 3.5 show simplified snippets of problematic CSV
files we encountered in this sample.

Encoding Issue In this case, the £ sign was interpreted as the Polish letter Ł. This
issue occurs because the file was encoded in ISO 8859-1, but read with ISO 8859-16
encoding. The code point which in the ISO 8859-1 encoding stands for a Pound
signs, stands in the ISO 8859-16 encoding for an L with stroke [12, 13]. When
the encoding is not explicitly given, it has to be inferred from the file, which can

1http://docs.ckan.org/en/latest/api/index.html

15

http://docs.ckan.org/en/latest/api/index.html

16

lead to false assumptions. If all files would be consistently encoded in UTF-8, this
problem could be prevented.

Aggregated Cell The table has an additional row, containing the sum of a specific
column. This cell is superfluous and disturbs the rectangular shape of the table.
Totals or averages can easily be calculated after the parsing.

Aggregated Cell

Encoding Issue

Figure 3.1: Purchase orders over £10,000 from Ordnance Survey, 2013 August return2

Visual Table Element The table in Figure 3.2 contains an additional row, which is
supposedly meant to improve the readability for humans. For CSV parser, however,
it obstructs the data type detection.

Trailing Whitespace Some cells contain trailing whitespace to visually align the val-
ues. For further data processing the whitespace is of no use and should thus be
stripped off.

European Thousand Separator European and American thousand separators have
the exact opposite meaning. While in Europe dots are used to separate thousand,
they are used in America to separate the decimal places. In data processing, usually
the American system is used, however, some software packages format numerics
according to the locale of the system. This leads to potential ambiguities.

Empty Column Entirely empty columns are usually not useful, however, if they have a
header they at least imply the information that a specific variable was not recorded.
A user should have the option to either drop or keep such columns.

Footnote Footnotes can interfere with data type detection and should be removed.
Nevertheless they could contain relevant information which should be preserved
separately.

2https://data.gov.uk/dataset/083cf440-e470-4128-b508-0a2f2e4db50f/resource/fe954daa-
a609-4beb-836c-da9c6632a40f/

https://data.gov.uk/dataset/083cf440-e470-4128-b508-0a2f2e4db50f/resource/fe954daa-a609-4beb-836c-da9c6632a40f/
https://data.gov.uk/dataset/083cf440-e470-4128-b508-0a2f2e4db50f/resource/fe954daa-a609-4beb-836c-da9c6632a40f/

17

Ragged Row From the table it is no longer apparent that the footnote row did not
contain any delimiter. Rows which contain a different amount delimiter, i.e. cells,
than the other rows, are called ragged rows. As we were using a robust CSV parser
(readr) to read the file, the ragged row was repaired properly.

Visual Table Element

European Thousand Separator

Trailing Whitespace Empty Column

Ragged Row / Footnote

Figure 3.2: The Natural History Museum expenditure over £500, 2011 December
Return3

Multiple Tables The file shown in Figure 3.3 contains multiple tables. Header and
data type detection will almost certainly fail, when applied without separating the
two tables.

Title Title, similar to footer, interfere with the data type detection and should be
preserved separately.

Multiple Header Rows The table contains a hierarchically structured header. The
header "Travel" refers to the below fields "Air", "Rail", "Taxi/Car" etc. Detecting
one header row in this table would not lead to a successful outcome.

Inconsistent Data Formatting The column contains currency values, which are not
consistently formatted. Currency values are usually parsed as plain text, because
dealing with such inconsistencies is a hard problem. Conversion of text fields to
useful numerics is tedious manual work for data consumers.

Missing Value Qualifier Missing values, i.e. NA values, are often times denoted by
special characters such as "-", by expressions like "NA", "NaN", or by special nu-
merics like "-999" or "-1". It can be challenging to distinguish them from valid cell
content. CSV parser usually have a fixed or configurable set of expressions which
will be interpreted as NA values. If NA values are not properly detected, they can

3https://data.gov.uk/dataset/nhm-over-500/resource/32243819-31d4-49d5-b382-
0e35dec92266

https://data.gov.uk/dataset/nhm-over-500/resource/32243819-31d4-49d5-b382-0e35dec92266
https://data.gov.uk/dataset/nhm-over-500/resource/32243819-31d4-49d5-b382-0e35dec92266

18

interfere with the data type detection. On the other hand should valid cell content
not accidentally be discarded by being classified as missing value.

Aggregated Column Content of those cells can easily be reproduced after the parsing.
Because it contains redundant information, it could be discarded. However, an
aggregated column might not be reproducible if it contains weighted sums or the
like.

Title
Multiple Header Rows Aggregated Column

Multiple Tables

Inconsistent Data Formatting Missing Value Qualifier

Figure 3.3: DFID non-executive directors: business expenses, gifts, travel and meet-
ings, 2011 December Return4

Different Variables in Same Column The table in Figure 3.4 a column with dif-
ferent variables. Because those variables are not of the same data type, it is not
possible to determine a specific column data type. With a transposed version of
the table this would well be possible.

Title As many other tables, this table contains a title row.

Footnote The footnote should be removed from the table structure, but preserved.

Hierarchical Column Headers The table in Figure 3.5 contains, similar to a previ-
ously shown table (See Table 3.3), hierarchical column headers.

4https://data.gov.uk/dataset/dfid-non-executive-directors-business-expenses-gifts-
travel-and-meetings/resource/012b5b29-dbda-4a8a-8ba5-e858d0b10d51

5https://data.gov.uk/dataset/ukaea-prompt-payment-data/resource/9d99ff5a-a725-4537-
bf15-955c077561a0

https://data.gov.uk/dataset/dfid-non-executive-directors-business-expenses-gifts-travel-and-meetings/resource/012b5b29-dbda-4a8a-8ba5-e858d0b10d51
https://data.gov.uk/dataset/dfid-non-executive-directors-business-expenses-gifts-travel-and-meetings/resource/012b5b29-dbda-4a8a-8ba5-e858d0b10d51
https://data.gov.uk/dataset/ukaea-prompt-payment-data/resource/9d99ff5a-a725-4537-bf15-955c077561a0
https://data.gov.uk/dataset/ukaea-prompt-payment-data/resource/9d99ff5a-a725-4537-bf15-955c077561a0

19

Title Different Variables in Same Column

Footnote

Figure 3.4: UKAEA Prompt Payment Data, Prompt Payment 10 day - Oct 20145

Spanning Cells Spanning cells in headers do often occur along with hierarchical col-
umn headers. They can, however, also occur in data fields. The spanning cells are
most likely artifacts of exports from source formats which support spanning cells,
e.g. Microsoft Excel. For further data processing it would be sensible to infer the
original extent of the spanning cell and to duplicate the values to this extent.

Same Variable in Multiple Columns The lowest header row shows the variable names
"Headcount" and "Full-time Equivalent", which are being repeated. This is not an
issue which affects CSV parser directly, however, in a tidy version of the table all
"Headcount" and "Full-time Equivalent" variables would be in only two separate
columns.

Hierarchical Column Headers

Same Variable in Multiple Columns

Spanning Cells

Figure 3.5: Workforce Management Information - HM Revenue & Customs and Val-
uation Office Agency - October 20116

6https://data.gov.uk/dataset/workforce-management-information-hmrc-voa/resource/
6ef7498d-bf6b-4922-a264-d8e0d3261d45

https://data.gov.uk/dataset/workforce-management-information-hmrc-voa/resource/6ef7498d-bf6b-4922-a264-d8e0d3261d45
https://data.gov.uk/dataset/workforce-management-information-hmrc-voa/resource/6ef7498d-bf6b-4922-a264-d8e0d3261d45

20

Table 3.1: Issues identified in 100 random CSV data sets from data.gov.uk.

Issue Affected Files
Not UTF-8 Encoded 31
Metadata (Titles, Footnotes, ...) 22
Empty Rows or Empty Columns 18
Aggregated Cells/Rows/Columns 13
Download Link Broken or File Empty 11
Missing Value Qualifier 11
File Not CSV (e.g. HTML, ZIP) 8
Inconsistent Data Formatting 4
Spanning Cells (Omitting Duplicates) 4
Multiple Header Rows 4
Multiple Tables per File 3
Column Headers contain Variables 3
Row Numbers in first Column 2
Visual Table Elements 2
Data Footnotes (*) 2

The tables described were not the only ones affected with issues. Table 3.1 summarizes
the most frequent issues we have identified Out of the entire sample, 31 were not UTF-8
encoded and 22 contained metadata such as titles, footnotes, etc. This is largely in line
with the results from Ermilov et al.[14]. Only 29 retrieved files could be considered as
issue-free. Most notably, all files could be successfully read with either messytables or
readr.

3.2 Categorization of Issues

Ermilov et al.[14] collected and classified issues they encountered when working with
CSV files from the data.gov.uk data set. Another source for practical issues with CSV
files in Open Government Data repositories can be found at the data.gov Wiki 7. We
created a more comprehensive overview of issues related to tabular data in CSV files,
based on those sources, a more general overview of data quality issues by Singh et al.
[15], the Tidy Data principles by Wickham, the RFC 4180 and issues we encountered
(see Table 3.2).

The first category groups issue related to retrieval of the data. Linked resources have
to be online and the file has to be an actual CSV file, not HTML, XLS or ZIP. Those
issues are in particular mentioned in the data.gov Wiki, but were also encountered by
us. The category "Table Parsing" refers to problems with reading the tabular data itself.
Part of reading are detection of the right encoding and the dialect. The detection itself

7http://data-gov.tw.rpi.edu/wiki/Current_Issues_in_data.gov

http://data-gov.tw.rpi.edu/wiki/Current_Issues_in_data.gov

21

Table 3.2: Issues Related to Tabular Data in CSV Files

Level Issue R
FC

41
80

N
on

-c
on

fo
rm

ity

C
SV

Li
nt

Er
m
ilo

v
et

al
.

da
ta
.g
ov

W
ik
i

T
id
y
D
at
a
(W

ic
kh

am
)

Si
ng

h
et

al
.

Retrieval Link Broken or File Empty x x
File Not CSV (e.g. HTML, ZIP) x x

Table Parsing Not UTF-8 Encoded x x x
Delimiter other than ’,’ x x x
Quoting Character other than " x x
Inconsistent Quoting Character
Stray/Unclosed Quote x x
Unequal Number of Columns x x x

Table Structure Empty Rows or Empty Columns x x
Visual Table Elements x
Row Numbers in First Column x x
Metadata (Title, Footnotes, ...) x x x x
Multiple Tables per File x x
Spanning Cells (Omitted Duplicates) x x

Header Missing Header x x x x
Multiple Header Rows x x
Duplicated Header x x
Spanning Cells in Header x x
Group Header x

Data Arrangement Table in Horizontal Orientation x
Aggregated Cells/Rows/Columns
Column Headers contain Variables x
Mult. Observational Units in Table x
Different Variables in one Column x x
Multiple Variables per Cell x x

Data Formatting Leading/Trailing Whitespace x x
European Decimal Separators
Inconsistent Data Types/Formatting x x
Missing Value Qualifier x
Data Footnotes (*) x

Data Quality Misspelled Data x
Multi-Purpose Fields x
Data Duplication x x
Data Incompleteness x
Outlier Values x
Values Stray form Field Description x

22

poses an issue, if the encoding and dialect are unknown and not in line with the RFC
4180. A second problem arises when the dialect is not consistently used or corrupted.
This can lead to results with ragged rows, fields containing multiple variables or simply
cause crashing of the parsing process. The next category of problems is Misuse of
the Table Structure. We saw in many cases that the table contained metadata such
as titles or comments, empty columns, and content which was intended to improve the
readability. Issues concerning the header, like complex tables with multiple header rows,
spanning cells in header and group header, were grouped in a separate category because
the header is an integral part of the table. Issues belonging to the category of "Data
Arrangement" deal with functional aspects of specific cells, which belong to the table,
but are superfluous or incorrectly positioned. The category "Data Formatting" groups
issues which complicate the data type detection of columns, such as inconsistent data
formatting and value qualifier. The last category contains general data quality issues
which are rooted in the data itself and are completely independent of the form in which
they are stored.

Chapter 4

Problem Statement and Research
Questions

If we consider the distribution of file sizes on the open data portal data.gov.uk (Fig-
ure 4.1), it appears that the majority of files are fairly small, while the biggest amount
of data is stored in a few very large files. 92.5% of all files are smaller than 1MB and
make up a small, but not neglectable, fraction of the total corpus size of 0.75%. This
part of the corpus contains many loose chunks of information across various topics and
institutions, which has to our knowledge never been integrated and analyzed as a whole,
which could yield important new insights as emphasized in Chapter 1.

Size

N
o.

 o
f F

ile
s

0
20

00
40

00
60

00

10B 100B 1kB 10kB 100kB 1MB 10MB 100MB 1GB 10GB

0
G

B
39

 G
B

78
 G

B
11

6
G

B

C
um

ul
at

iv
e

S
iz

e

Figure 4.1: Size Distribution of CSV files on data.gov.uk

This part of the corpus is probably the most interesting, but also the most problematic
one. It contains too many files to check and parse them manually on a file-by-file basis.

23

24

Table 4.1: CSV Parsing success and remaining CSVLint issues

Parser Success Rate
R native 56/80
data.table 75/80
readr 79/80
messytables 80/80
Parser Files with CSVLint Issues

before parsing after parsing
readr 56 31
messytables 56 20

On the other hand, the files are so heterogeneous and error-prone that current parsers are
not capable of automatically and reliably reading tabular data from them. For an initial
assessment of the quality of current CSV parser, we parsed the previously mentioned
sample from data.gov.uk, with different libraries and wrote the parsing result back to a
RFC 4180-conform CSV. We did not only assess the success of the parsing itself, but also
the number of issues before and after the parsing with CSVLint, which detects issues,
such as title rows, empty rows and inconsistent values in columns. The results in Table
4.1 show that even the most reliable parsers messytables leave behind unresolved issues
in about 1/3rd of the cases. This suggests that although the parsers parse the CSV file
without errors, they do not necessarily produce usable output.

The automatic detection mechanisms for, e.g., dialect and header rows, of current CSV
parsing libraries largely rely on heuristics, which assume that the content of the CSV
files are regular tables with an optional header row and succeeding data columns and
potential metadata above the header row. Chapter 3 shows that this assumption does
not always hold and that many CSV files also contain metadata in form of footnotes,
contain multiple tables per file or tables with multiple header rows. Moreover, the
reliability of the heuristics in many cases depends on the number of rows. Thus, the
smaller the files, the more unreliable the heuristics become. Figure 4.2 shows a very
small semicolon-delimited file, which is ambiguous, because the comma could either be
a decimal separator or the cell separator. In fact, all of the tested parsers parsed this
file incorrectly.

Figure 4.2: Simple Example of an ambiguous CSV File.

The parsing process in current CSV parsers is a linear chain of parsing steps (see Fig-
ure 4.3, left). If one heuristic fails and makes a wrong assumption, it will likely have a

25

negative influence on the subsequent detection steps. The succeeding steps will fail as
well or at least not make up for previous mistakes. And the more steps are added to the
chain, the more likely it becomes that at least one of them fails.

One goal of this thesis is to develop a CSV parser with a broader understanding of
tabular data structures (see Figure 4.3, right), which certainly requires adding more
steps to the process.

Figure 4.3: Parsing process without and with enhanced Table Structure Detection.

In case of the example shown in Figure 4.2 the dialect detection would require infor-
mation about the data type consistency in order to make the correct decision. On the
other hand, the data type detection requires proper data cells, hence a successful dialect
detection is required in the first place. This leads to a circular dependency between di-
alect detection, data type detection and the intermediate steps along the way. Because
such a look-ahead is not feasible, current CSV parsers optimize their parsing decisions
only locally, which leads to previously described problems.

In order to circumvent such circular dependencies, we propose a solution which regards
the parsing process from a more holistic point of view. Instead of creating a linear chain
of locally optimal decisions, we aim at building a tree of possible parsing decisions,
traverse it and decide in the end for the globally best parsing result (See Figure 4.4).
We hypothesize that the globally best parsing result can be identified based on result
features, such as the shape of the resulting table and column-wise consistency of values.

26

Figure 4.4: Multi-Hypothesis Tree

While linearly chained parsers are rather optimized towards computational efficiency,
the multi-hypothesis parsing will be optimized towards result quality. However, the size
of the parsing tree is subject to exponential growth, which could quickly exceed practical
limitations of computing. We aim at counteracting this issue by creating only a limited
amount of reasonable hypothesis per step and optionally pruning the hypothesis tree
from very unlikely hypotheses.

Ultimately, following research question arise:

1. How large does the hypothesis tree grow?

2. How reliable can the best parsing hypothesis be identified?

3. What effect do the table normalization steps have on the table quality?

4. Does multi-hypothesis parsing lead to better results than linear parsing?

Chapter 5

Related Work

State-of-the-art CSV parsers have already been discussed in Chapter 2. Therefore the
related work section will mainly focus on the table normalization aspect. Since normal-
izing table structures could be considered as a data pre-processing step, we investigated
how and to what extent data wrangling tools are capable of dealing with such problems.
On the other hand, parts of the problem of non-tidy data also occur in databases. We
will therefore discuss if methods from the database research field could be relevant. As
there are many practical solutions for creating semantically enriched data based on CSV
files, which assumingly require a certain understanding of the table structure, we con-
sidered those solutions as well. However, as none of the previously mentioned directions
provided satisfying solutions to the problem, we eventually focused on more general
research on table interpretation and normalization.

5.1 Data Wrangling Tools

The tool Comma-Chameleon1 combines CSVLint validation capabilities with the abil-
ity to edit the tabular content and manually fix issues in the file via a graphical user
interface. This tool is helpful to fix small issues in individual files, but not practical
to make structural changes to the content or to process large corpora of files. Tools
like OpenRefine2 provide a graphical user interface to facilitate manual reviewing and
cleansing of tabular data as well. Those tools provide functionality for, e.g., merging
and splitting of rows and columns, mass renaming of cell content and for reviewing of
value distributions, in order to identify spelling mistakes and outlier values. Trifacta
Wrangler takes it a step further and aims at reducing the manual effort by learning from

1https://github.com/theodi/comma-chameleon
2https://github.com/OpenRefine/OpenRefine

27

https://github.com/theodi/comma-chameleon
https://github.com/OpenRefine/OpenRefine

28

the users’ behaviour, by using the principle of predictive user interaction [16]. It basi-
cally offers the same functionality as OpenRefine, but proposes useful transformations
to the user. The more files of the same kind are processed, the more accurately it can
predict suitable data transformations based on previous user input and the easier the
wrangling process gets for the user. In summary, the focus of those tools is, however, on
very generic tasks which could be used to normalize the tabular shape of input data, but
are not specifically made to do that. Although, e.g., Trifacta Wrangler tries to support
the user by learning from his behaviour, the functionality is only useful if the input data
is rather homogeneous. Above that, those tools are rather focused on manually guided
data processing on file-by-file basis, than on automatic processing. For the purpose
of automatically normalizing a large set of heterogeneous tables they can thus not be
considered as useful.

5.2 Database Normalization

The problems of table canonicalization and "tidying" [7] are generally related to database
normalization, since it implies a table normalization up to Codd’s 3rd Normal Form.
Solutions which are able to normalize a table, as shown by Du et al. [17] and Yazici et
al. [18], rely on a user-provided set of functional dependencies between columns. Based
on this, they can automatically normalize a relational table up to Codd’s 3rd Normal
form. Since functional dependencies between columns in our data are not known, the
methods in itself are not useful for us. However, algorithms for detection of functional
dependencies between columns exist (see Papenbrock et al. [19]), but they create large
numbers of functional dependencies and leave the open research question how to make
sense out of them, with e.g. ranking methods. They can thus not yet be used in practice
for detection of sensible functional dependencies. An alternative approach was presented
by Cunha et al. [20], who aimed at normalizing functional dependencies in Spreadsheets,
by inferring functional dependencies from cell functions, such as sums. Neither can this
approach be considered as useful, since the CSV file format does not employ the concept
of cell functions.

5.3 Semantic Enrichment of CSV

Various research has been done towards lifting tabular data, in particular CSV, to se-
mantically richer data formats, such as RDF. The Resource Description Framework
(RDF) is a method for conceptual description and modelling of information in web

29

resources [21], which is based on the idea of expressing information in form of subject-
predicate-object triples (i.e. entity-attribute-value) and allowing to link those concepts
and relations across different data sets. By using a consistent notation for the same
entities, attributes, and sometimes values, a web of linked data emerges, which facil-
itates data integration and allows for querying and even logical reasoning across data
from various origins. Knowledge bases, such as Wikidata [22], contain many often-used
concepts and relations and function as hub and entry point to the linked data web.
Using the notation found in those knowledge bases, basically connects a data set to
the whole linked data web. On the other hand, knowledge bases can serve as source
for common knowledge. Wikidata, for example, contains approximately 19.5 million
(August 2016)3 items like persons, locations, events etc. The Wiki of the W3C (World
Wide Web Consortium) 4 lists existing solutions which are able to convert CSV files
to RDF triples. Those solutions, however, largely rely on user-defined conversion rules
in domain specific languages, which define the mapping of concepts, relations and en-
tities in a table to a knowledge base. Given this definition, the transformation can be
executed automatically. Mulwad et al. [23], Sharma et al. [24] and Limaye et al. [25],
again, aimed at creating those mapping automatically, by inferring the RDF concepts
from the table content. These approaches use Probabilistic Graphical Models to achieve
a global optimum of label assignment likelihoods. However, they only work properly if
the concepts in the table are so general that they occur in public RDF knowledge bases
and on the other hand are not too ambiguous. Furthermore, all of the approaches are
built on the assumption that the input data is a regular table, with one header row and
succeeding data rows, which, as shown in Chapter 3, does not apply to a significant
amount of real-world CSV tables.

In order to achieve precision and efficiency for CSV to RDF conversion, Ermilov et
al. [14] proposed a crowd sourcing approach. They developed a crowd-sourcing platform
for the data portal datacatalogs.org, which enables people to work together on seman-
tically enriching open data, with the long-term goal of integrating the data portal into
a "distributed data warehouse". In their study, Ermilov et al. analyzed a sample of
CSV files from the open government data portal PublicData.eu and came to the same
conclusion about the poor condition of CSV files on open government data portals as
we did. Ermilov et al. have been the only authors, who recognized the necessity for a
cleaning process of the table, before taking any further steps. They identified a main
problem, namely leading and trailing metadata, which were observed in 20% of all ta-
bles. In the end, their cleaning approach did, however, not succeed and they stated:
"In such cases [leading/trailing metadata], the location of the header is currently not

3https://www.wikidata.org/wiki/Wikidata:Main_Page
4https://www.w3.org/wiki/ConverterToRdf#CSV_.28Comma-Separated_Values.29

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.w3.org/wiki/ConverterToRdf#CSV_.28Comma-Separated_Values.29

30

properly determined" [14]. Also Meroño-Peñuela et al. encountered the problem of non-
normalized tabular data in the context of Spreadsheet to RDF conversion of historical
census data [26]. They developed a tool, called TabLinker5, which facilitates the conver-
sion process by understanding the table structures, based on coloured markups inside
the Spreadsheet. Those markups, have to be manually created, which is not practical
for large corpora as the one from data.gov.uk.

All tools mentioned so far have in common that they are typically used on the data
consumer side. This is only necessary, because the original data lacks meta-information
on its structure and content. The W3C CSV on the Web Standard [27] and the OKNF
Data Packages6 target exactly this problem. Both define a JSON schema for meta-
information, which are added to the CSV file. The JSON shall then contain information
about the used CSV dialect, the position of the header row, contained entities and their
data types. The distinctive feature of CSV on the Web is that it allows for LOD-typical
annotation of column content, which facilitates subsequent conversion from CSV to
RDF. Additional meta-information on CSV files would certainly facilitate the parsing
of CSV files, but for data which has already been published without meta-information,
which holds for the vast majority of data in the data.gov.uk corpus, it is of no use.

5.4 Automatic Table Normalization

The techniques described in this section aim at reading and interpreting tables without
the need of user input. The problem of table normalization is closely related to table in-
terpretation because in order to normalize a table, the content has to be understood to a
certain extent. Generally, table normalization can be considered as a side-product of ta-
ble interpretation, because as soon as the content of the table is completely understood,
it can be represented in any desired way. Table interpretation lies at the intersection
of document analysis, information retrieval and information extraction. Hurst [28] pro-
poses a more specific subdivision of the interpretation task into a graphical, physical,
functional, structural, and a semantic level. We mainly focus on the physical, functional
and structural level, which bridges the gap from semi-structured data to normalized
tables, while the graphical level refers to document analysis tasks and the semantic level
to ontology mapping. The physical level refers to detection of the actual shape of the
table, and the breakdown into rows, columns, cells, spanning cells etc. The functional
level comprises the discrimination of access cells, i.e. row/column header, from data
cells. The structural level refers to detection of access paths to data cells, i.e., which
access cells are indexing which data cells - or simply, how would a human read the table?

5https://github.com/Data2Semantics/TabLinker
6OKNF: Open Knowledge Foundation, http://dataprotocols.org/data-packages/

https://github.com/Data2Semantics/TabLinker
http://dataprotocols.org/data-packages/

31

A slightly different notion of related work on extraction of tabular data from lists was
also included in this section. This covers the other side of the spectrum of normalization
tasks, in which the complexity of the table structure does not have to be reduced, but
rather has to be recovered. Tabular data in CSV has problems from both sides of the
spectrum, because on the one hand the CSV format itself can be corrupted, which leads
to cases in which the proper table shape has to be recovered in a way which is closely
related to table extraction from lists. On the other hand, if a CSV table can be properly
read, it can still contain complex tabular table structures, which require regular table
normalization procedures.

Comprehensive background information on table theory is given by Wang [29], of which
relevant aspects are included in the following sections. Literature reviews from Nagy et
al. [30], Silva et al. [31] and Embley et al. [32] provide an overview of research work on
table interpretation, but are not up-to-date. We therefore aim at giving a more recent
overview and include especially practical solutions in our review.

5.4.1 Applications

The solutions which will be discussed have different purposes, but have in common that
they aim at reading tabular data which was intended to be read by humans and not by
machines.

The primary purpose of the table processing system XTable by Wang [29] is to de-couple
the logical and physical representation of a table to facilitate table manipulations, by
executing them on a logical abstraction of the physical table. Although the table content
gets abstracted, it does not get interpreted or automatically normalized. The approach
was hence not further considered.

However, most of the reviewed solutions aim at interpreting the content of a table in
order to make it queryable and integratable with other data sources. Hurst proposes
the end-to-end table interpretation system TabPro [28], which uses a very early version
of the lexical database WordNet, in order to achieve a semantic understanding of the
table content. The table interpretation system TARTAR, by Pivk et al. [33], is another
end-to-end table interpretation system which uses the same conceptual framework as
Hurst but utilizes more recent Semantic Web technologies. Seth et al. [34] proposed the
system TANGO, aiming at integration of heterogeneous tabular data into databases.
Also, the system Senbazuru, by Chen et al., was created to facilitate the integration of
heterogeneous tables into a "Spreadsheet Database Management System" [35]. Google

32

WebTables [36] was the first system to apply table interpretation technologies at web-
scale, on a corpus of 154M tables. Ultimately, the system was used to answer search
queries with relevant tables instead of relevant websites.

The approaches by Adelfio et al. [37] and Pinto et al. [38] do not aim at complete table
interpretation, but are rather methods which could be used to improve systems such as
WebTables. Eberius et al. [39], again, proposed a system called DeExcelerator, which
is aimed at normalization of table structures in order to facilitate data analysis and
integration tasks. This is largely in line with our aim.

Furthermore, the approaches of Elmeleegy et al. [40] (ListExtract) and Chu et al. [41]
(TEGRA) were considered, which aim at extracting tabular data from lists.

5.4.2 Input Data Formats

The mentioned approaches widely rely on specific features and cues, which are not
provided by every data type. Table 5.1 gives an overview of which data type provides
which kind of features.

Table 5.1: Features of different Data Formats on table, text and cell level

Level Feature HTML Spreadsheet CSV ASCII List

Table Well-defined Rows x x x x x
Well-defined Columns x x x
Line-Art x x

Cells Spanning Cells x x
Style (e.g. Background Color) x x

Content Well-defined Characters x x x x x
Style (e.g. Font) x x
Data Type x
Formulas x

Functional and structural information, i.e. a precise distinction of access and content
cells or explicit reading paths, are provided by none of the data types. The data formats
nevertheless contain the sufficient amount of information to make the content readable
and interpretable for humans. The necessary information is, hence, implied in the con-
tent or the styling features of the data formats. Spreadsheets contain the largest variety
of features, which could potentially be used to infer the functional and structural prop-
erties of a table. Cell functions were already shown by Cunha et al. [20] to be useful
for normalization of tables in Spreadsheets. Due to the fact that cell functions are not
contained in CSV files, approaches using them were disregarded. Eberius et al. and
Adelfio et al. used spreadsheet input without making use of the Spreadsheet-specific
features, which is why they were included in the review.

33

Table 5.2 provides an overview of which input formats were used by the different authors.

Table 5.2: Data Formats, used by different authors

Format A
de

lfi
o
et

al
.[
37

]

Pi
nt
o
et

al
.[
38

]

TA
RT

A
R

[3
3]

W
eb

Ta
bl
es

[3
6]

Se
nb

az
ur
u
[3
5]

D
eE

xc
el
er
at
or

[3
9]

TA
N
G
O

[3
4]

Li
st
Ex

tr
ac
t
[4
0]

T
EG

R
A

[4
1]

Ta
bP

ro
[2
8]

HTML x x x x x x x
Spreadsheet x x
CSV x
ASCII Table x
List x x

Only Eberius et al. also considered CSV files as input format. One possible explanation
that CSV is not frequently mentioned in literature on table normalization is, that one
could assume that CSV files are already in a normalized tabular shape and that sophis-
ticated table processing of CSV is not required. However, as shown in Chapter 3, this
assumption does not hold. Most of the other approaches use HTML as input format.
As shown by Cafarella et al., the web contains billions of HTML tables of which an
estimated fraction of 1.1% contain actual relational tables [36]. HTML tables are thus
ubiquitous. The HTML format facilitates the detection of tables in documents, because
HTML has a specific markup for tables. The table markup is, however, frequently mis-
used for other purposes such as layouting, which explains why only a fraction of 1.1% of
the tables on the web are actual relational tables. Regardless, the HTML format does
provide a rich set of features, such as different font styles, line-art, and spanning cells,
which were used by Adelfio et al. [37], Pivk et al. [33], Chen et al. [35] and Hurst [28]
as cues for the interpretation of the table structure. Because those features are not
provided by CSV, we have to assess to which extent those features were used and if the
approaches of the respective authors would nevertheless be applicable to CSV data.

Table 5.3 provides an overview about which types of cues and features were used in
different approaches. All of the approaches considered the distinction between numeric
and textual cell content and, most notably, not all approaches used layout features. Seth
et al. even used CSV as intermediate format, stating: "Even though [...] the format
loses most appearance features (layout and cell formatting), the remaining structural and
alphanumeric information is sufficient for [...] algorithmic analysis" [42]. This suggests
that cell content alone could nevertheless be sufficient to infer the structure of the
table. Pinto et al. [38] used ASCII tables as input, which are even less structured than

34

Table 5.3: Features of the Input Data, used in different approaches. The data type of
the content was not necessarily explicitly provided by the input data, but got inferred
with Regular Expressions. Background knowledge matches are used by approached

which make use of background knowledge, as outlined in Section 5.4.3.

Feature A
de

lfi
o
et

al
.[
37

]

Pi
nt
o
et

al
.[
38

]

TA
RT

A
R

[3
3]

W
eb

Ta
bl
es

[3
6]

Se
nb

az
ur
u
[3
5]

D
eE

xc
el
er
at
or

[3
9]

TA
N
G
O

[3
4]

Li
st
Ex

tr
ac
t
[4
0]

T
EG

R
A

[4
1]

Ta
bP

ro
[2
8]

Table Shape (Rows & Columns) x x
Spanning Cells x x x x
Line-Art x x
Content Style (e.g. Font) x x
Content - Text, Numeric x x x x x x x x x x
Content - Date, Currency, etc. x x x x x x
Content - Punctuation, Indentation x x x
Content - Keyword Matches x x x
Content - Backgr. Knowledge Matches x x x x x

CSV. Elmeleegy et al. [40] and Chu et al. [41] use lists as input data format for their
approaches. They do not face the challenge of detecting and normalizing complex table
structures, but aim at recovering a tabular structure from lists. They neither used
content style features such as different fonts or a distinction between bold and italic
characters. Elmeleegy et al. [40], Chu et al. [41], Pivk et al. [33], Cafarella et al. [36] and
Hurst [28] did use background knowledge in order to determine the meaning of textual
content.

5.4.3 Background Knowledge

Background knowledge is used by different approaches in order to interpret the textual
content of cells. Cafarella et al. [36] used web search to assess the relevance of terms on
a table. The remaining approaches employ semantic web technologies and knowledge
bases, as already described in section Section 5.3. Hurst emphasizes that semantic
understanding of the table/cell content, i.e. the use of background knowledge, is required
to recover certain implicit information and resolve ambiguities [43]. One example he
mentions is the ambiguity of the stub header (see Figure 5.1), which might either refer
to the cells on the right or to the cells below. In Figure 5.1 it is obvious for the reader
that the stub head "Term" refers to the cells below, but we can only conclude this,
because we know that the numbers "2003" and "2004" are most probably years and that
"Fall", "Winter", and "Spring" are school terms. Furthermore, tables can contain cells,

35

whose meaning is not even explicitly mentioned at all. In Figure 5.1 the information is
omitted, that the "Assignment" and "Exam" columns contain "Grades". Wang refers to
these implicit, but missing headers as "Virtual Headers" [29].

According to Adelfio et al. [37] the use of background only makes sense if the table
content is globally relevant. If the table header contains internal codes of some company,
global world knowledge would not be of any use. As observed by Chu et al. [41], the
performance of an approach using background knowledge actually significantly decreases
for corporate datasets [41]. For those data sets the syntactical structure of the content
is way more important, as also shown by Cortez et al. [44]. Because our solution should
work reliably, regardless of which kind of information is in the table, we do not aim at
using background knowledge.

5.4.4 Table Models

Every approach makes certain assumptions about the possible structure of a table. Ca-
farella et al. [36] can make a very simple assumption, because they only consider tables
which adhere to a structure with one header row and trailing data rows. All other vari-
ants of tables are discarded in a process, which they call relational filtering. Discarding
tables is reasonable when dealing with table corpora on web-scale. But we aim at re-
covering as much tabular data as possible from the input. Discarding complete tables is
thus not an option.

Adelfio et al. [37] and Pinto et al. [38] propose a higher variety of possible row functions,
without explicit restrictions for their ordering. In addition to header and data rows,
they propose different kinds of section- and sub-headers, title rows, aggregation rows
(e.g. a total row), footnotes, and other types of non-relational metadata. Apart from
row functions, Eberius et al. [39] introduce a distinction of column functions, namely
data columns, empty columns, aggregation columns and columns which are not part of
the data area.

Chen et al. [35] introduce the viewpoint that a table actually consists of column headers,
row headers, and a data area. They make the strong assumption that the data area
consists only of numeric values. This assumption does not hold in general, though. The
approach of Seth et al. [34] also incorporates the concept of row headers, column headers
and a data area and furthermore introduces the concept of critical cells, which mark four
distinctive cells, separating the header areas from the data area. Figure 5.1 shows where
these cells are located.

36

CC1/2 CC3

CC4

Figure 5.1: Table model of Hurst [28] and Pivk et al. [33] and Critical Cells (CC1-4)
as introduced by Seth et al. [34]. (Adapted from Pivk et al. [33]).

The first critical cell (CC1) marks the first element in the Stub Header, CC2 the last.
CC3 marks the upper left corner of the data area and CC4 the lower right corner of
the data area. Seth et al. [34] make the strong assumption that the cells in the column
and row header always form a unique access key to the cells in the data area and
denotes tables which do not comply with that rule "Degenerate Tables" [45]. We will
show in Section 6.2.6, that also quite regular tables do not necessarily comply with this
assumption. Hurst [28] and Pivk et al. [33] do not make similar assumptions and further
introduce the concept of nested column headers, nested row headers and dimension
headers. This results in a very comprehensive table model, which is largely in line with
the model of Wang [29]. Which table elements are supported by which approaches, is
summarized in Table 5.4.

5.4.5 Analysis Methods

The analysis methods can be split in two categories - rule-based/heuristical methods and
machine learning methods. General benefit of the rule-based and heuristical approaches
is that they do not require training data.

Chen et al. [35], Pinto et al. [38] and Adelfio et al. [37] use Conditional Random Fields
for categorization of row functions (e.g. header row, data row, group header row, title,

37

Table 5.4: Physical Table Elements used by different Authors

Level Entity A
de

lfi
o
et

al
.[
37

]

Pi
nt
o
et

al
.[
38

]

TA
RT

A
R

[3
3]

W
eb

Ta
bl
es

[3
6]

Se
nb

az
ur
u
[3
5]

D
eE

xc
el
er
at
or

[3
9]

TA
N
G
O

[3
4]

Ta
bP

ro
[2
8]

Physical Table Location x x
Multiple Tables (Vertically) x x
Table Orientation x
Spanning Cells x x x x x

Functional Title/Table Caption x x x x x x
Metadata (e.g. Footnotes) x x x x x
Critical Cells x x
Logical Units x
Single Column Header x x x x x x x x
Multiple Column Headers x x x x x
Hierarchical Column Headers x x x x
Row Headers x x x x
Group-/Sectionheaders x x x
Stub Head x x x

Structural Aggregation x x
Group-/Sectionaggregate x
Categories in Header x x x x

etc.). A disadvantage is that these approaches require a significant amount of manually
annotated tables as training data. Adelfio et al. used 1,976 tables, which contained
manual annotations of each row. The training data was upon request not provided.
Cafarella et al. [36] used various classification methods such as Support Vector Machines
(SVM), Naive Bayes and Logistic Regression for classification of relational and non-
relational tables. The SVM classifier was performing best on this task. They used a
sample of 1000 as relational/non-relational annotated tables as training data.

Seth et al. used Sequential Circuit Synthesis [46], in order to optimize a set of logical
functions, representing assumptions about the table structure. This method only works
if the row and column headers form a unique access path to the data cells.

DeExcelerator uses a rule-based pipeline, which processed the table through multiple
heuristical detection steps, until the table is in a supposedly normalized form. The
pipeline consists of empty row/column detection, interweaved header row and meta-
data row detection, a refined step for empty column detection, aggregation row/column
detection, data type detection and spanning column cell expansion7.

7Sometimes, duplicated values are omitted in tables, when it is obvious for the human reader that the
following rows contain the same value. In Spreadsheets, this can be expressed by spanning cells, which

38

Pivk et al. [33] also use a linear chain of detection and interpretation steps, but notes
that: "There are also special cases [...], where the table consists of several ’independent’
tables, and each of them may have a different orientation. In such cases, we first assign
the table the orientation as described, and later (when we discover that the table actually
consists of several ’independent’ logical units) split the table and assign each one a
respective orientation". Pivk et al., hence, re-consider previous steps.

Silva et al. [31] propose a design for an end-to-end table interpretation system which
consists of linearly chained steps, but with explicit re-consideration loops. They "use the
output of later steps as input to earlier ones, thus taking advantage of the extra knowl-
edge each stage provides to improve the quality of the previous". This should counteract
the effect that some steps make globally sub-optimal decisions. In this design, however,
only the previous step gets re-considered. If two or three steps back a sub-optimal de-
cision was made, the system is still stuck in a local optimum. Also Elmeleegy et al. [40]
express the need for re-consideration of previous steps. In their ListExtract approach
lines are so often splitted, merged and re-aligned, until the number of inconsistent fields
converges, which was typically the case after one iteration.

In the list extraction approach of Chu et al. [41] first a big solution space is created,
which is comparable to our proposed solution. Subsequently the space gets pruned and
searched for optimal solutions. Chu et al. perform pruning anchor segmentation (PAS)
and an A* search to minimize a certain path in the generated solution space of possible
row-split and merge options. This approach significantly outperforms the comparable
ListExtract system, which uses the re-consideration method. This suggests that a true
global optimum can only be achieved with all possible parsing decisions on hand.

User interaction is not required by any of the systems, however, three of the approaches
allow optional user interaction. Eberius et al. (DeExcelerator) allow user interaction
to manually edit/correct every step of the parsing pipeline. Chen et al. [35] provide
a graphical interface in which the user can edit the final result. Those edits trigger a
re-consideration of the table structure. In order to optionally improve the performance
of the system, Chu et al. utilized the "Programming by Example" principle. Their
approaches allow the user to manually split a few exemplary lines of an input list and
use this additional information as cues for the splitting/merging algorithm. None of the
approaches uses the user feedback to generally improve future choices of the system.

span across multiple rows or columns. If a Spreadsheet with spanning cells is exported to CSV, then
only the first cell gets filled with the spanning cell content and the remaining cells are left empty. In
order to recover those omitted values, the content of the first cell gets copied into the remaining empty
cells.

39

5.4.6 Evaluation and Limitations

For table interpretation tasks, general evaluation approaches have been put forward by
Hu [47] and Wang [48], but with primary focus on the graphical interpretation level for
detection of tables in documents. General baselines or gold standards for evaluation of
end-to-end table interpretation or table normalization tasks could not be identified. Tab-
ular results have to be either manually checked for correctness or compared to a manually
created gold standard by conservative matching methods as proposed by Elmeleegy et
al. [40]. We could not identify fuzzy matching methods or distance measures for tabular
data.

Adelfio et al. [37] achieved a rate of 99.3% and 98.1% correctly classified rows in Spread-
sheets and HTML tables, respectively, in 10 test and training runs with 1,048 relational
Spreadsheets and 928 relational HTML tables. On a different test set, Pinto et al. [38]
could only achieve a rate of 93.5% correctly classified rows. Because of the high back-
ground probability for data rows, the results are not necessarily as good as they seem.
Pinto et al. [38] reported a recall and precision for table header detection with only 46.2%
and 34%, respectively. Adelfio et al., again, achieved a recall of 91.5% and a precision of
94,5% for header row detection. The rate of entirely correct classified tables was reported
as 56.3% for Spreadsheets and 84.6% for HTML tables. The WebTables [36] approach,
which simply assumes the first row to be the header, could only correctly classify 24.2%
and 41.2%, respectively, of the tables in the same test set. This, again, underlines the
importance of proper row function detection. Pinto et al. did not report on entirely
correctly classified tables. Chen et al. reached a F1 value of 0.774 for header detection
and an F1 value of 0.920 and 0.811 for column header and row header hierarchy detec-
tion, respectively [49]. The produced results required, on average 1.8 and 16.2 human
repair steps, for column and row headers respectively, in order to a achieve a perfect
result. Without the assistance of the system 22.5 and 58.6 repair steps, respectively,
would have been required. This shows that the system significantly reduces the manual
effort for normalization of tables. The proposed solution can not be considered as a fully
autonomous system, nevertheless.

The work of Pivk et al. [33] shows that evaluating the results of a end-to-end table
interpretation systems is challenging. Manually created baselines by 14 different persons
differed substantially, and were only in 2 of 21 cases identical. From a conceptual point
of view, they agreed in only 60% of all cases. However, in 74.18% of all cases the
interpretation of the proposed system was in line with at least one of the annotators on
a conceptual level. Using a stricter evaluation, it was only in 50% of the cases in line with
at least one manual annotation. In a second evaluation with 138 tables crawled from the
web, and without fixed reference results, the interpretation process achieved in 85.44%

40

of all cases reasonable results. For further evaluation, we requested the source code of
TARTAR. Due to missing and outdated dependencies, we could, however, not evaluate
it ourselves. Hurst [28] indicated a recall and precision of 54% on unseen data for the
TabPro system. Generally, the solutions for end-to-end table interpretation can not be
regarded as reliably enough for our purposes. In most of the cases, a full interpretation
of the content is also not required in order to normalize the structure of a table.

Seth et al. [34] stated a success rate of 99% for correct segmentation of the table into
column header, row header and data areas. The evaluation was done on a set of 200
randomly drawn tables from websites such as Statistics Canada and the US Department
of Justice. The sample, however, appears to contain a large fraction of tables which
actually form unique access paths to data cells, which is a central prerequisite for their
approach.

Chu et al. reported a F1 value for correct table extraction from web lists of 0.9 [41].
On the same data set, ListExtract achieved only an F1 value of 0.76. The supervised
method of the approach of Chu et al. reached an F1 value of 0.97. List extraction
methods can hence be considered as reliable and could potentially be used to improve
the robustness of CSV parsers.

Eberius et al. [39] evaluated the results of DeExcelerator by human judgment with a
group of 10 persons and a set of 50 tables. The human judges assessed the quality of
each normalization step on a scale from 1 to 5. Approximately 90% of the metadata
extraction steps were judged with the highest ranking. Table area, data type and header
recognition were in approx. 80% of all cases rated with the highest rating. Additionally,
the system was evaluated on a set of approx. 2000 Excel spreadsheets from the open
government platform data.gov. For this data set, header recognition succeeded in 78%
of the cases. Because DeExcelerator pursues the same aim as we do, and was previously
evaluated on open government data sets with a good performance, we will consider the
system for a comparison in Chapter 7.

Chapter 6

Multi-Hypothesis Parser

This chapter gives an overview of the architecture of the proposed Multi-Hypothesis
Parser. We address each parsing step separately and provide more insights into the im-
plemented heuristics. Finally, we describe how the best parsing hypothesis gets selected.

6.1 Architecture

The Multi-Hypothesis Parser was designed in a modular way, so that parsing steps
can be easily added, removed or replaced. The interface which a parsing steps has to
implement consists of a detect-method and parse-method. The detect-method receives
an intermediate parsing result as input and provides a set of hypotheses and respective
confidence values as output. A parse-method receives an intermediate parsing result
and an associated hypothesis, and returns a new intermediate parsing result. Each
parsing step has a specific position in the parsing hierarchy, which determines in which
order the separate steps are executed. The core component of the parser is a tree data
structure, which gets traversed in pre-order and built up on-the-fly by the respective
parsing steps. When the tree is fully traversed, the parsing results of the final parsing
step get collected and rated in the quality assessment module. Figure 6.1 gives an
overview of the architecture and Algorithm 1 shows the tree traversal process in detail.
The system was implemented in the R environment for statistical processing [50].

41

42

multiple_tables
+tables: List<DataFrame>

table
+table: DataFrame

text
+text: String

«interface»
hypothesis

data.Tree:Tree

parser
-parsing_tree: Tree
-parsing_hierarchy: List<parsing_step>
+parse_file(file, config): List<DataFrame>

quality_assessment

+rank_result_quality(list<results>): list<int>

«interface»
indermediate

node
+name: String
+parsing_level: String
+hypothesis: hypothesis
+confidence: double
+evaluated: boolean
+intermediate: intermediate
+parent: node
+child: List<node>
+addChild(node: node)

«Interface»
parsing_step

+detect(intermediate, config): List<hypothesis>
+parse(intermediate, hypothesis, config): intermediate

Figure 6.1: Architecture of the Multi-Hypothesis Parser

Algorithm 1 Hypothesis Tree Traversal
1: function generate_parsing_tree(file_path, config = default)
2: intermediate← file_path
3: tree← create_root_node(intermediate)
4: hypotheses← parsing_steps[1].detector(intermediate, config)
5: tree← new childnode for each hypothesis in hypotheses
6: while not all nodes are evaluated, traverse tree in config.traversal_order do
7: if node.confidence < config.pruning_level then continue end if
8: level← node.level
9: parent← node.parent.intermediate
10: hypothesis← node.hypothesis
11: intermediate← parsing_steps[level].parser(parent, hypothesis, config)
12: if intermediate is null then continue end if
13: node.add_property(intermediate)
14: if level is count(parsing_steps) then continue end if
15: hypotheses← parsing_steps[level + 1].detector(intermediate, config)
16: node← new childnode for each hypothesis in hypotheses
17: end while
18: return tree
19: end function

43

6.2 Parsing/Detection Steps

Although the multi-hypothesis parsing framework does not generally prescribe which
parsing steps have to be implemented, we propose a set of 9 parsing steps, which grad-
ually lift the CSV file input towards a more explicit and normalized tabular form. Fig-
ure 6.2 illustrates this process. The detection steps each use heuristics to determine a
set of reasonable hypotheses and respective confidence values. Regardless of the result
of the heuristics, each detection step should account for the overall high background
probability that the input is a perfectly regular, RFC 4180 conform table. The gen-
erated hypotheses should be as explicit as possible and the parsing steps as strict as
possible, in order to rule out wrong hypotheses at early stage and confirm hypotheses
most precisely.

Figure 6.2: Parsing steps of the Multi-Hypothesis CSV Parser. Row/column function
detection and narrow/wide data detection steps are in this diagram summarized under

the step Table Structure Detection.

44

Each detection and parsing has access to a utility function, which determines the type
of cell content, such as numeric, date, and time, based on regular expressions (see List-
ing C.1). The cell types can be considered as the algorithms "eyes" on the table content.
In future work, they could be extended with more thorough regular expressions or cell
content could be matched against knowledge bases (see Section 5.4.3) to determine the
type of textual cell content.

Every detection step has access to a hypothesis handler, which provides auxiliary func-
tions for collecting hypothesis. Those functions ensure that the same hypotheses is not
created multiple times and that the confidence values get normalized at the end of each
detection step. If no confidence value is provided, an equal confidence of all hypotheses
is assumed.

6.2.1 Encoding

The web servers hosting the CSV files usually provide none or unreliable file encoding
information. As a consequence, the encoding has to be inferred from the file itself, which
is never 100% reliable. Since the detection of file encodings is not as straight-forward
to implement, and a rather generic problem, we used an existing implementation to
perform the encoding detection. For this, we considered the guess_encoding-function
of the readr library and the guess_encoding-function of the rvest [51] library. The
implementation of the rvest library always created almost the same set of hypotheses,
even on very differently encoded files. The readr library dialect detection turned out
to provide more realistic guesses. The readr guess_encoding-function provides a list
of possible file encodings for a given file, together with respective probabilities that a
certain encoding is correct. Because encoding guessing is in general rather unreliable,
we ensure that a perfectly RFC 4180 compliant file with UTF-8 encoding always has the
chance to be read correctly, by adding a default hypothesis for UTF-8 encoding with a
likelihood of 50% relative to the encodings determined by readr. In the parsing step the
file is read with a given encoding and returned as an intermediate result in form of one
single string. If the reading with a certain parsing fails, a warning will be created and
passed on to the next parsing steps, so that the quality assessment module can take the
warning later on into account.

6.2.2 Dialect

The dialect detection is an essential parsing step in which all possible combinations of
end-of-line qualifier, cell delimiter, quotation marks, and escaping styles are checked for
plausibility. The plausibility criteria are on purpose very simple. In that way, different

45

encoding hypotheses, which are locally unlikely, have the chance to prove later that they
were actually correct. If a end-of-line qualifier is found at least once, it will be considered
as a candidate. The same also applies for delimiter. Quotes are optional, however, if
they occur it is important to detect them, because they act as escape sequence for
delimiter and line endings. A quoting sign is considered as a candidate, if it occurs
in front or behind a delimiter (ignoring whitespaces). Quotes inside quoted cells can
be either escaped by another quotation mark of the same type (RFC 4180 conform)
or by another escape character, such as a backslash character. If a quoting character
with a leading backslash character is found, then the respective quoting style will be
assumed, if not, the default double-quote style. Algorithm 2 shows in which way this
detection routine was implemented. In total, 3 different end-of-line qualifiers, 10 different
delimiters and 15 quotation marks, including foremost typographic variants, are checked.
In the parsing step we use the robust parsing library readr to parse the string according
to each hypotheses into a matrix. The parser is able to read files, even if they are
not properly written and contain un-closed quotes or ragged rows. If the readr library
encounters such an issue, it will try to fix it provisionally and returns the fixed table
and a warning. This warning will be noticed and passed on to the subsequent parsing
steps, together with the resulting table, so that the quality assessment module can take
the warning into account later. If the parsing fails, this will lead to a dead branch in
the hypotheses tree, which will be disregarded by subsequent parsing steps.

6.2.3 Table Area

The table area detection step detects the outer boundary of the actual table, inside the
matrix provided by the previous parsing step. This step is necessary because CSV files
can contain unnecessary whitespace around the actual table or even multiple tables.
To account for the usual case in which the file contains only one table with potential
surrounding whitespace, we always generate a corresponding default hypothesis, with
a confidence of at least 50%. If multiple tables get detected, they will be added as
alternative hypothesis, if not, only the default hypothesis will be returned with a 100%
confidence. In order to actually detect multiple tables, we determine data-dense areas
in the input matrix. The density again gets determined for each cell, based on non-
emptiness of the cell itself and the (maximum) 8 neighbouring cells (See Figure 6.3).
We make the assumption that the largest horizontal and vertical spaces in the matrix
determine the outer boundaries of the table(s). Given that assumption, we determine
the most dense cells in the table and extend the table area from that point on in all
directions until reaching these large whitespaces in the horizontal and in the vertical
or the boundaries of the table (See Algorithm 3). In the parsing step the respective

46

Algorithm 2 Dialect Detection
1: eols← ["\n", "\r\n", ...]
2: delims← [", ", "; ", "\t", ...]
3: quotes← ["", """, "'", ...]
4: escape← ["\"]
5: for all eol in eols do
6: lines← split(text, eol)
7: if count(lines) > 1 then
8: for all delim in delims do
9: if text contains delim then
10: for all quote in quotes do
11: if text contains quote with leading or trailing delim then
12: if text contains quote with leading escape char then
13: hypotheses.add(eol, delim, quote, "escape")
14: else
15: hypotheses.add(eol, delim, quote, "double")
16: end if
17: end if
18: end for
19: end if
20: end for
21: end if
22: end for
23: normalize_confidence(hypotheses)

tables get extracted from the original matrix and returned as a set of separate matrices.
The parsing framework is generally capable of treating those tables independently until
the last parsing step, where they can get collected and again joined to one set of data
frames.

Algorithm 3 Table Area Detection - GET_DENSE_AREAS
1: function get_dense_areas(types, density)
2: dense_areas← list
3: while max(density) > 0 do
4: imax, jmax ← index of first cell with max density
5: iempty, jempty ← indeces of longest sequences of empty rows/columns
6: i1, j1 ← 1
7: in, jn ← dim(density)
8: if any(iempty ≤ imax) then i1 ← max(iempty[iempty ≤ imax]) + 1 end if
9: if any(iempty ≥ imax] then in ← min(iempty[iempty ≥ imax])− 1 end if
10: if any(jempty ≤ jmax) then j1 ← max(jempty[jempty ≤ jmax]) + 1 end if
11: if any(jempty ≥ jmax] thenjn ← min(jempty[jempty ≥ jmax])− 1 end if
12: if i1 == in or j1 == jn then break end if
13: density[i1 : in, j1 : jn]← −1
14: dense_areas.add(i1, in, j1, jn)
15: end while
16: return dense_areas
17: end function

47

A A A A

A A A A

A A A A

2 3 3 3 2 1

1 2 3 3 2 1

2

3

2

11

4 6 6 4

6996

4 6 6 4

3

2

2

2 3 3 2

A A A A A

AAAAA

2

24

36664

4 6 6 6

Figure 6.3: Table area votes for two tables.

6.2.4 Table Orientation

The table orientation detection was inspired by Pivk et al. [33]. Algorithm 4 was recre-
ated from the original description provided by Pivk et al. The algorithm compares
the last row/column of the table to all other rows/columns. The table orientation is
then determined based on whether the columns or the rows are more similar to the last
column or row respectively. If the columns are very similar, it is likely that the table
is horizontally oriented, which is not desired. The comparison is not based on literal
content, but on content categories, such as character, numeric, date etc. It turned out
that this algorithm is robust only if the table does not contain sparse last rows/columns
(See Figure 6.4). When this step is executed, the tables are not yet cleaned from title
rows or footnotes, hence this can well be the case. To compensate for this, we improved
the algorithm by taking a random sample of maximum 10 rows/columns, instead of only
the last row/column, to perform the same routine (see Algorithm 5). The confidence of
the generated hypothesis is derived from the row/column-wise similarity. To account for
the high background probability that a table is vertically oriented, we only generate a
hypothesis for horizontal orientation when the column-wise similarity is higher than the
row-wise. In the parsing step, the matrix gets simply transposed in case if it is vertically
oriented. Since transposing the table implies that tables content is not changed, but
moved inside the table, we count one moving operation for each cell and return this
value together with the parsing result. In that way the quality assessment module, can
take the manipulation of the original input as quality criterion into account.

48

A A A 1

A A A

A A A

A A A A

1

AAAA

A

A

A

A A A A

1 1

1 1

1 1

1 1

1 1

6

6

6

6

6

60000

A A A 1

A A A

A A A

A A A A

1

AAAA

A

A

A

A 1

1 1

1 1

1 1

1 1

1

60000

1

1

1

1

5 <6 Horizontal!30 >6 Vertical

Figure 6.4: Table Orientation as proposed by Pivk et al. [33]. Left: Correct, Right:
Gets falsely classified as horizontal, because the last line contains metadata.

Algorithm 4 Table Orientation - Single Reference Row/Col (Pivk et al. [33])
1: types← get_cell_types(matrix)
2: similarityrow, similaritycol ← []
3: for all i in 1 : (nrow(types)− 1) do
4: n = nrow(types)
5: consistencyrow[i]← percentage of cells in types[i,] == types[n,]
6: end for
7: for all i in 1 : (ncol(types)− 1) do
8: n = ncol(types)
9: similaritycol[i]← percentage of cells in types[, i] == types[, n]

10: end for
11: if mean(similarityrow) > mean(similaritycol) then
12: hypotheses.add(conf = 1, orientation = "vertical")
13: else
14: hypotheses.add(conf = 1, orientation = "horizontal")
15: end if

6.2.5 Row Functions

As outlined in Chapter 5, table structure detection is a challenging task. None of the
reviewed approaches is able to infer complex table structures based on the bare content of
a table. The most promising approaches explicit domain-specific background knowledge,
visual layout elements such as horizontal and vertical lines, or different content style
features such as background colour and font types, which are only provided by richer
formats such as HTML or Excel Spreadsheets. However, Adelfio et al. [37] proposed
an approach for row function detection, which largely builds up on cell content features
and could thus potentially be applied to CSV tables as well. The method is able to
classify the function of rows into categories, such as header (including multiple header

49

Algorithm 5 Table Orientation - Multiple Reference Rows/Cols
1: types← get_cell_types(matrix)
2: similarityrow, similaritycol ← []
3: for all r in random set of min(10, nrow(types)) samples from 1 : nrow(types) do
4: for all i in 1 : nrow(types), except for r do
5: similarityrow[i]← percentage of cells in types[i,] == types[r,]
6: end for
7: end for
8: for all r in random set of min(10, ncol(types)) samples from 1 : ncol(types) do
9: for all i in 1 : ncol(types), except for r do

10: similaritycol[i]← percentage of cells in types[, i] == types[, r]
11: end for
12: end for
13: hypotheses.add(conf = mean(similaritycol), orientation = "vertical")
14: if mean(similarityrow) > mean(similaritycol) then
15: hypotheses.add(conf = mean(similarityrow), orientation = "horizontal")
16: end if
17: hypotheses← normalize_confidence(hypotheses)

rows), title, data and non-relational rows, which is as an essential first step towards
a better detection of the table structure. Because the method is based on conditional
random fields [52], it requires a large amount of training data, which was not provided
by the authors upon our request and which we were not able to create ourselves within
reasonable time. However, a simple form of row function detection, for header and
data rows, is performed by state-of-the-art CSV parsers as well, based on heuristics. We
therefore used a heuristical approach, inspired by the approaches used in current parsers
and extend it towards multiple header rows, aggregation rows and non-relational data
(metadata) above and below the table. In principle, this approach could nevertheless
easily be replaced by other approaches, such as the one shown by Adelfio et al.

The heuristic to detect row functions is based on function votes. Every row gets votes
for emptiness, potential total (aggregation), metadata, header and data, as shown in
Algorithm 17 in the Appendix. Each function vote gets normalized by the total of
all function votes in the same row and the maximum vote for the respective function
across the whole table. Subsequently, a maximum of 8 different hypotheses are created,
dependent on whether the first data is suspected in the first, second or later than the
second row (see Algorithm 6 and Figure 6.5). In the parsing step, empty rows and
metadata rows are removed from the table. The content of metadata rows is stored
separately and will be returned together with the parsing result. Multiple header rows
are assumed to be spanning headers except for the last header row. This is a pattern,
which was often observed in the data.gov.uk corpus. Those spanning header cells are
collapsed column-wise, by aggregating the cell content, separated by a dot. For those
cells, edits are counted and returned together with the parsing result to allow the quality

50

assessment method to take the change of content into account. The removal of potential
aggregation rows can be activated via a configuration flag and is by default deactivated.

A

A

A A

A A

AA

A

A

E: 0, M: 0.67, H: 0, D: 0.33

E: 0, M: 0, H: 0.67, D: 0

E: 0, M: 0, H: 0, D: 0.67

A A

111

1

1 11

1 1 1

1

1

AA

E: 1, M: 0, H: 0, D: 0, A: 0

A

A

A A

A A

AA

A

A

E: 0, M: 1, H: 0.25, D: 0.63

E: 0, M: 0.25, H: 1, D: 0.25

E: 0, M: 0.25, H: 0.25, D: 1

A A

111

1

1 11

1 1 1

1

1

AA

E: 1, M: 0, H: 0, D: 0

E: 0, M: 0.25, H: 0.25, D: 1

E: 0, M: 0.25, H: 0.25, D: 1

E: 0, M: 0, H: 0, D: 0.67

E: 0, M: 0, H: 0, D: 0.67

Normalize

Meta

Header

Data

Data

Data

Empty

Figure 6.5: Row Function Votes

Algorithm 6 Row Functions
1: types← get_cell_types(matrix)
2: votes← count_function_votes(types)
3: votes← normalize_function_votes(votes)
4: functions← for each row, get function with highest votes
5: metatop ← first contiguous group of indices, if functions are "metadata", else []
6: metabottom ← last contiguous group of indices, if functions are "metadata", else []
7: metafull = [metatop, metabottom]
8: metatop_end ← last index of metatop

9: datastart ← first row index, where functions are "data"
10: hypotheses.add(header = []) . hypothesis: D+
11: hypotheses.add(header = 1) . hypothesis: HD+
12: if not any(datastart) then return hypotheses end if
13: hypotheses.add(metafull) . hypothesis M*D+M*
14: hypotheses.add(header = metatop_end + 1, metafull) . hypothesis M*HD+M*
15: if datastart > 1 then
16: headerfull ← 1 : (datastart − 1)
17: hypotheses.add(headerfull) . add hypothesis H*D+
18: hypotheses.add(headerfull, metafull) . add hypothesis M*H*D+M*
19: end if
20: if datastart > 2 then
21: span_headerfull ← 1 : (datastart − 1)
22: span_headermeta ← (metatop_end + 1) : (datastart − 1)
23: hypotheses.add(span_headerfull) . add hypothesis SH*D+
24: hypotheses.add(span_headermeta, metafull) . add hypothesis M*SH*D+M*
25: end if
26: hypotheses← normalize_confidence(hypotheses)

51

6.2.6 Column Functions

Having a row function detection step calls for having a column function detection step
as well. At first glance, it appears straight-forward to apply the previously described
methods to columns instead of rows. However, to understand the implications and com-
plications of this, we have to consider the reasoning behind the row function detection.
The row function step generates hypotheses about metadata rows, header rows, etc.,
and in the very end of the parsing process a quality metric will judge the quality of the
resulting tables and rule out the "bad hypotheses". This is expected to work, because we
can make the reasonable assumption that columns of tidy tables contain a header cell
and subsequent data cells store the same variable. We can therefore expect a column-
wise consistency of the data types and potentially furthermore a certain uniformity of
values. If metadata or header rows would get falsely classified as data they would most
probably compromise this consistency. Detecting column-wise inconsistency of values
could thus help to rule out wrong hypotheses. Accordingly, in order to make column
function detection work properly, we would have to make a similar assumption for row
content. In a tidy table each row should contain exactly one observation. We could thus
make the strong assumptions that an observation always consists of a number of leading
index columns, which form a unique access key to the subsequent observation variables,
as proposed by Nagy et al. [42]. Or we could assume that each table contains a numeric
"block" of variables on the very right and that the other columns form the index, as
proposed by Chen et al. [35] [49]. However, both assumptions are not realistic and we
could easily identify counter examples in the data.gov.uk corpus. Figure 6.6 shows a
table which does not contain numeric values on the right side and where the numeric
column "Transaction Number" is actually an index column rather than a variable col-
umn. Figure 6.7 again shows a table where the only potential access key columns do
not form a unique access key.

Figure 6.6: Spend over £25,000 in National Savings & Investments, 2014 February
Return1

1https://data.gov.uk/dataset/28db2fc1-134b-402c-8348-150b3dd112ae/resource/2b36ab74-
7e3e-4fe6-ad6f-80f3376313a4/

2https://data.gov.uk/dataset/procurement-card-data/resource/1c16694d-abab-41c7-a134-
fefa51f055f0

https://data.gov.uk/dataset/28db2fc1-134b-402c-8348-150b3dd112ae/resource/2b36ab74-7e3e-4fe6-ad6f-80f3376313a4/
https://data.gov.uk/dataset/28db2fc1-134b-402c-8348-150b3dd112ae/resource/2b36ab74-7e3e-4fe6-ad6f-80f3376313a4/
https://data.gov.uk/dataset/procurement-card-data/resource/1c16694d-abab-41c7-a134-fefa51f055f0
https://data.gov.uk/dataset/procurement-card-data/resource/1c16694d-abab-41c7-a134-fefa51f055f0

52

Figure 6.7: Procurement Card Data, January 20152

Selecting index columns, based on functional dependencies is also not a feasible option,
since state-of-the-art automatic functional dependency detection methods are not able
to detect a sufficiently limited set of sensible dependencies [19]. Overall, we can draw the
conclusion that making general assumptions about the data structure of observations is
not practicable.

The major use case for column function detection would be the detection of non-
relational data on the left or right side of the actual table, which would compromise
the observation data. We did, however, not observe any table in which this was the
case. What we did well observe, were spanning column cells (see Figure 6.8).

Figure 6.8: Spend over £25,000 in NHS Wiltshire, 2011 October Return3

Eventually, we implemented a detection step for column functions (see Algorithm 7),
which contains an experimental detection heuristic for spanning header columns, total
columns and empty columns and empty columns with header (See Figure 6.9). The
detection step creates maximum two hypotheses, which also contributes to the overall
goal of limiting the computational complexity of the parsing process. However, in future
work, this simple method could be easily replaced by more sophisticated methods. In
the parsing step, the potentially spanning header cells get vertically expanded, empty
columns get removed, and potential aggregation columns get removed optionally. Ulti-
mately, the quality assessment method will not help to evaluate the correctness of the

3https://data.gov.uk/dataset/spend-over-25000-in-nhs-wiltshire/resource/9dc939c6-
24e0-4ea0-aed5-ed25100d8d2e

https://data.gov.uk/dataset/spend-over-25000-in-nhs-wiltshire/resource/9dc939c6-24e0-4ea0-aed5-ed25100d8d2e
https://data.gov.uk/dataset/spend-over-25000-in-nhs-wiltshire/resource/9dc939c6-24e0-4ea0-aed5-ed25100d8d2e

53

spanning column cell expansion and we thus have to rely on the accuracy of the used
heuristic. The only scenario in which the successful expansion of header cells could be
validated by the quality assessment step is, when the expanded column cells are variable
names. In that case, the narrow data detection step would pick them up, spread the
table accordingly and thereby increase the column-wise data consistency, which would
be preferred by the quality assessment module.

A 1

A A

A

A A

AA

A A

1

1

1

1

A

A

1

1

1

1

1

A

SH SH D D D

A

A

A

A

E EH

Figure 6.9: Column Function Detection. SH: Spanning Header, D: Data, E: Empty,
EH: Empty with Header

6.2.7 Wide and Narrow Data

As outlined in Section 2.3, a full detection of wide data and narrow data is not feasible
without having additional domain knowledge. We can, however, detect wide data to the
extent to which variables in the header row are have specific values, which is unlikely to
be variable names, such as numerics, dates or times. Furthermore, we can detect narrow
data if one column contains sequentially repeating cell content, i.e. the variable names,
and another column contains potentially values stemming from different variables.

We created two practical parsing steps, which employ those assumptions and are able
to create reasonable hypotheses about narrow and wide data, however only for a limited
set of scenarios. The steps are arranged in the parsing hierarchy so that first wide data
gets detected and reshaped and then narrow data. This will allow the detection of mixed
data as well, which requires first, melting of wide columns and subsequent spreading of
narrow columns.

The detection heuristic for wide data checks for numeric, date and time values in header
names (see Algorithm 8). See Figure 6.10. And in the parsing step the columns which
supposedly belong to the same variable, are melted, i.e moved into one column and the
former header copied into a separate column, as shown in Section 2.3.

54

Algorithm 7 Column Functions
types← get_cell_types(table)
col_functions_basic← []
col_functions_experimental← []
for all j in 1 : ncol(types) do

col_functions_basic[j]← "data"
col_functions_experimental[j]← "data"
if all(types[, j] is "empty") and header(types)[j] is "empty" then

col_functions_basic[j]← "empty"
col_functions_experimental[j]← "empty"

else if all(types[, j] is "empty") and header(types)[j] is not "empty" then
col_functions_basic[j]← "empty_with_header"
col_functions_experimental[j]← "empty_with_header"

else if header(types)[j] is total and all(types[, j] is "numeric"|"empty") then
col_functions_basic[j]← "aggregate"
col_functions_experimental[j]← "aggregate"

else if all non-empty cells of types[, j] also non-empty in types[, j + 1]) then
ratio← ratio of "empty" to "non-empty" cells in types[, j]
avg_ratio← mean ratio of "empty" to "non-empty" cells in all other columns
if ratio > avg_ratio and no previous column was classified as "data" then

col_functions_experimental[j]← "spanning_header"
end if

end if
end for
hypotheses.add(col_functions_basic)
hypotheses.add(col_functions_experimental)
hypotheses← normalize_confidence(hypotheses)

The detection heuristic for narrow data checks if the last but one column contains sequen-
tially repeating values, i.e potential variable names (see Algorithm 9). See Figure 6.10.
We check only the last but one column for variable names and assume that the last col-
umn contains the variables, because this was the typical structure of narrow-data tables
we observed. The parsing step will spread the potential variable name column and the
trailing multi-variable column. Thereby, the variable name column will be converted to
column headers, the multiple-variable column will be split up into respective separate
columns and the remaining columns are collapsed. This only works if the other columns
are consistently duplicated for all variables. We use the library reshape2 [53] to perform
those transformations. If the reshaping fails, the reshape function will return an error,
which leads to a dead branch in the hypotheses tree. However, a default hypotheses for
non-wide/narrow always gets created, which leaves the original table untouched and al-
ways succeeds. In case the reshaping succeeds, we count one move for every cell, because
they got significantly rearranged and return that count together with the parsing result.
Our assumption is that correctly reshaped tables, i.e. tidy tables, will have a higher
inner-column consistency of values and thus be preferred over non- or falsely reshaped

55

tables.

A 1

A A

A A

A A A

1

AAA

A

A

A

A A A

1 1

1 1

1 1

1 1

1 2 3

A

1

1

1

1

1

Variable

Wide Data

Figure 6.10: Wide Data detection for wide data in column 4-6

Algorithm 8 Wide Data - Detection
1: types← get_cell_types(table)
2: hypotheses.add(multi_col_vars = [])
3: pontential_header ← columns with numerics, dates or times in the header
4: if count(pontential_header) > 1 then
5: start← min(pontential_header)
6: end← max(pontential_header)
7: coherence← percentage of equal cell types in types[start : end]
8: hypotheses.add(conf = coherence, multi_col_vars = [start : end])
9: end if

10: hypotheses← normalize_confidence(hypotheses)

Algorithm 9 Narrow Data - Detection
1: types← get_cell_types(table)
2: hypotheses.add(key_col = [], value_col = [])
3: if ncol(table) > 2 and then
4: repeats← determine if cell content types[, ncol(types)−1] is sequentially repeat-

ing
5: if repeats then
6: hypotheses.add(key_col = ncol(types)− 1, value_col = ncol(types)
7: end if
8: end if

6.2.8 Data Types

The (column) data types step is special, because it is the last step. We do not have
to produce locally suboptimal hypotheses in order to preserve globally optimal paths in

56

A 1

A B

A C

A A A

1

AAA

A

A

A

A A B

1 1

1 1

1 1

A

1

1

1

1

A A A

A A C

Variable Names

A A A

A A A

N
ar
ro
w

D
at
a

Figure 6.11: Narrow Data detection for narrow data in column 3-6

the hypothesis tree. We are free to locally optimize the parsing decision. Therefore we
produce only one hypothesis in the detection step and optimize the final result in the
parsing step. The data type detection supports 5 data types, namely numerics, logicals,
dates, times and text, which are the most basic data types in databases and statistical
programming languages. The data types detection (see Algorithm 10) is strict by default.
This means that either all non-empty cells in a column can be associated with the same
data type or the column content will be considered as text. All possible variants of
NA value qualifier have already been taken into account by the cell type detection and
were declared as empty cells (see Listing C.1). They do not have to comply with the
data type. One important detail of the detection step is that the data type has to be
consistent, but the data format, i.e. the date format, does not have to be consistent.

Based on regular expression matches4 potential data formats are determined, ranked by
number of matches and passed on to the parsing step. This helps to solve ambiguities
in data formatting, as e.g., for the date "02/02/2012". The regular expressions are so
strict that they take value ranges (months/days) into account. Assuming the table has
only three rows and the two other dates are "10/02/2012" and "13/02/2012", then the
mm/dd/yyyy format will get 2 votes, the dd/mm/yyyy format will get 3 votes. This
is in line with the intuition that it is more likely that all values are in dd/mm/yyyy
format, given the date "13/02/2012". On the other hand this approach allows for in-
consistent formattings, like "02-02-2012", "10-02-2012", and "13/02/2012". In that case
the formats dd-mm-yyyy and mm-dd-yyyy will get 2 votes and dd/mm/yyyy one vote.
If two formats get the same number of votes, they will be ranked based on a pre-defined

4The regular expressions are due to lack of space not presented here, but can be obtained from the
source code at https://github.com/tdoehmen/hypoparsr/blob/master/R/data_type.R

https://github.com/tdoehmen/hypoparsr/blob/master/R/data_type.R

57

order, in this case, dd-mm-yyyy would be first. The detection of numeric values is ro-
bust to leading and trailing currency signs and trailing units as long as the unit does
not contain other numerics. Apart from that, a thousand mark and decimal separator
signs are determined. Also regular negative signs and bookkeeping style of negative
numbers (leading and trailing parentheses) are distinguished. The bookkeeping style
was frequently observed in the data.gov.uk corpus.

Algorithm 10 Data Types - Detect
1: types← get_cell_types(table)
2: hypothesis← list
3: for j in 1 : ncol(types) do
4: if any(types[, j] is "numeric" and all(types[, j] is "numeric"|"empty") then
5: hypothesis.types[j]← "numeric"
6: hypothesis.formats[j]← determine possible decimal and thousand marks
7: hypothesis.na_qualifier.add(determine potential NA qualifier)
8: else if any(types[, j] is "logical" and all(types[, j] is "logical"|"empty") then
9: hypothesis.types[j]← "logical"

10: hypothesis.formats[j]← determine possible true/false qualifier
11: hypothesis.na_qualifier.add(determine potential NA qualifier)
12: else if any(types[, j] is "date") and all(types[, j] is "date"|"empty") then
13: hypothesis.types[j]← "date"
14: hypothesis.formats[j]← determine possible date formats
15: hypothesis.na_qualifier.add(determine potential NA qualifier)
16: else if any(types[, j] is "time") and all(types[, j] is "time"|"empty") then
17: hypothesis.types[j]← "time"
18: hypothesis.types[j]← determine possible time formats
19: hypothesis.na_qualifier.add(determine potential NA qualifier)
20: else
21: hypothesis.types[j]← "text"
22: end if
23: end for

In the parsing step (see Algorithm 11) we attempt to convert each column into the
previously determined data type by using the determined data formats. Therefore, at
first, leading whitespaces, trailing whitespace and quotation marks are trimmed from
each cell. Leading and trailing whitespaces in cells are a common irregularity in CSV
files and quotation marks can be left at the outer boundaries of a cell if quoting signs
were inconsistently used. Therefore, we considered them as artifacts from the parsing
process. It has to be taken into account that this can negatively affect the parsing of
CSV files which contain leading/trailing whitespaces or quotation marks on purpose and
as integral part of the cell content. This would, however, be rather unusual.

Secondly, NA values which were identified in the detection step, get replaced by empty
strings. Subsequently, it will be attempted to parse each cell based on the highest
ranked format. Units of numeric values are stripped off and saved separately or, if only

58

exactly one type of unit is present, it is copied to the header. If none of the numerics
has fractional digits, the numerics will be saved as integers, otherwise as double values.
Times, dates and logicals are simply parsed based on the given format. For every cell
which could not be successfully parsed, the next highest ranked format will be used
for another parsing attempt, until all potential formats have been tried. If the list of
possible formats is exhausted and still not all cells have been successfully parsed, the
fallback will become effective and the column will be kept as text.

Algorithm 11 Data Types - Parser
1: for j in 1 : ncol(table) do
2: type← hypothesis.types[j]
3: formats← hypothesis.formats[j]
4: text← table[, j] and trim whitespace and quotation marks
5: text← text and replace hypothesis.na_qualifier with ""
6: while not all(valid) do
7: relevant← text[!valid]
8: format← next format from formats
9: parsed← parse relevant base on format

10: valid← is successfully parsed?
11: table[valid, j]← parsed
12: end while
13: if not all(valid) and config.conservative_type_casting then
14: table[, j] = text
15: end if
16: end for

6.3 Quality Assessment

The quality assessment step is a vital final step. After the hypothesis tree is fully
expanded and traversed, several potentially correct parsing results reached the last level
of the parsing hierarchy. A parsing result contains the resulting table and additional
information about the parsing process, such as the confidence of each parsing step,
warnings emitted by parsing steps, edits and moves of cell content. Among these results,
the best one has to be identified, which will ultimately be returned to the user. We have
established a set of quality criteria and evaluated different methods to create a sensible
ranking of the results, based on those criteria.

For later evaluation purposes, three different nuances of the original Multi-Hypothesis
Parser were created, on which all ranking methods were evaluated: One minimal version,
which contains only encoding detection, dialect detection, table area detection (only
one table), simple row function detection (one header row), simple column function
detection (only empty columns) and data type detection. One advanced version, which

59

additionally contains the full row and column function detection capability. And one
full version which also contains the table orientation detection, full column detection
capability and wide/narrow data detection5.

6.3.1 Quality Criteria

The key question is which measurable criteria are suitable to capture the quality of the
parsing result. A starting point for these considerations is the ISO/IEC 25012 Data
Quality Model [54] and complementary work by Rafique et al. [55] and Batini et al. [56].
Out of the 15 quality characteristics of the standard model, we considered accuracy/-
correctness, completeness, consistency, precision, and understandability as characteris-
tics which should be distinctive for a good parsing result. Additionally, we considered
representational adequacy, as introduced by Rafique et al., as a desirable strength of
the parsing result. The characteristics credibility, currentness/timeliness, accessibility,
compliance, confidentiality, efficiency/speed, traceability, availability, portability, and
recoverability were not considered as distinctive because they are not under control of
the parsing process. The following will give an overview of how the different quality
characteristics are defined and which respective measurements we propose:

Accuracy/Correctness "The degree to which data has attributes that correctly rep-
resent the true value of the intended attribute of a concept or event in a specific
context of use" [54]. Because we do not know the original intent of the data, we can
only assume that the original content is the intended content. In order to ensure
that the original content of the data was not unnecessarily changed, the parsing
steps should not have encountered errors. Critical errors will be disregarded, be-
cause the erroneous node will not be traversed anymore, but if less critical errors
occur, in particular in the encoding and dialect parsing step, a warning is emitted.
The number of warnings should be as low as possible, preferably zero. The number
of edits and moves of cells content should also be as low as possible. Furthermore,
we can assume that the confidence of each parsing step is a signal for the cor-
rectness of the parsing result. Results with a high underlying confidence should
be preferred over results with low confidence. Additionally, the correctness of cell
content could be backed of by background knowledge coming from the corpus or
a knowledge base, by checking if the columns contain entities belonging to the
concept described in the headers. The latter is left for future work, however.

Completeness "The degree to which subject data associated with an entity has values
for all expected attributes and related entity instances in a specific context or

5To facilitate the evaluation against other parser, detection of multiple tables was also in the most
advanced version deactivated.

60

use" [54]. We cannot know if the given data is really complete, we can again only
assume that the provided data is as complete as possible. However, to ensure that
as much as possible data from the original input is preserved, tables with higher
number of total cells should be preferred.

Consistency "The degree to which data has attributes that are free from contradiction
and are coherent with other data in a specific context of use" [54]. Although we
cannot measure the external consistency with other sources, we can measure the
internal consistency. The consistency of values within columns can be determined
based on the specificy of the data type. Tables with a high number of typed
cells (other than text) should be preferred. Additionally, the consistency could be
determined based on coherence of the value distributions within columns, which
is also left for future work.

Precision "The degree to which data has attributes that are exact or that provide
discrimination in a specific context of use" [54]. The precision of values can not be
higher than provided in the original file. However, the more specifically a column
is typed, the closer it potentially is to the intended precision. Also in terms of
precision, tables with a high number of specifically typed cells should be preferred.

Understandability "The degree to which data has attributes that enable it to be read
and interpreted by users, and are expressed in appropriate languages, symbols and
units in a specific context of use" [54]. The understandability of a table depends
strongly on whether column headers are given or not. Tables with a low amount of
empty headers should thus be preferred. Since we often observed encoding issues,
which also reduce the understandability of the table content, tables with more
characters inside the latin character set should be preferred. Naturally, this only
applies to tables from western origin.

Representational Adequacy "The extent to which data or information is represented
in a concise, flexible and organized way with due relevancy to the users’ goals to
help user to achieve their specified goals" [55]. The conciseness of the table gets
improved if unnecessary columns or rows are not contained in the table. Tables
with a low amount of empty cells should thus be preferred. Furthermore, vertically
oriented tables are easier to read for the user and thus better organized. Since
vertically oriented tables tend to have more rows than columns, tables with a high
row-column ration should preferred.

Table 6.1 summarizes the proposed mapping of quality metrics to quality characteristics.

61

Data Quality Characteristics Quality Metrics

Accuracy/Correctness Warnings Count, Edits, Moves, Confidence
Completeness Total Cells
Consistency Typed Cells
Precision Typed Cells
Understandability Empty Header, Non-Latin Characters
Representational Adequacy Empty Cells, Row/Column Ratio

Table 6.1: Data quality characteristics mapped to quality metrics.

6.3.2 Ranking

In the following, we evaluated different ranking methods to properly rank the parsing
results. The first and most naïve method is to traverse the hypothesis tree along the
path which has the highest confidence. We will refer to this as the naïve method. The
second method is to rank the results based on the previously identified quality metrics
and to equally weigh their importance for the ranking. The third, and most sophisticated
method, is to train a machine learning model in order to assess a proper weighting of
the quality metrics. Ultimately, the approaches will be compared to a baseline, in which
the results are randomly ranked.

We used a Ranking SVM algorithm [57] with a linear kernel function to determine a
ranking model, based on the previously described quality criteria. Ranking SVM’s are,
e.g., used to rank query results in search engines and are well suited for the problem
because they aim at creating a ranking with a minimum number of swapped pairs
compared to the optimal ranking. This has the benefit over simple linear regression,
that deviations from the model are only then penalized if they lead to a change in
the ranking. We chose a linear kernel function, because the resulting model parameter
are easily interpretable and can be manually checked for plausibility. In order to train
the Ranking SVM, we gathered training data as follows: The randomly sampled tables
from data.gov.uk (see Section 3.1) were manually sanitized 6. Then the same sample of
files was parsed with the full Multi-Hypothesis CSV parser and all parsing results were
compared to the manually cleaned tables.

Because no method which is able to determine the edit distance between two tables could
be identified in related work, we used a string-based distance method. To determine the

6The tables were read with a manually configured CSV parser. Subsequently, header rows were
identified and moved to the table header and metadata was removed. Also were NA values identified
and replaced by empty strings. If tables were not horizontally oriented they were transposed and if
narrow or wide data was idenfied, it was reshaped accordingly. Column data types for dates, times,
logicals and numerics were identified and the column content was casted accordingly. If numerics were
attached with units, the unit was moved to the header row. The set of manually cleaned tables is
available online: https://github.com/tdoehmen/hypoparsr/tree/master/tests/data/cleaned

https://github.com/tdoehmen/hypoparsr/tree/master/tests/data/cleaned

62

string-based edit distance, the tables were collapsed column-wise, by appending all cells
in a column to one string, and subsequently row-wise, by appending all column-strings
to one string. This creates one large string, representing the whole table. The distance
between two table strings was then measured using the Levenshtein distance [58]. The
Levenshtein distance is a measure which determines the minimum required amount of
insertions, deletions and edits to turn one given string into another. In that way we can
properly assess the distance between tables in terms of removed, added and edited cell
content. The method, however, over-penalizes moving of cells, as caused by reshaping
or transposing of tables, which applies to only one table in the test set and will be
taken into account in the evaluation. We used a memory-efficient implementation of the
Levenshtein distance from the R package RecordLinkage [59] to compute the distances.
Because the calculation of the Levenshtein distance is nevertheless computationally ex-
pensive, with a complexity of O(mn), with m and n being the string lengths, we reduced
the original set of 80 tables to a subset of 64 tables with a file size smaller than 200kB.
The Levenshtein distances between the manually cleaned tables and the tables of the
Multi-Hypothesis parser were then exported, together with the respective result fea-
tures/quality metrics. Because we do not want to globally rank the parsing results, but
only rank them relative to the other results in the same parsing tree, we normalized the
quality metric values within a tree to a range between 0 and 1. In that way only metrics
which differ within a tree have an impact on the ranking. Figure 6.12 illustrates the
training data generation process.

Figure 6.12: Schematic diagram of the training data generation process.

For a Ranking SVM it is furthermore "critical [...], that a proper value is chosen for C,
the penalty factor. If it is too large, we have a high penalty for nonseparable points
and we may store many support vectors and overfit. If it is too small, we may have
underfitting." [60]. We performed a parameter estimation for C, with Monte Carlo
cross validation [61] with 10 different randomly sampled training and test sets with a

63

size ratio of 3/1. Ultimately, the best C parameter (0.01) was used to train the final
ranking model, whose resulting weights are shown in Table 6.2, compared to the equal
weights defined by us. The table shows that the sign of the weights is perfectly in
line with our manually defined weights. Warnings, edits, moves, empty header, empty
cells and non-latin characters get penalized and confidence, total cells, typed cells and
a high row/column ratio get rewarded. Moves and warnings appear to have the highest
negative impact on the ranking and empty header and non-latin characters the lowest.
The number of typed cells appears to be the most distinctive positive feature.

Quality Metric Weighting
Equally Trained

Warnings -1 -2.38
Edits -1 -1.50
Moves -1 -4.11
Confidence 1 1.57
Total Cells 1 1.42
Typed Cells 1 3.20
Empty Header -1 -0.52
Empty Cells -1 -1.04
Non Latin Chars -1 -0.56
Row/Column Ratio 1 0.93

Table 6.2: Quality metrics, equally weighted and weights determined by the Ranking
SVM. 7

Figure 6.13 shows the success of the different ranking methods in comparison. We do
not yet assess the overall quality of the parsing result, but only how accurately the
best possible result is chosen from a certain set of results. The equal weighting method
performs surprisingly well in comparison to the trained method. In the full, as well
as in the advanced system, the trained ranking method outperforms the the untrained
method by only 5% and 3% respectively, in terms of correctly highest ranked results.
In the minimal system, the trained ranking even leads to a slightly lower success rate.
However, they both perform substantially better than the random and the naïve ranking
method. In 73-81% percent of all cases, the best parsing result is ranked highest. And in
86-98% of all cases the best parsing result can be found among the three highest ranked
results. Interestingly, the naïve method, which follows the path of highest confidence, is
only about 1/3 better than the random baseline, and in case of the minimal system even
worse. This supports our hypotheses that parsing decisions, only based on high local
confidence, do not lead to good overall parsing results. Although, it has to be taken into
account that we did not gear the system towards highly reliable confidence values.

7In the original model the signs are inverted, because the ranking creates a descending list of tables,
starting with the best one.

64

To assess how far off the falsely highest ranked tables actually are, we looked at the
average edit distance to the best possible choice. Compared to a random sample from
the same set, the ranking methods still perform better. One interesting observation
was that the tables that were incorrectly ranked high were often eligible choices, which
were simply not in line with how we manually cleaned tables. Section 7.1 will show an
example of such a case.

We can conclude that, both, the equally weighted and the trained method are leading
to satisfying ranking results. Because the ranking based on equally weighted features
performs overall well and to prevent a bias from the rather small manually cleaned
sample, we will use the equally weighted features for the final system, which will be
evaluated in the following chapter.

However, the ranking is not 100% accurate and sometimes depends on the users’ per-
spective. For future work, we plan to implement an option to show a set of highest
ranked tables to the user and let him/her choose the preferred version of the table.
Perspectively, the user input could then be used to re-train the Ranking SVM model
and improve the ranking according to the users’ preferences, similar to the concept of
predictive user interaction [16].

65

Random Naïve Equally Trained
Best 3
Equally

Best 3
Trained

Full System

S
uc

ce
ss

 R
at

e

0
20

40
60

80
10

0

17%

28%

73%
78%

86%
89%

Equally
Random Equally

Trained
Random Trained

Full System

M
ea

n
D

is
ta

nc
e

0
10

00
30

00
50

00

Random Naïve Equally Trained
Best 3
Equally

Best 3
Trained

Advanced System

S
uc

ce
ss

 R
at

e

0
20

40
60

80
10

0

22%

30%

77%
80%

86%
91%

Equally
Random Equally

Trained
Random Trained

Advanced System
M

ea
n

D
is

ta
nc

e

0
10

00
30

00
50

00

Random Naïve Equally Trained
Best 3
Equally

Best 3
Trained

Minimal System

S
uc

ce
ss

 R
at

e

0
20

40
60

80
10

0

17%

5%

83% 81%

97% 98%

Equally
Random Equally

Trained
Random Trained

Minimal System

M
ea

n
D

is
ta

nc
e

0
20

00
40

00
60

00

Figure 6.13: Full (top), advanced (middle), and minimal (bottom) system - Com-
parison of different ranking methods. Successfully top-ranked results (left) out of in
average 17, 14 and 7 results, respectively. And the mean distance of falsely top-ranked

results (right) in comparison to a random choice from the same set.

Chapter 7

Evaluation

In this chapter the proposed Multi-Hypothesis parser is evaluated. In the first section we
evaluate the quality of the parsing results against a set of manually cleaned tables, which
has already been described in the previous section and whose issues have been thoroughly
discussed in Section 3.1. Furthermore, we evaluate the parser on all CSV files from the
open government data portal data.gov.uk. The corpus, which was crawled in August
2015, was reduced by only keeping files than smaller than 200kB and was superficially
cleaned from non-CSV and empty files. It contains 14844 files in total, which make up
approx. 90% of all CSV files on the portal. In order to investigate the impact of different
detection/parsing steps on the parsing result, we evaluated three different versions of
the Multi-Hypothesis parser (See Figure 7.1). The minimal version (Min) contains only

Figure 7.1: The three different variants of the Multi-Hypothesis parser which will be
evaluated.

encoding detection, dialect detection, table area detection (only one table), simple row
function detection (first row header or not), simple column function detection (only
empty columns), and data type detection. The advanced version (Adv) additionally
contains the full row and column function detection capability. The full version (Full)

66

67

contains all parsing steps, including table orientation detection, and wide/narrow data
detection .1

7.1 Table Quality

The performance of the Multi-Hypothesis parser was compared to a baseline, which is
a strict RFC 4180 conform CSV parser, as implemented in the R base library [50]. Ad-
ditionally we evaluated against the state-of-the-art CSV parser messytables2, which was
especially designed for reading messy tabular data (Messy). As a third comparison, we
evaluated the application DeExcelerator [39], which has been discussed in related work
(DeExel). Because messytables and DeExcelerator have complementary capabilities, we
created an additional workflow, which combines both solutions (Messy.DeExcel) to a
linear workflow, which has about the same scope of functionality as the proposed Multi-
Hypothesis parser. We parsed the CSV files with each of the mentioned solutions and
compared the result to the manually cleaned tables, using the string-distance measure
described in Section 6.3.2. If a file could not be read by a respective parser, we counted
the edit distance between an empty string and the cleaned table.

Figure 7.2 shows the median Levenshtein distance between parsing results and the gold
standard for each solution. The figure shows that the parsing results of Multi-Hypothesis
parser are in median significantly closer to the manually cleaned tables, than the results
of compared systems. The advanced and full Multi-Hypothesis parser created tables,
which were in median only 4.5 character-edits/insertions/deletes away from the manually
cleaned table. If always the best result would have been rated highest, then the distance
could have been further reduced to 3. The minimal version of the Multi-Hypothesis
parser performs significantly worse than the advanced and full version, but still leads in
median to better results than messytables and DeExcelerator.

Table 7.3 shows how many tables were almost exact matches with the manually cleaned
table (less than 10 character-edits/insertions/deletes). The RFC 4180 conform parser
did not parse one single table correctly. This underlines how error-prone the CSV files are
and the necessity for more sophisticated CSV parsing solutions. The Multi-Hypothesis
parser was able to parse, clean, and normalize 38 out of 64 CSV files in the almost exact
way as we manually cleaned them, out of which 35 were also ranked highest. One single
table could only be parsed correctly by the full version of the Multi-Hypothesis parser.

1To facilitate the evaluation against other parser, detection of multiple tables was also in the most
advanced version deactivated.

2https://github.com/okfn/messytables

https://github.com/okfn/messytables

68

RFC4180 DeEx Messy
Messy
DeEx

Min
Rank

Min
Best

Adv
Rank

Adv
Best

Full
Rank

Full
Best

M
ed

ia
n

Le
v.

 D
is

ta
nc

e

0
50

10
0

15
0

20
0

25
0

30
0

1827.5

252

72

50

31.5 31.5

4.5 3 4.5 3

Figure 7.2: Median edit distances to manually cleaned tables, with DeExcelera-
tor, messytables, messytables combined with DeExcelerator, and the highest ranked
(Min.Rank, Adv.Rank, Full.Rank) and the best possible (Min.Best, Adv.Rank,

Full.Rank) table with all versions of the Multi-Hypothesis parser.

Figure 7.4 gives a more detailed insight into the distribution of Levenshtein distances to
the manually cleaned tables, for each parser. The plot shows that each parser, also the
Multi-Hypothesis parser, left a certain group of not well cleaned tables behind.

To get a better understanding of which kind of issues were still present, we reviewed
the deviating parsing results manually. High distances from messytables parsing results
can be explained by the fact that messytables does not remove empty rows and columns
from the parsing result. Additionally, it does not detect multiple header rows and
metadata at the footer of the table. Furthermore, the detection of numeric values is
limited to values without thousand separators and American decimal marks. Header
detection and date detection are, however, performed mostly accurately. DeExcelerator
has issues with CSV dialect detection and parsing of dates. But DeExcelerator detects
differently formatted numeric values well, detects metadata at the head and tail of the
table in many cases correctly and expands spanning cells properly. The main factors
which reduce the performance of the combination of messytables and DeExcelerator are
still header detection issues, metadata detection issues, limited NA value detection and
a missing detection of narrow and wide data. Figure 7.5 and Figure 7.6 show correct
parsing results of the Multi-Hypothesis parser, compared to false results, created by
messytables+DeExcelerator.

69

RFC
4180 Messy DeEx

Messy
DeEx

Min
Rank

Min
Best

Adv
Rank

Adv
Best

Full
Rank

Full
Best

N
o.

 E
xa

ct
 M

at
ch

es

0
5

10
15

20
25

30
35

0

13

25

29
31 31

35
37

35

38

Figure 7.3: Number of exact matches (max off by edit distance 10) with RFC 4180
conform parser, messytables, DeExcelerator, messytables combined with DeExcelerator,
and the Multi-Hypothesis parser. Results of the Multi-Hypothesis parser are shown for
all three variants and for the highest ranked and the best match which could be found

in the whole parsing tree, regardless of the ranking.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●● ●●

●

●

●

●

●

● ●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●●

●

●

●●

●

●●●●●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●●●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●●●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●●

●

●●● ●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●●

●

●●●●●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●●

●

●●●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●0

2

4

RFC4180 DeExcel Messy Messy.DeExcel Min.Rank Min.Best Adv.Rank Adv.Best Full.Rank Full.Best

Lo
g1

0(
Le

ve
ns

ht
ei

n
D

is
ta

nc
e)

Figure 7.4: Edit distance to manually cleaned tables, with RFC 4180 conform parser,
messytables, DeExcelerator, messytables combined with DeExcelerator, and the highest
ranked (Min.Rank, Adv.Rank, Full.Rank) and the best possible (Min.Best, Adv.Rank,
Full.Rank) table with all versions of the Multi-Hypothesis parser. The red bar marks the
median and the black bars mark the inter-quartile range. The y-axis is logarithmically

scaled.

Nevertheless, the combination of messytables and DeExcelerator leads to good overall
results, which come closest to the quality of the Multi-Hypothesis parser and in some
cases even lead to better results (see Figure 7.7).

Although the implementation of the Multi-Hypothesis parser performs overall better
than the other systems, in 26 cases, none of the generated hypotheses led to a parsing
result which was in line with the manually cleaned version of the table. The most

70

Original

Adv.Rank

Unit Moved / Numerics ParsedHeader Collapsed

Messy.DeExcel

Encoding Issue

Empty Header

Figure 7.5: Table with multiple header rows and units, parsed by Multi-Hypothesis
parser compared to the same parsed by messytables and DeExcelerator. Issues in this

table were thoroughly described in Section 3.1

Metadata

Messy.DeExcel

Adv.Rank

Figure 7.6: Table with falsely detected metadata by messytables and DeExcelerator,
compared to the correctly parsed table by the Multi-Hypothesis parser.

frequently observed shortcomings are discussed in the following: In 8 out of 26 cases,
dates were not parsed correctly, due to following issue: Dates, which not explicitly state
"2012", but the abbreviation "12", were parsed as dates in the year 12 A.D instead of
2012. In 2 out of 26 cases, numerics with leading zeros were parsed as numbers, while
they were kept as character strings (i.e. IDs) in the cleaned version. In 4 out of 26 cases,
the results had issues with remaining metadata at the end of the table. This occurred
only in cases in which the metadata fitted exactly to the column data types. In 4 out
of 26 cases, the input had duplicated columns, which were removed in the manually
cleaned version, but not tackled by the Multi-Hypothesis parser. In 2 out of 26 cases,
the header detection did not succeed. This issue especially occurred in very small tables.
In 2 out of 26 cases one data- or metadata row was mistakenly considered as part of the

71

Original

Full.Rank

Cleaned Messy.DeExcel

Figure 7.7: Table with inflated table structure and parsing results of messyta-
bles+DeExcelerator and the Multi-Hypothesis parser in comparison. In this case, the
messytables+DeExcelerator lead to better parsing results than the Multi-Hypothesis
parser. The first row was correctly discarded as metadata by both. The following three
non-empty rows were false considered as header rows by both. Resulting from this,
also the "Postgraduate" and the "Home" cells were considered as part of the header.
Due to this, the Multi-Hypothesis parser did not further expand the spanning cells in
column one and two. messytables+DeExcelerator, again, at least expanded the "First
Degree", "Homes", and "Other EU" values. Because the "Male"/"Female" column did
not contain a header and was sparsely filled, it was falsely considered as metadata by
the Multi-Hypothesis parser. messytables+DeExcelerator, furthermore, removed rows

which did not contain any numeric data.

header row. In 2 out of 26 cases the table should have been reshaped or transposed in
a way that was not accounted for by the Multi-Hypothesis parser. See Figure 7.9 and
Figure 7.8.

In three cases, the correct hypothesis was created, but not rated highest. Figure 7.10
shows a one of those cases. The highest ranked hypothesis was to read the file disre-
garding quotes, which turned the thousand separator into cell separator. Although the
parser produced a warning which penalized this choice, it was still preferred because of
the gained amount of numeric cells.

Figure 7.11 shows a case in which the highest ranked version of the table did not con-
tain all possible data rows. Because the lower part contained empty cells, they were

72

Original

Adv.Rank

Cleaned

Figure 7.8: Table, which was correctly parsed, but in a different style than suggested
in the cleaned tables.

Full.Best Cleaned

Figure 7.9: Table which was reshaped in cleaned version, but not by the Multi-
Hypothesis parser. Variables in the header were "Q1 2013" etc., which were not detected

as numerics, and thus also not as potential variables.

considered as metadata, reducing the amount of empty cells in the table. Consequently,
this table was preferred over the correct parsing result which was ranked third (see
Table 7.1).

Rank Confidence Typed Cells Empty Cells

1 1 1 0
2 0.2 1 0
3 1 0.872 1

Table 7.1: Quality metrics for three highest ranked tables. Refers to Figure 7.11

Table 7.12 shows the original wide table and the correctly reshaped table created by the
full versions of the Multi-Hypothesis parser, which is perfectly in line with the manually
cleaned version of the table. The Multi-Hypothesis parser ranked the untouched version,

73

False Split

Adv.Rank Pos. 1

Adv.Rank Pos. 3

Figure 7.10: Table with false split.

Adv.Rank Pos. 1

Adv.Rank Pos. 3

Classified as Metadata

Figure 7.11: Table with mistakenly as metadata classified rows ranked highest.

however, highest and the reshaped version second. The penalty for the introduced moves
slightly overruled the reward for gained typed cells (see Table 7.2). This shows that the
current weighting of the quality metrics is rather risk-averse, but still creates a reasonable
ranking because the "repaired" variant of the table is nevertheless ranked on high.

Full.Rank Pos. 1

Full.Rank Pos. 2

Wide Data

Figure 7.12: Table with and without reshaped wide data, ranked by the Multi-
Hypothesis parser.

Rank Moves Confidence Typed Cells

1 0 0.759 0.510
2 1 0.862 1

Table 7.2: Quality metrics for two highest ranked tables. Refers to Figure 7.12

74

7.2 CSVLint Issues

Because the amount of tables in the whole corpus exceeds the amount we can manually
assess, we used the CSV validation tool CSVLint to evaluate the quality of the parsing
results. CSVLint showed to be well in line with manual evaluation, with a precision
of 0.91 and accuracy of 0.78 in terms of files identified as affected by issues, based on
the previously used sample from data.gov.uk. We evaluate the quality of parsing results
by writing them back to RFC 4180 conform CSV files and letting them again check by
CSVLint.

Figure 7.13a shows the variety and number of issues which were present in the original
set of files from data.gov.uk. Invalid encoding, inconsistent values, blank rows and title
rows are the most often occurring issues. In total, approximately 10000 out of 14884
files are found to have issues. Figure 7.13b shows the amount of issues in the "cleaned"
versions, produced by the Multi-Hypothesis parser and the systems we compare against.
Most issues could be resolved by the advanced version of the Multi-Hypothesis parser.
The second best cleaning results could be achieved by the combination of messytables
and DeExcelerator. The minimal and also the full version of the Multi-Hypothesis parser
lead to worse results, yet, better results than messytables and DeExcelerator alone. The
combination of messytables and DeExcelerator did not further reduce the amount of
issues.

Ragged Rows

Blank Rows

Invalid Encoding

Stray Quote

Unclosed Quote

Whitespace

Line Breaks

Encoding Warning

Check Options

Inconsistent Values

Empty Column Name

Duplicate Column Name

Title Row

Non−RFC Line Breaks

0 1000 2000 3000 4000 5000
No. of Affected Files

(a) CSVLint issues in the original files.

Original Messy DeExcel
Messy

DeExcel Min Adv Full

C
S

V
Li

nt
 Is

su
es

0
20

00
40

00
60

00
80

00
10

00
0

10091

6823

5210 5225

6012

4483 4657

(b) CSVLint issues after parsing and writing
back to RFC4180-conform CSV.

Figure 7.13: CSVLint issues in the data.gov.uk corpus.

Many issues are simply solved by reading the file and writing it back to RFC 4180-
conform CSV. However, three issues which are not related to that are the check options,
title rows and inconsistent values. The check options issue is triggered when the table
contains only one column, which indicates that the delimiter was not properly detected.
The title rows issue gets triggered when when the first row contains significantly more

75

empty field than the other rows. The inconsistent values issue gets triggered when a
column contains less then 90% of values which appear to have the same type. Checked
data types are characters, numerics, dates and times. This is an indicator for various
issues, such as metadata in the table structure or inconsistent value formatting.

Figure 7.14a shows that the amount of tables with only one column is lowest for files
parsed by messytables. This is an indicator that the dialect detection of messytables is
very reliable. The advanced version of the Multi-Hypothesis parser generates slightly
more one-column tables and the minimal and full version considerably more. Because
all three versions use the same dialect detection, this indicates that the dialect detection
itself is not the problem, but rather the table ranking. Because the quality ranking
prefers tables with high row/column ration, this is a very reasonable assumption. De-
Excelerator appears to discard one-column tables, which leads to a zero issue count for
DeExcelerator and messytables+DeExcelerator, which is in this case not desirable.

Figure 7.14b shows that the amount of tables which are suspected to still have a title
in the first row. Again, messytables yields the lowest number of issues. This indicates
that the header detection of messytables is as well very reliable. The advanced and full
versions of the Multi-Hypothesis parser also strongly reduce the number of potential title
rows, although they do not reach the same performance as messytables. The minimal
version of the Multi-Hypothesis parser, which only takes the first row of the table as
potential header into account makes the original tables even worse than they initially
were. This emphasized the importance of header detection beyond the first row of the
table. DeExcelerator does not very successfully reduce the number of potential title
rows, which affects the combination of messytables and DeExcelerator as well.

Figure 7.14c shows the amount of inconsistent values issues. The advanced version of
the Multi-Hypothesis parser shows a strong reduction of those issues. Also the minimal
and full version resolve the issue more effective than the compared solutions. This
suggests that the Multi-Hypothesis parser results have a tendency towards consistently
typed columns. The increase of inconsistently typed columns in the full version indicates
further that the full version has issues with proper ranking of the parsing results. Because
the amount of hypotheses in the full version is considerably higher than in the advanced
version, it is reasonable that the quality assessment method is more disposed to sub-
optimal decisions. The parsing results of messytables have an even higher inconsistency
than the original files, which is surprising. One explanation for this is that the numeric
detection of messytables does not detect numerics with commas as thousand separator.
When writing the result back to a CSV with optional quoting, only those cells have
to be quoted. CSVLint, again interprets those quoted numbers as strings. When the
original version contained consistently quoted numerics, then the new version will have a

76

higher inconsistency. However, it shows that the inconsistent values measure is a rather
unreliable measure for the consistency of values. In the following section we will evaluate
the parsing result quality based on more reliable measures.

Original Messy DeExcel
Messy

DeExcel Min Adv Full

C
S

V
Li

nt
 Is

su
e

−
 C

he
ck

 O
pt

io
ns

0
50

10
0

15
0

180

26

x x

77

39

132

(a) Check Option Issues

Original Messy DeExcel
Messy

DeExcel Min Adv Full

C
S

V
Li

nt
 Is

su
e

−
 T

itl
e

R
ow

0
50

0
10

00
15

00
20

00
25

00
30

00

2936

421

1895
1731

3231

822 773

(b) Title Row Issues

Original Messy DeExcel
Messy

DeExcel Min Adv Full

C
S

V
Li

nt
 Is

su
e

−
 In

co
ns

is
t.

V
al

ue
s

0
10

00
20

00
30

00
40

00 4360

4673

4107
4240

3847

3174

3567

(c) Inconsistent Values Issues

Figure 7.14: CSVLint issues after parsing the data.gov.uk corpus with different
parsers and writing back to RFC4180-conform CSV.

7.3 Amount of Recovered Data

For the data consumer it is important how much of the input data can be preserved or
recovered from the input files and ultimately be used for analysis or data integration.
We use three simple measures to assess the amount of preserved tabular content. First,
the amount of non-empty cells. The more data cells are preserved, the better. Second,
the amount of names cells, i.e. cells which have an assigned column header because
without a column header the data loses its interpretability. And third, the amount of
typed cells, i.e. cells which are of a specific data type other than character. The more
specific the data type, the easier the data can be interpreted. It has to be noted that
cells are only then counted as typed, when the whole column has a consistent data type.
Thus, in that way also data consistency gets properly evaluated.

77

The most vital requirement is, however, to be able to read the input in the first place.
Table 7.3 shows the number of successfully parsed files out of 14844 files in the original
corpus. The RFC 4180 conform parser fails to read the files in about 1/4 of all cases.
messytables and the Multi-Hypothesis parser were able to read the largest amount of
files with 14,762 and 14,755, respectively. DeExcelerator could only read approx. 140
files less. The majority of the remaining files, which could neither be read by messytables
nor by the Multi-Hypothesis parser were non-CSV files which were not removed by the
superficial cleaning of the test set. Only 22 out of the remaining 87 files were actual
CSV files on which the Multi-Hypothesis parsing failed. In those 22 cases, more than
10 dialect hypotheses were created. Due to equal weighting of the dialect confidence, all
hypotheses dropped below the pruning level of 0.1 and were thus disregarded. In future
work, pruning in these cases should be prevented.

Parser RFC4180 Messy DeExcel Messy.DeExcel Min Adv Full

No. of Files 11,619 14,762 14,621 14,706 14,755 14,755 14755
% of Files 78.27 99.45 98.49 99.07 99.40 99.40 99.40

Table 7.3: Number of successfully parsed files of the Multi-Hypothesis parser, com-
pared to others.

Figure 7.15a shows that the full version of the Multi-Hypothesis parser did recover
the highest amount of non-empty cells from the data.gov.uk corpus with 23.16 million
cells. However, we have to take into account that the reshaping actually adds cells
to the original data. In approx. 60 cases, large tables got successfully reshaped and
ranked highest, which probably explains a big part of the gained cells. The amount
of recovered cells from the advanced version gives thus a better picture of the amount
of cells stemming from the original input. In comparison to messytables, messytables
does recover slightly more non-empty cells from the input. This is reasonable because
the parsing success is high and metadata, except the metadata above the header row,
does not get removed. Considering named cells, messytables does also recover slightly
more than the Multi-Hypothesis parser (see Figure 7.15b). This again confirms the good
performance of the messytables header detection. However, the amount of named cells
in the parsing results of the Multi-Hypothesis parser is only slightly lower. Finally, the
amount of typed cells uncovers the strong advantage of the Multi-Hypothesis parser
(see Figure 7.15c). The parser creates about 1.9M more consistently typed cells than
messytables or DeExcelerator. Only the combination of both can achieve a comparable
amount of consistently typed cells.

78

RFC4180 Messy DeExcel
Messy

DeExcel Min Adv Full

N
on

−
E

m
pt

y
C

el
ls

 in
 M

0
5

10
15

20

16.4

21.39 21.15 21.33 21.24 21.1

23.16

(a) Non-Empty Cells

RFC4180 Messy DeExcel
Messy

DeExcel Min Adv Full

N
am

ed
 C

el
ls

 in
 M

0
5

10
15

20

14.16

20.94
20.08

20.78

17.63

20.69

22.39

(b) Named Cells

RFC4180 Messy DeExcel
Messy

DeExcel Min Adv Full

Ty
pe

d
C

el
ls

 in
 M

0
2

4
6

8
10

4.91

7.82 7.8

9.29

7.88

9.74
10.13

(c) Typed Cells

Figure 7.15: Amount of recovered data cells from data.gov.uk corpus with the Multi-
Hypothesis parser, compared to others.

7.4 Hypothesis Tree Size

The tree structure of the parsing process, was expected to be subject to exponential
growth. We counteracted this by pruning of the hypothesis tree and by conservative
creation on hypotheses. Theoretically, 30 different hypotheses about the encoding can
be created, 450 different hypotheses about the dialect, only one about the table area,
two about the orientation, 8 different row function hypotheses, two column function
hypotheses, three different wide data hypotheses, two different narrow data hypotheses
and one data type hypothesis. This leads to a theoretical maximum of 2,592,000 parsing
hypotheses:

30 ∗ 450 ∗ 1 ∗ 2 ∗ 8 ∗ 2 ∗ 3 ∗ 2 ∗ 1∗ = 2, 592, 000

When limiting the amount of hypotheses by pruning to maximum 10, the number gets
reduced to 19,200 hypotheses:

10 ∗ 10 ∗ 1 ∗ 2 ∗ 8 ∗ 2 ∗ 3 ∗ 2 ∗ 1 = 19, 200

79

However, in practice we observed far lower numbers of hypotheses. Table 7.4 shows that
in median 8 and in mean between 7 and 17 different hypotheses reach the end of the
hypotheses tree. Only in rare cases, the number of intermediates grows much larger.
This was especially observed when the parsing process could not make sense of the input.
In one case, in which the input was an Spreadsheet export with dozens of different tables
concatenated in one file, 356 hypothesis were created.

Variant No. Hypotheses in Last Level
Min 1st. Quartile Median Mean 3rd. Quartile Max

Minimal 2 4 8 7.2 8 48
Advanced 2 6 8 13.4 16 188
Full 2 8 8 17.3 20 356

Table 7.4: Number of Hypotheses in the last level of the parsing hierarchy of different
variants of the Multi-Hypotheses Parser. Observed in 14755 parsing processes.

Figure 7.16 shows the amount of hypotheses per parsing step for different versions of
the parser. The dialect detection and the row function detection step show the largest
variety in number of created hypotheses. The chance that many different dialects pass
that plausibility check is extremely low.

80

0.0

2.5

5.0

7.5

10.0

Enc. Dial. Table
Area

Row
Func.

Col
Func.

Data
Type

N
um

be
r

of
 C

hi
ld

re
n

(a) Minimal System

0.0

2.5

5.0

7.5

10.0

Enc. Dial. Table
Area

Row
Func.

Col
Func.

Data
Type

N
um

be
r

of
 C

hi
ld

re
n

(b) Advanced System

0.0

2.5

5.0

7.5

10.0

Enc. Dial. Table
Area

Table
Orient.

Row
Func.

Col
Func.

Wide
Data

Narrow
Date

Data
Type

N
um

be
r

of
 C

hi
ld

re
n

(c) Full System

Figure 7.16: Number of created hypotheses, per detection/parsing step. Lower and
upper boundary of the boxes mark the 0.5% and 99.5% percentile, and the whiskers

the minimum and maximum values.

Chapter 8

Discussion

8.1 How large does the hypothesis tree grow?

It has been shown that the growth of the hypothesis tree is modest. On the average
7.2, 13.4, and 17.3 hypotheses were create by the minimal, advanced and full version,
respectively. Only in rare cases up to 356 hypotheses were created. In the current
implementation the number of hypotheses equals the number of copies of the input data
that have to be kept in memory. For processing of large tables on regular hardware,
the amount of hypotheses could still be a potential bottleneck. Instead of explicitly
creating the variations of the input table and passing them on from step to step, they
could practically be applied "on-the-fly" on the original table, reducing the memory
consumption to one single table. Generally, given the small size of the hypotheses
tree, it would be acceptable to create a higher number of hypotheses in the detection
steps or to generally add more steps, e.g. for detection of duplicated columns. The
rather simplified implementations of column function-, wide data-, and narrow data
detection could, in future work, be extended. Also the row function method could be
extended to create more diverse hypotheses, especially for header rows, where it has
been demonstrated that not always at least one correct hypothesis is created. Since
memory consumption was initially suspected as main bottleneck of the process, we did
not especially focus on optimizing the runtime of the parsing process. Parsing of files
from the data.gov.uk corpus took in average 30s, 45s, and 1m per file with the minimal,
advanced and full versions, respectively (on a single core machine). Because we consider
computational time to be cheaper than human time, this can still be considered as an
acceptable processing time. However, in future work, the runtime performance should
be further evaluated, especially on larger files.

81

82

8.2 How reliable can the best parsing hypothesis be iden-
tified?

In Section 6.3.2 and Section 7.1 we have shown that the ranking based on the selected
quality criteria generally leads to reasonable ranking decisions, even when the criteria
are equally weighted. In 73%-83% of all cases, the best solutions were correctly ranked
highest. Among the three highest ranked results, in 86-97% of all cases, the best parsing
hypothesis could be found. On the manually cleaned sample, the performance could
even be further improved by using a linear Ranking SVM model. But we did not use
the resulting model to avoid a bias by the training data. When considering only parsing
trees which also contain at least one correct solution, then in 92% (35/38) of all cases
this correct solution was also ranked highest, even when using equally weighted features.
Another trend which was observed is that the bigger the set of possible hypotheses gets,
the worse the ranking quality gets. Therefore the full version performs on the whole
data.gov.uk corpus worse than the advanced version.

In order to improve the ranking, either a larger training set has to be established or the
ranking parameter have to be manually tuned. We have also shown that one table can
have different, almost equivalent representations and that it might depend on specific
user requirements which variant should be preferred. To account for this, the user should
have the possibility to configure the ranking criteria manually. If e.g. for a specific kind
of data set a high consistency of data values is expected or desired, the user could define
a higher weight on the data type consistency. If on the other hand no data should be
disregarded or moved, the edit and move penalty could be manually increased, leading
to a set of tables which are less modified but potentially also less consistent. In any case
the user receives a parsing report alongside the resulting table, stating which parsing
decisions were made. This parsing report could, in principle, be exported to CSV on
the Web metadata1 (see Section 5.3), allowing the user to provide the created metadata
together with the untouched original file to other data consumer. If the amount of
considered files is small, then the parsing configuration could in principle be explicitly
changed and fed back into the parsing process. Alternatively, also a set of highest ranked
solution could be presented to user, letting him/her choose the preferred table. In that
way, the user input could also used to train the internal Ranking SVM and improve
future rankings according to the users’ choice.

However on a large set of files, manual validation of results is not feasible. Especially,
when none of the hypotheses leads to correct results, it was shown that unfavorable
tables can be ranked highest, which compromises the overall data quality. In order to

1https://www.w3.org/TR/tabular-metadata/#dialect-descriptions

https://www.w3.org/TR/tabular-metadata/#dialect-descriptions

83

automatically detect and filter out unfavourable tables, an absolute measure of table
quality should, in future work, be established.

8.3 What effect do the table normalization steps have on
the table quality?

The table normalization steps can be split up into basic header/non-header detection
(minimal version), multiple header row detection, metadata and column function de-
tection (advanced version), and table orientation and narrow/wide data detection (full
version). Considering the results of the minimal version in comparison to those of the
advanced and full version, it is apparent that the detection of row and column functions
are essential and improve the quality of the resulting table. The additional table orien-
tation and narrow/wide data detection steps increase the quality of the parsing results
in specific cases significantly. On the other hand those steps add a high variety to the set
of possible outcomes, which complicates the ranking and leads overall to worse parsing
results.

As shown in Section 7.1, in some cases the table normalization capabilities are not as
good as the ones of compared systems (DeExcelerator). Due to the modular architecture
of the Multi-Hypothesis parser, current parsing steps can be easily replaced, removed
or new steps can be added. Apart from improving the heuristics of current parsing
steps, we propose the following directions for future work: As already pointed out in
Section 6.2.5 the conditional random field-based approaches of Adelfio et al. [37] should
be considered as a replacement for the current row function detection. As emphasized
by Hurst [28], a deeper understanding of the table content is required to solve certain
ambiguities. Especially in order to distinguish variable names from values and improve
the column function and wide/narrow data detection, the use of background knowledge
should be considered. If a corpus contains very specific concepts, which can not be found
in general knowledge bases, it could also be considered to mine background knowledge
in form of header and value co-occurrences from all tables in a respective corpus. A
different, background knowledge independent approach was proposed by Seth et al. [34],
although this would be limited to tables in which the column and row headers form a
unique access path to value cells.

84

8.4 Does multi-hypothesis parsing lead to better results
than linear parsing?

The systems we compared to did not have the entirely same scope as the Multi-Hypothesis
parser, but by combining messytables and DeExcelerator we created a linear parsing pro-
cess whose capabilities are largely in line with those of the Multi-Hypothesis parser. In
a one-to-one comparison to this system, the Multi-Hypothesis parsing leads to better
parsing results. Out of 64 messy tables, up to 38 could be parsed, cleaned and nor-
malized in the same ways as we did manually. The linear solution only achieved 29
correct tables. We did not only show an improvement of parsing results on the small
sample, but also on the larger sample of approx. 15,000 files from data.gov.uk. Manual
analysis of erroneous parsing results revealed that simple improvements (fixing of the
date and numeric detection and detection of duplicated columns) could even further
improve the quality of the parsing results. A question which arises is to which extent a
linear parser would be capable of parsing the tables correctly if all the mentioned issues
of the linear parsers would be fixed. In Section 6.3.2 we simulated the behaviour of
linear parsers by following the path of highest confidence in the parsing tree (naïve) of
the Multi-Hypothesis parser. The naïve selection of results lead to choices which were
only slightly better than random choices and far off from the choices based on results
quality. However, the results have to be treated with caution, because we did not focus
on creating highly reliable confidence values, but the results at least show that sim-
ple heuristics can not provide sufficiently accurate confidence values to meet the right
parsing decisions. That two linear parsing parsing solutions, which focused on parsing
of messy tables and normalization of table structures, did not achieve better results
than the simple implementation of the Multi-Hypothesis parser, suggests that it is very
challenging to meet correct parsing decisions a-priori.

This leads to a second important aspect of the Multi-Hypothesis parsing approach, which
is the ease of implementation. The framework uncouples different steps of the parsing
process, which means that the parsing steps do not have to take other eventualities into
account. They can simply build on a certain assumption about the shape of the input
and process accordingly. The row function step can, e.g., always build on the assumption
that the input table is horizontally oriented. If this is not the case, the parsing in this
branch of the tree will eventually fail or lead to bad results, but usually one other
branch will contain an actual horizontally oriented table, and there the detection will
succeed and lead to results, which will ultimately rule out the other bad results. This
is fundamentally different from linear parsing approaches, where all steps necessarily
have to succeed or have to take previous or future steps into account. This makes it
possible to "plug-in" approaches from related work, which maybe only solve a certain

85

sub-problem, built on certain assumptions about the input table, or are generally not
very reliable. Our proposed implementation of the Multi-Hypothesis parser was not yet
able to solve all possible issues correctly. In future work, the currently implemented
detection heuristics can be further improved or replaced by other methods, as proposed
in the previous section.

8.5 Future Work

For future work we propose to first exploit the most obvious opportunities for improve-
ments. This implies fixing the mentioned issues for date and numeric detection, and
improving the row/column function and narrow/wide data detection modules by cre-
ating a higher variety of hypotheses and making more thorough plausibility checks.
Because an estimated faction of 2% of all CSV files on data.gov.uk contains multiple
tables, the multi-table-support should be evaluated and included in the regular parsing
process. Far-reaching directions for improvements of the table normalization steps were
discussed 8.3.

The higher the variety of hypotheses gets, the more reliably the result quality has to
be assessed. Since data type consistency is an important quality factor, we propose
a better support of different data types, such as date-times, geo-coordinates, and ZIP
codes etc., as a simple way to improve the ranking accuracy. Furthermore the measure of
consistency could be improved by calculating the numeric consistency on numeric, date
and time columns. In order to assess the consistency of text, different text features,
such as the text length could be taken into account. Also the consistency of textual
values could be assessed by the amount of times certain values co-occur in different
tables in a given corpus. Corpus knowledge could also be used to assess the correctness
of headers by evaluating how often certain values occur under a specific header. The
different quality features are currently weighted equally, but as proposed in Section 8.2,
different approaches could be used to improve the weighting.

In some cases the input files could not be properly parsed, because the pruning re-
moved all dialect hypotheses. In future work we want to prevent such cases by disabling
pruning for dialect hypotheses or by creating more realistic confidence values for dialect
hypotheses. In other cases, CSVLint reported a "check options" issue which indicates
an unsuccessful dialect detection by the Multi-Hypothesis parser. Those cases have to
be manually reviewed to assess if and why the dialect has not been properly detected.
CSV files which are actually syntactically broken, are currently handled by the readr
library, which provisionally fixes those issues without taking consistency of values or
other criteria into account. In future work, the record alignment approach of Chu et

86

al. [41] could be utilized to improve the automatic fixing procedure of syntactically bro-
ken CSV files. In the test set of very diverse files from data.gov.uk serious syntactical
issues which would require a re-alignment of values were seldomly observed.

So far, the performance of the Multi-Hypothesis parser was only evaluated on the
data.gov.uk corpus, which is diverse, but does certainly not contain all possible vari-
ations of CSV data. In future work the proposed solution should be evaluated on other
data sets. The correct functionality of each parsing step could furthermore be ensured
by testing corner cases with unit tests.

Ultimately a good way to evaluate a solution is to let people actually use it. Therefore
we have published the created solution as freely available package for the statistical
programming environment R [50]. The source code is available online2.

2https://github.com/tdoehmen/hypoparsr

List of Figures

2.1 Data Frame . 9
2.2 Gathered Wide Data . 10
2.3 Spread Narrow Data . 11
2.4 Gathered and Spread Mixed Data . 11
2.5 Tidy Table . 12

3.1 data.ogv.uk Example 1 . 16
3.2 data.ogv.uk Example 2 . 17
3.3 data.ogv.uk Example 3 . 18
3.4 data.ogv.uk Example 4 . 19
3.5 data.ogv.uk Example 5 . 19

4.1 Size Distribution data.gov.uk . 23
4.2 Ambiguous CSV file . 24
4.3 Proposed Parsing Process Extension . 25
4.4 Multi-Hypothesis Tree . 26

5.1 Table Model Hurst . 36

6.1 Architecture Small . 42
6.2 Parsing Steps . 43
6.3 Table Area Detection Schema . 47
6.4 Table Orientation Detection Schema . 48
6.5 Row Function Detection Schema . 50
6.6 Column Function Example 1 . 51
6.7 Column Function Example 2 . 52
6.8 Column Function Example 3 . 52
6.9 Column Function Detection Schema . 53
6.10 Wide Data Detection Schema . 55
6.11 Narrow Data Detection Schema . 56
6.12 Quality Assessment Training Schema . 62
6.13 Ranking Evaluation . 65

7.1 Multi-Hypothesis Parser Variants . 66
7.2 Evaluation Example 1 . 68
7.3 Evaluation Example 2 . 69
7.4 Evaluation Example 3 . 69
7.5 Evaluation Example 4 . 70
7.6 Evaluation Example 5 . 70

87

88

7.7 Evaluation Example 6 . 71
7.8 Evaluation Example 7 . 72
7.9 Evaluation Example 8 . 72
7.10 Evaluation Example 9 . 73
7.11 Evaluation Example 10 . 73
7.12 Evaluation Example 11 . 73
7.13 CSVLint issues in the data.gov.uk corpus. 74
7.14 CSVLint Issues Separate Evaluation . 76
7.15 Amount of Recovered Data . 78
7.16 Number of Hypotheses per Step . 80

B.1 Encoding Class Diagram . 93
B.2 Dialect Class Diagram . 93
B.3 Table Area Class Diagram . 94
B.4 Table Orientation Class Diagram . 94
B.5 Row Functions Class Diagram . 94
B.6 Column Functions Class Diagram . 94
B.7 Wide Data Class Diagram . 94
B.8 Narrow Data Class Diagram . 95
B.9 Data Types Class Diagram . 95
B.10 CSV Parser Class Diagram . 96

List of Tables

2.1 CSV Parser Capabilities . 7
2.2 CSV Validation Tool Capabilities . 9
2.3 5-Star Open Data . 13

3.1 CSV Issues Random Sample . 20
3.2 CSV Issue Categorization . 21

4.1 Parsing Success Evaluation CSVLint . 24

5.1 Format Features Related Work . 32
5.2 Data Formats Related Work . 33
5.3 Input Features Related Work . 34
5.4 Table Elements Related Work . 37

6.1 Data Quality Characteristics . 61
6.2 Quality Metric Weights . 63

7.1 Evaluation Example 10 Metrics . 72
7.2 Evaluation Example 11 Metrics . 73
7.3 Successfully Parsed CSV . 77
7.4 Number of Hypotheses . 79

A.1 Comparison of different CSV Parsers . 92

89

List of Algorithms

1 Hypothesis Tree Traversal . 42
2 Dialect Detection . 46
3 Table Area Detection - GET_DENSE_AREAS 46
4 Table Orientation - Single Reference Row/Col (Pivk et al. [33]) 48
5 Table Orientation - Multiple Reference Rows/Cols 49
6 Row Functions . 50
7 Column Functions . 54
8 Wide Data - Detection . 55
9 Narrow Data - Detection . 55
10 Data Types - Detect . 57
11 Data Types - Parser . 58
12 Parse File . 97
13 Parse File - GET_PARSING_RESULTS 98
14 Table Area Detection . 98
15 Table Area Detection - GET_DATA_DENSITY 98
16 Table Orientation - EXPAND_AREAS_TOP_LEFT 99
17 Row Functions - COUNT_FUNCTION_VOTES 99
18 Row Functions - NORMALIZE_FUNCTION_VOTES 99
19 Wide Data - Parsing . 100
20 Narrow Data - Parsing . 100

90

Appendix A

CSV Parser Comparison

Table A.1 shows the configuration parameters of different CSV parsers for the statistical
programming environment R and Python in comparison.

91

92

T
ab

le
A

.1
:
C
om

pa
ris

on
of

di
ffe

re
nt

C
SV

Pa
rs
er
s

R
P
yt
ho

n
na

ti
ve

fr
ea
d

re
ad

r
na

ti
ve

pa
nd

as
m
es
sy
ta
bl
es

E
nc

od
in
g

fil
eE

nc
od

in
g,

en
-

co
di
ng

en
co
di
ng

lo
ca
le
,

gu
es
s_

en
co
di
ng

-
en

co
di
ng

en
co
di
ng

Li
ne

T
er
m
in
a-

to
r

-
au

to
-

lin
et
er
m
in
at
or

lin
et
er
m
in
at
or

lin
et
er
m
in
at
or

D
el
im

it
er

se
p

se
p

de
lim

de
lim

ite
r

se
p,

de
lim

ite
r,
de

-
lim

_
w
hi
te
sp
ac
e

de
lim

ite
r

Q
uo

te
ch
ar

qu
ot
e

-
qu

ot
e

qu
ot
ec
ha

r
qu

ot
ec
ha

r
qu

ot
ec
ha

r
E
sc
ap

in
g

al
lo
w
Es

ca
pe

s
-

es
ca
pe

_
do

ub
le
,

es
ca
pe

_
ba

ck
sla

sh
do

ub
le
qu

ot
e,

es
-

ca
pe

ch
ar

es
ca
pe

ch
ar

do
ub

le
qu

ot
e

C
om

m
en
ts

co
m
m
en
t.c

ha
r

-
co
m
m
en
t

-
co
m
m
en
t

-
H
ea
de

r
he

ad
er

he
ad

er
co
l_

na
m
es

ha
s_

he
ad

er
he

ad
er

he
ad

er
s_

gu
es
s

In
de

x
C
ol

ro
w
.n
am

es
-

-
-

in
de

x_
co
l

-
E
m
pt
y

R
ow

/-
C
ol

bl
an

k.
lin

es
.sk

ip
-

-
-

sk
ip
_
bl
an

k_
lin

es
-

F
ie
ld

W
hi
te
s-

pa
ce

st
rip

.w
hi
te

st
rip

.w
hi
te

tr
im

_
w
s

sk
ip
in
iti
al
sp
ac
e

sk
ip
in
iti
al
sp
ac
e

sk
ip
in
iti
al
sp
ac
e

N
A

V
al
ue

s
na

.st
rin

gs
na

.st
rin

gs
na

-
na

_
va
lu
es

au
to

D
ec
im

al
P
oi
nt
s

de
c

de
c

lo
ca
le

-
de

ci
m
al
,

th
ou

-
sa
nd

s
au

to

D
at
es

-
-

da
te
_
na

m
es
,

da
te
_
fo
rm

at
,t
z

-
pa

rs
e_

da
te
sa

ut
o,

da
yfi

rs
t,

in
fe
r

da
te
tim

e_
fo
rm

at

fo
rm

at
,

ty
pe

_
gu

es
s

B
oo

le
an

-
-

-
-

tr
ue

_
va
lu
es
,

fa
lse

_
va
lu
es

tr
ue

_
va
lu
es
,

fa
lse

_
va
lu
es
,

ty
pe

_
gu

es
s

Appendix B

Multi-Hypothesis Parser API

hypothesis

+confidence: double

encoding

+detect(path): List<encoding_hypothesis>
+parse(path, encoding_hypothesis): text_intermediate

encoding_hypothesis

+encoding: String

Figure B.1: Encoding Class Diagram

hypothesis

+confidence: double

dialect

+detect(text_intermediate): List<dialect_hypothesis>
+parse(text_intermediate, dialect_hypothesis): table_intermediate

dialect_hypothesis

+delim: String
+quote: String
+qmethod: String

Figure B.2: Dialect Class Diagram

93

94

hypothesis

+confidence: double

table_area

+detect(table_intermediate): List<table_area_hypothesis>
+parse(table_intermediate, table_area_hypothesis): multi_table_intermediate

table_area_hypothesis

+areas: List<table_area_hypothesis>

table_area

+col_start: int
+col_end: int
+row_start: int
+row_end: int

Figure B.3: Table Area Class Diagram

hypothesis

+confidence: double

table_orientation

+detect(table_intermediate): List<table_orientation_hypothesis>
+parse(table_intermediate, table_orientation_hypothesis): table_intermediate

table_orientation_hypothesis

+transposed: boolean

Figure B.4: Table Orientation Class Diagram

hypothesis

+confidence: double

row_functions

+detect(table_intermediate): List<row_function_hypothesis>
+parse(table_intermediate, row_function_hypothesis): table_intermediate

«enum»
row_function

header=1
data=2
title=3
group_header=4
aggregate=5
non_relational=6
blank=7

row_function_hypothesis

+functions: List<row_function>

Figure B.5: Row Functions Class Diagram

hypothesis

+confidence: double

column_functions

+detect(table_intermediate): List<column_function_hypothesis>
+parse(table_intermediate, column_function_hypothesis): table_intermediate

column_function_hypothesis

+functions: List<row_function>

«enum»
column_function

meta_header=1
data=2
aggregate=3
non_relational=4
blank=5

Figure B.6: Column Functions Class Diagram

hypothesis

+confidence: double

wide_data

+detect(table_intermediate): List<wide_data_hypothesis>
+parse(table_intermediate, wide_data_hypothesis): table_intermediate

wide_data_hypothesis

+multi_colum_vars: List<int>

Figure B.7: Wide Data Class Diagram

95

hypothesis

+confidence: double

narrow_data

+detect(table_intermediate): List<narrow_data_hypothesis>
+parse(table_intermediate, narrow_data_hypothesis): table_intermediate

narrow_data_hypothesis

+var_name_cols: List<int>
+multi_var_column: int

Figure B.8: Narrow Data Class Diagram

hypothesis

+confidence: double

data_types

+detect(table_intermediate): List<data_type_hypothesis>
+parse(table_intermediate, data_type_hypothesis): table_intermediate «enum»

data_type

character=1
integer=2
double=3
numeric_with_unit=4
date=5
logical=6

data_type_hypothesis

+data_type: List<data_type>

Figure B.9: Data Types Class Diagram

96

da
ta

_t
yp

es

m
ul

ti_
ta

bl
e_

in
de

rm
ed

ia
te

+
m

ul
ti_

ta
bl

e:
 L

is
t<

D
at

aF
ra

m
e>

da
ta

.T
re

e:
T

re
e

pa
rs

er

-p
ar

si
ng

_t
re

e:
 T

re
e

+
pa

rs
e_

fil
e(

fil
e,

 c
on

fig
ur

at
io

n)
: L

is
t<

D
at

aF
ra

m
e>

+
pr

in
t_

er
ro

r(
no

de
,e

rr
or

):
 v

oi
d

+
ge

ne
ra

te
_n

od
e_

na
m

e(
le

ve
l,h

yp
ot

he
si

s,
in

te
rm

ed
ia

te
,d

es
c_

le
ng

th
):

 S
tr

in
g

qu
al

ity
_a

ss
es

sm
en

t

-g
et

_t
ab

le
_f

ea
tu

re
s(

ta
bl

e:
 D

at
aF

ra
m

e)
: t

ab
le

_f
ea

tu
re

s
+

ra
nk

Q
ua

lit
y(

ta
bl

es
: l

is
t<

D
at

aF
ra

m
es

>
):

 L
is

t<
in

t>

co
nf

ig
ur

at
io

n

-t
ra

ve
rs

al
_o

rd
er

: "
pr

e-
or

de
r"

ta
bl

e_
in

de
rm

ed
ia

te

+
ta

bl
e:

 D
at

aF
ra

m
e

te
xt

_i
nd

er
m

ed
ia

te

+
te

xt
: S

tr
in

g

ta
bl

e_
fe

at
ur

es

+
nc

ol
: i

nt
+

nr
ow

: i
nt

+
em

pt
y_

he
ad

er
_c

el
ls

: i
nt

+
no

n_
un

iq
ue

_h
ea

de
r_

ce
lls

: i
nt

+
na

_f
ie

ld
s:

 in
t

+
em

pt
y_

fie
ld

s:
 in

t
+

hi
dd

en
_n

um
er

ic
s:

 in
t

+
ty

pe
s_

pe
rc

_f
ac

to
r:

 d
ou

bl
e

+
ty

pe
s_

pe
rc

_s
tr

in
g:

 d
ou

bl
e

+
ty

pe
s_

pe
rc

_n
um

er
ic

: d
ou

bl
e

+
ty

pe
s_

pe
rc

_i
nt

eg
er

: d
ou

bl
e

+
ty

pe
s_

pe
rc

_l
og

ic
al

: d
ou

bl
e

+
ty

pe
s_

pe
rc

_d
at

e:
 d

ou
bl

e

«i
nt

er
fa

ce
»

in
de

rm
ed

ia
te

«I
nt

er
fa

ce
»

er
ro

r_
ha

nd
le

r

no
de

+
na

m
e:

 S
tr

in
g

+
pa

rs
in

g_
le

ve
l:

S
tr

in
g

+
hy

po
th

es
is

: h
yp

ot
he

si
s

+
co

nf
id

en
ce

: d
ou

bl
e

+
ev

al
ua

te
d:

 b
oo

le
an

+
su

b_
in

te
rm

ed
ite

: i
nt

+
in

te
rm

ed
ia

te
: i

nt
er

m
ed

ia
te

+
pa

re
nt

: n
od

e
+

ch
ild

: L
is

t<
no

de
>

+
ad

dC
hi

ld
(n

od
e:

 n
od

e)

na
rr

ow
_d

at
a

w
id

e_
da

ta
co

lu
m

n_
fu

nc
tio

ns
ro

w
_f

un
ct

io
ns

ta
bl

e_
or

ie
nt

at
io

n
ta

bl
e_

ar
ea

di
al

ec
t

en
co

di
ng

«I
nt

er
fa

ce
»

pa
rs

in
g_

st
ep

+
ge

t_
le

ve
l()

: S
tr

in
g

+
de

te
ct

(in
te

rm
ed

ia
te

):
 L

is
t<

hy
po

th
es

is
>

+
pa

rs
e(

in
te

rm
ed

ia
te

, h
yp

ot
he

si
s,

 e
rr

or
_h

an
dl

er
):

 in
te

rm
ed

ia
te

+
ge

t_
de

sc
rip

tio
n(

hy
po

th
es

is
):

 S
tr

in
g

-c
he

ck
_i

np
ut

_p
ar

am
et

er
(h

yp
ot

he
si

s)
: v

oi
d

F
ig

ur
e

B
.1

0:
C
SV

Pa
rs
er

C
la
ss

D
ia
gr
am

Appendix C

Multi-Hypothesis Parser
Implementation Details

text: ^.*

total : ^.*(total | Total | TOTAL).*

empty : ^(\s*) ([" ’]?) (\s*)(NULL|null|Null|NA|na|N/A|n/a|NaN|nan |#N/A|# NA |1.# IND

|1.# QNAN | -1.# IND | -1.# IND|-NaN|-nan |) ?(\s*) ([" ’]?) (\s*)

punctuation : ^(\s*) ([" ’]?) (\s*) [[: punct :]]+(\ s*) ([" ’]?) (\s*)

id: ^(\s*) ([" ’]?) (\s*) (?=.*[[: upper :]].*) (?=.*[[: digit :]]) [[: upper :][: digit :][:

punct :]]+(\ s*) ([" ’]?) (\s*)

numeric : ^(\s*) ([" ’]?) (\s*) (?=.*[[: digit :]]) [[: digit :]\(+ -. ,\)\p{Sc }\%\s]+\S*(\s

) ([" ’]?) (\s)

date: ^(\s*) ([" ’]?) (\s*) ([[: digit :]]{2}|[[: digit :]]{4}) [.\/ -\s](([[: digit

:]]{2}|[[: digit :]]{4}) |[[: alpha :]]{3}) [.\/ -\s]([[: digit :]]{2}|[[: digit :]]{4})

(\s*) ([" ’]?) (\s*)

time: ^(\s*) ([" ’]?) (\s*) [[: digit :]]{2}(\:) [[: digit :]]{2}((\:) [[: digit :]]{2}) ?(\s

) ([" ’]?) (\s)

email : ^(\s*) ([" ’]?) (\s*)[a-zA -Z0 -9_.+ -]+@[a-zA -Z0 -9 -]+.[a-zA -Z0 -9 -.]+(\s*)

([" ’]?) (\s*)

url: ^(https ?:\/\/) ?([\da -z. -]+) .([a-z.]{2 ,6}) ([\/\ w . -]*) *\/?

logical : ^(\s*) ([" ’]?) (\s*)(True| False |TRUE| FALSE |true| false)(\s*) ([" ’]?) (\s*)

Listing C.1: "Regular Expressions used in GET_CELL_TYPES utility function"

Algorithm 12 Parse File
1: function parse_file(path, config = default)
2: tree← generate_parsing_tree(path, config)
3: results← get_parsing_results(tree)
4: ranking ← rank_result_quality(results)
5: return result with highest ranking
6: end function

97

98

Algorithm 13 Parse File - GET_PARSING_RESULTS
1: function get_parsing_results(tree)
2: results← list
3: for all node in tree where node.level is count(parsing_steps) do
4: confidence← traverse ancestors of node and collect confidence values
5: metadata← traverse ancestors of node and collect metadata values
6: warnings← traverse ancestors of node and collect warnings values
7: edits← traverse ancestors of node and collect edits values
8: results.add(node.intermediate, confidence, metadata, warnings, edits)
9: end for
10: return results
11: end function

Algorithm 14 Table Area Detection
1: default← new_area(i1 = 1, in = nrow(matrix), j1 = 1, jn = ncol(matrix))
2: default← remove_empty_frame(default)
3: hypotheses.add(default)
4: if not configuration.only_one_table then . perform real area detection
5: types← get_cell_types(matrix)
6: density ← get_data_density(types)
7: dense_areas← get_dense_areas(types, density)
8: expanded_areas← expand_areas_top_left(density, dense_areas)
9: expanded_areas← remove_empty_frame(expanded_areas)

10: hypotheses.add(expanded_areas)
11: end if
12: normalize_confidence(hypotheses)

Algorithm 15 Table Area Detection - GET_DATA_DENSITY
1: function get_data_density(types)
2: density ← matrix(size(types))
3: for all i, j in indices(types) do
4: if types[i, j] is not "empty" then
5: sub_matrix← [types[i, j], neighbour_cells(types[i, j])]
6: density[i, j]← count of cells in sub_matrix 6= "empty"
7: else
8: density[i, j]← 0
9: end if

10: end for
11: return density
12: end function

99

Algorithm 16 Table Orientation - EXPAND_AREAS_TOP_LEFT
1: function expand_areas_top_left(density, dense_areas)
2: expanded_areas← list
3: for all n in 1 : count(dense_areas) do
4: i1, in, j1, jn ← dense_areas[n]
5: upper_neighbour ← area in dense_areas above dense_areas[n]
6: left_neighbour ← area in dense_areas left from dense_areas[n]
7: if any(upper_neighbour) then i1 = upper_neighbour.in + 1
8: end if
9: if any(left_neighbour) then j1 = left_neighbour.jn + 1

10: end if
11: if n == count(dense_areas) then in, jn =← dim(density) end if
12: expanded_areas.add(i1, in, j1, jn)
13: end for
14: return expanded_areas
15: end function

Algorithm 17 Row Functions - COUNT_FUNCTION_VOTES
1: function count_function_votes(types)
2: votes← list
3: for all i in 1 : nrow(types) do
4: voteempty, votedata, votemetadata, voteheader, voteaggregate ← 0
5: if all(types[i,] == "empty"|"punctuation") then voteempty ← 1 end if
6: if all(types[i,] == "empty") then voteempty ← 2 end if
7: if any(types[i,] == "total") then votetotal ← 1 end if
8: if all(types[i,] == "total"|"numeric"|"empty") then votetotal ← 2 end if
9: if not all(types[i,] == "empty") then

10: votemetadata ← count(types[i,] == "empty")/ncol(types)
11: end if
12: max_check_for_header_rows← min(30, nrow(types))
13: equal_cells← []
14: for all c between i + 1 and max_check_for_header_rows do
15: equal_cells[c]←percentage of non-empty cells in types[i,] 6= types[c,]
16: end for
17: voteheader ← mean(equal_cells)
18: votedata ← count(types[i,] 6= "empty"|"punctuation"|"text")/ncol(types)
19: votes[i]← list(voteempty, votedata, votemetadata, voteheader, voteaggregate)
20: end for
21: return votes
22: end function

Algorithm 18 Row Functions - NORMALIZE_FUNCTION_VOTES
1: function normalize_function_votes(votes)
2: normalized_votes← matrix(dim(votes))
3: for all i, j in indeces(votes) do
4: normalized_votes[i, j]← vote[i, j]− 2/3 ∗max(votes[, j])
5: normalized_votes[i, j]← normalized_votes[i, j]− sum(votes[i,])
6: end for
7: return normalized_votes
8: end function

100

Algorithm 19 Wide Data - Parsing
1: if count(hypothesis.multi_col_vars) > 1 then
2: result.intermediate← melt(table, hypothesis.multi_col_vars)
3: result.edits← ncol(table) ∗ nrow(table)
4: else
5: result.intermediate = table
6: end if
7: return result

Algorithm 20 Narrow Data - Parsing
1: var_name_cols← hypothesis.var_name_cols
2: multi_var_col← hypothesis.multi_var_col
3: if count(var_name_cols) > 0 then
4: result.intermediate← spread(table, hypothesis.key_col, hypothesis.value_col)
5: result.edits← ncol(table) ∗ nrow(table)
6: if result.intermediate is null then
7: result.error ←"Spreading of table failed"
8: result.edits← 0
9: end if

10: else
11: result.intermediate← table
12: end if

Bibliography

[1] Tamraparni Dasu and Theodore Johnson. Exploratory data mining and data clean-
ing, volume 479. John Wiley & Sons, 2003.

[2] Marijn Janssen, Yannis Charalabidis, and Anneke Zuiderwijk. Benefits, adoption
barriers and myths of open data and open government. Information Systems Man-
agement, 29(4):258–268, 2012.

[3] IBM. IBM FORTRAN Program Products for OS and the CMS Component of
VM/370 General Information. IBM, first ed.:p. 17, 1972.

[4] Y. Shafranovich. Common Format and MIME Type for Comma-Separated Values
(CSV) Files. RFC 4180 (Informational), October 2005. URL http://www.ietf.

org/rfc/rfc4180.txt. Updated by RFC 7111.

[5] Y. Shafranovich. IESG CSV MIME Type, 2014. URL https://www.iana.org/

assignments/media-types/text/csv.

[6] Y. Shafranovich. Important note on default charset in "text/csv" (RFC 4180), 2014.
URL https://lists.w3.org/Archives/Public/public-csv-wg/2014Oct/0114.

html.

[7] Hadley Wickham. Tidy data. Under review, 2014.

[8] Edgar F Codd. Further normalization of the data base relational model. Data base
systems, pages 33–64, 1972.

[9] Ed Summers. The 5 stars of open linked data, 2010. URL http://inkdroid.org/

2010/06/04/the-5-stars-of-open-linked-data/.

[10] James G. Kim and Michael Hausenblas. 5-star open data, 2015. URL http:

//5stardata.info/en/.

[11] Open Date Institute. Report on Departmental Open Data Commitments and ad-
herence to Public Data Principles for the period between July and September 2012.
(September):1–9, 2012.

101

http://www.ietf.org/rfc/rfc4180.txt
http://www.ietf.org/rfc/rfc4180.txt
https://www.iana.org/assignments/media-types/text/csv
https://www.iana.org/assignments/media-types/text/csv
https://lists.w3.org/Archives/Public/public-csv-wg/2014Oct/0114.html
https://lists.w3.org/Archives/Public/public-csv-wg/2014Oct/0114.html
http://inkdroid.org/2010/06/04/the-5-stars-of-open-linked-data/
http://inkdroid.org/2010/06/04/the-5-stars-of-open-linked-data/
http://5stardata.info/en/
http://5stardata.info/en/

Bibliography 102

[12] ISO/IEC 8859-1:1998. Information technology – 8-bit single-byte coded graphic
character sets – Part 1: Latin alphabet No. 1. Standard, International Organization
for Standardization, Geneva, CH, April 1998.

[13] ISO/IEC 8859-16:2001. Information technology – 8-bit single-byte coded graphic
character sets – Part 16: Latin alphabet No. 10. Standard, International Organi-
zation for Standardization, Geneva, CH, July 2001.

[14] Ivan Ermilov, Sören Auer, and Claus Stadler. User-driven semantic mapping of tab-
ular data. In Proceedings of the 9th International Conference on Semantic Systems,
pages 105–112. ACM, 2013.

[15] Ranjit Singh, Kawaljeet Singh, et al. A descriptive classification of causes of data
quality problems in data warehousing. International Journal of Computer Science
Issues, 7(3):41–50, 2010.

[16] Jeffrey Heer, Joseph M Hellerstein, and Sean Kandel. Predictive interaction for data
transformation. In 7th Biennial Conference on Innovative Data System Research,
CIDR, volume 15.

[17] Hongbo Du and Laurent Wery. Micro: A normalization tool for relational database
designers. Journal of Network and Computer applications, 22(4):215–232, 1999.

[18] Ali Yazici and Ziya Karakaya. Jmathnorm: A database normalization tool using
mathematica. In Computational Science–ICCS 2007, pages 186–193. Springer, 2007.

[19] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional de-
pendency discovery: An experimental evaluation of seven algorithms. Proceedings
of the VLDB Endowment, 8(10), 2015.

[20] Jácome Cunha, João Saraiva, and Joost Visser. From spreadsheets to relational
databases and back. In Proceedings of the 2009 ACM SIGPLAN workshop on
Partial evaluation and program manipulation, pages 179–188. ACM, 2009.

[21] Dan Brickley and Ramanathan V Guha. Resource description framework (rdf)
schema specification 1.0: W3c candidate recommendation 27 march 2000. 2000.

[22] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge-
base. Communications of the ACM, 57(10):78–85, 2014.

[23] Varish Mulwad, Tim Finin, and Anupam Joshi. Automatically generating govern-
ment linked data from tables. 2011.

Bibliography 103

[24] Kumar Sharma, Ujjal Marjit, and Utpal Biswas. Automatically converting tabular
data to rdf: An ontological approach.

[25] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and search-
ing web tables using entities, types and relationships. Proceedings of the VLDB
Endowment, 3(1-2):1338–1347, 2010.

[26] Albert Meroño-Peñuela, Ashkan Ashkpour, Laurens Rietveld, Rinke Hoekstra, and
Stefan Schlobach. Linked humanities data: The next frontier? In A Case-study in
Historical Census Data. Proceedings of the 2nd International Workshop on Linked
Science, volume 951, page 2012. Citeseer, 2012.

[27] Jenni Tennison. Csv on the web: A primer, w3c wg note. Working group note,
W3C, 2016. http://www.w3.org/TR/2015/REC-tabular-data-model-20151217/.

[28] Matthew Francis Hurst. The interpretation of tables in texts. 2000.

[29] Xinxin Wang and Derick Wood. Tabular abstraction, editing, and formatting. Cite-
seer, 1996.

[30] Daniel Lopresti and George Nagy. Automated table processing: An (opinionated)
survey. In Proceedings of the Third IAPR Workshop on Graphics Recognition, pages
109–134, 1999.

[31] Ana Costa e Silva, Alípio M Jorge, and Luís Torgo. Design of an end-to-end method
to extract information from tables. International Journal of Document Analysis and
Recognition (IJDAR), 8(2-3):144–171, 2006.

[32] David W Embley, Matthew Hurst, Daniel Lopresti, and George Nagy. Table-
processing paradigms: a research survey. International Journal of Document Anal-
ysis and Recognition (IJDAR), 8(2-3):66–86, 2006.

[33] Aleksander Pivk, Philipp Cimiano, York Sure, Matjaz Gams, Vladislav Rajkovič,
and Rudi Studer. Transforming arbitrary tables into logical form with tartar. Data
& Knowledge Engineering, 60(3):567–595, 2007.

[34] Sharad Seth and George Nagy. Segmenting tables via indexing of value cells by
table headers. In 2013 12th International Conference on Document Analysis and
Recognition, pages 887–891. IEEE, 2013.

[35] Zhe Chen, Michael Cafarella, Jun Chen, Daniel Prevo, and Junfeng Zhuang. Sen-
bazuru: a prototype spreadsheet database management system. Proceedings of the
VLDB Endowment, 6(12):1202–1205, 2013.

Bibliography 104

[36] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
Webtables: exploring the power of tables on the web. Proceedings of the VLDB
Endowment, 1(1):538–549, 2008.

[37] Marco D Adelfio and Hanan Samet. Schema extraction for tabular data on the web.
Proceedings of the VLDB Endowment, 6(6):421–432, 2013.

[38] David Pinto, Andrew McCallum, Xing Wei, and W Bruce Croft. Table extraction
using conditional random fields. In Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval, pages
235–242. ACM, 2003.

[39] Julian Eberius, Christoper Werner, Maik Thiele, Katrin Braunschweig, Lars Dan-
necker, and Wolfgang Lehner. Deexcelerator: A framework for extracting relational
data from partially structured documents. In Proceedings of the 22nd ACM inter-
national conference on Conference on information & knowledge management, pages
2477–2480. ACM, 2013.

[40] Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. Harvesting relational tables
from lists on the web. Proceedings of the VLDB Endowment, 2(1):1078–1089, 2009.

[41] Xu Chu, Yeye He, Kaushik Chakrabarti, and Kris Ganjam. Tegra: Table extraction
by global record alignment. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1713–1728. ACM, 2015.

[42] George Nagy, DavidW Embley, Mukkai Krishnamoorthy, and Sharad Seth. Cluster-
ing header categories extracted from web tables. In IS&T/SPIE Electronic Imaging,
pages 94020M–94020M. International Society for Optics and Photonics, 2015.

[43] Matthew Hurst. Towards a theory of tables. International Journal of Document
Analysis and Recognition (IJDAR), 8(2-3):123–131, 2006.

[44] Eli Cortez, Daniel Oliveira, Altigran S da Silva, Edleno S de Moura, and Alberto HF
Laender. Joint unsupervised structure discovery and information extraction. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data, pages 541–552. ACM, 2011.

[45] George Nagy, Sachin Seth, Dongpu Jin, David W Embley, Spencer Machado, and
Mohan Krishnamoorthy. Data extraction from web tables: The devil is in the
details. In Document Analysis and Recognition (ICDAR), 2011 International Con-
ference on, pages 242–246. IEEE, 2011.

[46] David W Embley, Mukkai Krishnamoorthy, George Nagy, and Sharad Seth. Factor-
ing web tables. In International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, pages 253–263. Springer, 2011.

Bibliography 105

[47] Jianying Hu, Ramanujan S Kashi, Daniel Lopresti, and Gordon T Wilfong. Eval-
uating the performance of table processing algorithms. International Journal on
Document Analysis and Recognition, 4(3):140–153, 2002.

[48] Yalin Wang, Ihsin T Phillips, and Robert M Haralick. Table structure understand-
ing and its performance evaluation. Pattern Recognition, 37(7):1479–1497, 2004.

[49] Zhe Chen and Michael Cafarella. Automatic web spreadsheet data extraction. In
Proceedings of the 3rd International Workshop on Semantic Search over the Web,
page 1. ACM, 2013.

[50] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2016. URL https://www.

R-project.org/.

[51] Hadley Wickham. rvest: Easily Harvest (Scrape) Web Pages, 2016. URL https:

//CRAN.R-project.org/package=rvest. R package version 0.3.2.

[52] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Pro-
ceedings of the eighteenth international conference on machine learning, ICML,
volume 1, pages 282–289, 2001.

[53] Hadley Wickham. Reshaping data with the reshape package. Journal of Statistical
Software, 21(12):1–20, 2007. URL http://www.jstatsoft.org/v21/i12/.

[54] ISO/IEC 25012:2008. Software engineering – Software product Quality Require-
ments and Evaluation (SQuaRE) – Data quality model. Standard, International
Organization for Standardization, Geneva, CH, March 2008.

[55] Irfan Rafique, Philip Lew, Maissom Qanber Abbasi, and Zhang Li. Information
quality evaluation framework: Extending iso 25012 data quality model. World
Academy of Science, Engineering and Technology, 65:523–528, 2012.

[56] Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. Method-
ologies for data quality assessment and improvement. ACM computing surveys
(CSUR), 41(3):16, 2009.

[57] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceed-
ings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 133–142. ACM, 2002.

[58] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. In Soviet physics doklady, volume 10, page 707, 1966.

https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=rvest
https://CRAN.R-project.org/package=rvest
http://www.jstatsoft.org/v21/i12/

Bibliography 106

[59] Andreas Borg and Murat Sariyar. RecordLinkage: Record Linkage in R, 2016. URL
https://CRAN.R-project.org/package=RecordLinkage. R package version 0.4-
9.

[60] Ethem Alpaydin. Introduction to machine learning (adaptive computation and
machine learning). 2004.

[61] Qing-Song Xu and Yi-Zeng Liang. Monte carlo cross validation. Chemometrics and
Intelligent Laboratory Systems, 56(1):1–11, 2001.

https://CRAN.R-project.org/package=RecordLinkage

Declaration of Authorship

I, Till Roman Döhmen, declare that this thesis titled, ‘Multi-Hypothesis Parsing of

Tabular Data in Comma-Separated Values (CSV) Files’ and the work presented in it

are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

107

	Abstract
	Preface
	Contents
	1 Introduction
	1.1 Open Government Data
	1.2 Outline

	2 Background
	2.1 Comma-Separated Values
	2.1.1 RFC 4180
	2.1.2 Dialects
	2.1.3 Parsers
	2.1.4 Validation Tools

	2.2 Data Frames
	2.3 Tidy Data
	2.4 Open Data Portal data.gov.uk

	3 CSV Parsing Issues
	3.1 Samples from data.gov.uk
	3.2 Categorization of Issues

	4 Problem Statement and Research Questions
	5 Related Work
	5.1 Data Wrangling Tools
	5.2 Database Normalization
	5.3 Semantic Enrichment of CSV
	5.4 Automatic Table Normalization
	5.4.1 Applications
	5.4.2 Input Data Formats
	5.4.3 Background Knowledge
	5.4.4 Table Models
	5.4.5 Analysis Methods
	5.4.6 Evaluation and Limitations

	6 Multi-Hypothesis Parser
	6.1 Architecture
	6.2 Parsing/Detection Steps
	6.2.1 Encoding
	6.2.2 Dialect
	6.2.3 Table Area
	6.2.4 Table Orientation
	6.2.5 Row Functions
	6.2.6 Column Functions
	6.2.7 Wide and Narrow Data
	6.2.8 Data Types

	6.3 Quality Assessment
	6.3.1 Quality Criteria
	6.3.2 Ranking

	7 Evaluation
	7.1 Table Quality
	7.2 CSVLint Issues
	7.3 Amount of Recovered Data
	7.4 Hypothesis Tree Size

	8 Discussion
	8.1 How large does the hypothesis tree grow?
	8.2 How reliable can the best parsing hypothesis be identified?
	8.3 What effect do the table normalization steps have on the table quality?
	8.4 Does multi-hypothesis parsing lead to better results than linear parsing?
	8.5 Future Work

	List of Figures
	List of Tables
	List of Algorithms
	A CSV Parser Comparison
	B Multi-Hypothesis Parser API
	C Multi-Hypothesis Parser Implementation Details
	Bibliography
	Declaration of Authorship

