
Two Queries

Harry Buhrman*
CWI

PO Box 94079
1090 GB Amsterdam

The Netherlands

Lance Fortnow t
University of Chicago

Department of Computer Science
1100 E. 58th St.

Abstract

We consider the question whether two queries to SAT are
as powerful as one query. We show that if pNP[i] = pNP{2]
then

• Locally either NP = coNP or NP has polynomial
size circuits.

9 pNP = pNP[lJ.

• ~i = upNP[l] n RPNP{!J.

• PH = sppNPf1l.

Moreover we extend work of Hemaspaandra, Hemas
paandra and Hempel to show that if pB~[l] = pB~[2l then
~i = ITi. We also give a relativized world where pNP[l] =
pNP[2] but NP -:/= coNP.

1 Introduction

Are two queries to SAT as powerful as one query? This
question has a long history in computational complexity
theory.

When computing functions, Krentel [Kre88] showed
that if two queries can be simulated by one query to SAT,
that is FPNP[I] = FPNP[2l, then P = NP.

When we focus on languages instead of functions life
gets more complicated. Kadin [Kad88] showed that if
pNP[l] = pNP[2J then NP <;;; coNP/poly and thus PH <;;;

~j [Yap83]. Beige!, Chang and Ogihara [BC093] build
ing on Chang and Kadin [CK96] improve this to show
that every language in the polynomial-time hierarchy can
be solved by an NP query and a L:i query.

•Email: buhnnan@cwi.nl. URL: http://www.cwi.nlrbuhnnan. Par
tially supported by the Dutch foundation for scientific research (NWO)
by SION project 612-34-002,and by the European Union through Neu
roCOLT ESPRIT Working Group Nr. 8556, and HC&M grant nr.
ERB4050PL93-05 ! 6.

tErnail: fortnow@cs.uchicago.edu.
URL: http://www.cs.uchicago.edurfortnow. Work done while on leave
at CW!. Supported in pan by NSF grant CCR 92-53582, the Dutch Foun
dation for Scientific Research (NWO) and a Fulbright Scholar award.

1093-0159/98 $10.00 © 1998 IEEE
13

Chicago, IL 60637

One would like to prove that pNP[l] = pNP[2J im

plies NP = coNP. Hemaspaandra, Hemaspaandra and
Hempel [HHH97a) made a step into that direction. They
showed that fork > 2, if pBWJ = pB=[2l then~~ = TI~.

We extend their techniques to show that if pB~[l] =
"''[?] p~, - then L:~ = Ili. However, the techniques cannot

be pushed down to k = l. We show a relativized world
where pNP[l] = pNP£2J but NP-:/= coNP.

What does happen when pNP[I] = pNP£2J?

Building on the techniques of the above papers we
show several new collapses if pNP[l] = pNP[2J including:

• Locally either NP = coNP or NP has polynomial
size circuits.

• pNP = pNP[l].

• I:i = upNP[1J n RpNP[1J.

• PH = sppNP(iJ.

2 Preliminaries

We assume the reader familiar with basic notions of com
plexity theory as can be found in many textbooks in the
area (such as [GJ79, HU79, BDG88, BDG90]).

For a set A we will identify A with its characteristic
function. Hence for a string x, A(x) E { 0, 1} and A(x) =
1 iff x EA.

An oracle Turing machine is nonadaptive, if it pro
duces a list of all of the queries it is going to make before it
makes the first query. SAT is the set of satisfiable boolean
formulae. For any set A, pA[k] is the class of languages
that are recognized by polynomial time Turing machines
that access the oracle A at most k times on each input. The

class ~[k] will allow only nonadaptive access to A. We
note that pNP[l] = pNP[2l if pNP[l] = p~P[2l [CK95], so all

our results could be stated assuming pNP[l] = P~P[2l.
UP is the set of languages that are recognized by poly

nomial-time nondetenninistic Turing machines that have
at most one accepting path on each input.

We can generalize NP by defining the polynomial
time hierarchy. We define ~b = P and inductively define

..... p p .
I/'+ 1 =NP-· for i > 0. We let Ili = coEi. In parucu-
1~, we have NP = ~~ and coNP = Il~. Many complexity
theorists conjecture that the polynomial-time hierarchy is
infinite, i.e., Er+i 'f:. ~r for a11 i.

A function h is polynomial bounded if for all n > 0,
h(n) ~ p(n) for some polynomial p. Let C be a complex
ity class, a set A is in C/poly if there exists a polynomial
bounded function h, and a set B E C such that x E A iff
<x,h(lxl)> E B.

Given a formula r/J on n variables we define the self
reduction tree of <P as follows: <P is the root and if the
formularj>'(x 1 , .. ., Xm) is a node in the tree then <P'(x1 :=
true, x2, ••• , xm) and <P'(x 1 :=false, xz, ... , xm) are the
two children of ef/. We say <P' (x 1 , ... , x m) self-reduces
to the formulae 4>'(x1 :=true, x2, ... , xm) and 4>'(x1 :=
false, x2 , . •. , Xm). A formula with no free variables is a
leaf in the tree. A node in a tree is satisfiable if and only
if either of its children are satisfiable. One can determine
easily in polynomial time whether a leaf is true or false.

3 Collapse if pE~111 = Pft~121

Hemaspaandra, Hemaspaandra and Hempel [HHH97a] ex-
. '\"P[l) E"(2] hibited a strong collapse 1f p-. = P11 k for k > 2.

Theorem 3.1 (HHH) For every level k > 2, if PE:[i] =
P:t:121 h ~p ITP

it t en ~k = k'

Extending their techniques we improve their result to
k = 2.

'<"'[!] E'[?) P P Theorem 3.2 If P-2 = Ptt2 - then E2 = II 2•

Proof: For languages A and B define AD..B to be the
symmetric difference of A and B, i.e., (An B) U (An B).

For complexity classes C and 1J define the class CD.TI
as

{AD..B I A EC and BE 'V}

For a predicate R(y) we use the notation 3my R(y)
to mean 3y (lyl = m /\ R(y)) and 'r/"'y R(y) to mean
'Vy (lyj = m => R(y)).

Since :E~.C.NP ~ P~~!2l, Theorem 3.2 follows imme
diately from the following lemma.

Lemma 3.3 lfE~ilNP ~ pE~[l) then E~ =IT~.

Proof: Fix K a complete set for I:~. Given an input
x we will give a I:~ algorithm for determining that x is
not in K. Let n = Ix!. We can assume there exists a
polynomial-time predicate P such that

x EK<=> 3nyV'z P(x,y,::)

where the quantification is done over strings of length n.

14

3 </>, ll

h(x,,P)- (::,+)
if, E SAT

h(x, <P) = (::, -)

't/ v
P(.:, u, v)
</;(/.SAT

'Iv
P(z, u, v)

'I u
Assuming that

for all </;,
<PE SAT

iff
h(x, q;) = (.:, -)
use self-reduction

to find v
such that-iP(x, u, v)

Figure 1: Ei algorithm to determine nonmembershi~ in
A-. The 3 and 'r/ quantifiers have appropriate polynom1al
length bounds. The Ei algorithm accepts if any row ac
cepts.

Define the set D E ~i~NP as follows:

D = {(x,<P) I (x EK /\<f; ft SAT)V(x (f. I\ /\</J E SAT)}

By assumption, there exists a polynomial-time com
putable function h : I;• x E· ___. I:* x { +, - } such
that (x,</l) E D if h(x,4>) = (z,+) and:: E J\ or
h(x, </l) = (.:,-)and z ft I\.

We give the~~ algorithm for determining that x is not
in /{ in Figure 1. Lemma 3.3 follows from the following
claim.

Claim 3.4 The algorithm in Figure I accepts exactly when
x is not in !\.

Proof: Suppose the algorithm accepts in the bottom
row. For every u we will have found a counterexample v
to P(x, u, v) so x is not in/\.

If the first or second rows accepts then we have x '!.
I\ <==::> z E]{ <==::> 3l•lu yl•lv P(z, u, v).

Suppose that x is not in K. If the assumption in the
bottom row is true then the self-reduction will al ways find
the appropriate v.

If the assumption in the bottom row is wrong then ei
ther there is some </; such that <I> E SAT and h (x, 4>) =
(z,+)or<P ft SATandh(x,,P) = (z,-). Then we will
have either the first or second row accepting respectively.
0

Hemaspaandra, Hemaspaandra and Hempel [HHH97a]
give a more general version of Theorem 3.1 for the boolean
hierarchy over I;~ fork > 2. In a later paper, Hemaspaan
dra, Hemaspaandra and Hempel [HHH97b] show that our
Theorem 3.2 similarly extends to the boolean hierarchy
over l;~.

Beigel and Chang [BC97] use the techniques in the
proof of Theorem 3.2 for some new results on commuta
tive queries.

4 Limitations of PNPcii = pNP£21

We show that Theorem 3.2 cannot carry over for NP with
a relativizable proof.

Theorem 4.1 There exists a relativized world relative to
which NP -:/= coNP but pNP[l] = pNP!lJ = PSPACE.

We will use UP-generics as developed by Fortnow and
Rogers [FR94]. To create a UP-generic start with an or
acle like TQBF that makes P = PSPACE and add a
generic set restricted to have at most one string at lengths
that are towers of 2 and no strings at any other lengths.
UP-generics also plays an important role in creating a rel
ativized world where the Berman-Hartmanis isomorphism
conjecture holds and one-way functions exist [Rog97].

Given an input x a polynomial-time process can only
access one interesting string in the oracle. The others are
either too large to be queried or so small that they can be
found quickly. We refer to this interesting string as the
"cookie".

Fortnow and Rogers [FR94] show that relative to UP
generics G:

1. pG-:/= NPG.

2. pG = NPG n coNPG.

Immediately we have the following corollary.

Corollary 4.2 Relative to VP-generics G,

NPG f. coNPG.

Fix a PSPACEG language L accepted by some alter
nating polynomial-time Turing machine MG. We now de
scribe the pNP0 l1l algorithm for L.

Use the P = PSPACE base oracle to determine if x
is accepted by MG if there is no cookie. There are two
cases:

No: Accept if the following NP question is true (us
ing P = PSPACE base oracle): Does there exist
a cookie such that MG (x) accepts?

Yes: Accept if the following NP question is false (us
ing P = PSPACE base oracle): Does there exist a
cookie such that MG (x) rejects?

In either case we ask a single NP question and accept
if and only if MG (x) accepts. D

As a bonus we get the following corollary about com
plete sets for PSPACE.

15

Corollary 4.3 There exists a relativized world where the
1-tr-complete degree for PSPACE is not the same as the
many-one complete degree.

We cannot extend theorem 4.1 to get NP f. coNP and
pNP[i] = EXP since Homer, Kurtz and Royer [HKR93]
give a relativizable proof that the 1-tt-complete degree for
EXP is the same as the many-one complete degree. In a
later paper, Beige), Buhrman and Fortnow [BBF98] give
a relativized world where the 1-tt-complete degree for NP
is not the same as the many-one complete degree.

5 Collapses for PNP[tJ = pNP121

In this section we examine collapses that occur if pNP[l] =
pNP[2J.

Kadin [Kad88] showed that the polynomial-time hier
archy collapse under this assumption.

Theorem 5.1 (Kadin) pNP[l] = pNPClJ implies that NP~
coNP/po/y.

Yap [Yap83] shows that if NP~ coNP/po/y then PH =
:E~.

Beigel, Chang and Ogihara [BC093] building on work
of Chang and Kadin [CK96] improved the collapse to just
above :E~.

Theorem 5.2 (BCO) If pNP[l] = pNP!lJ then the poly
nomial-time hierarchy collapses to :E~ANP.

Building on the work of Kadin [Kad88], Chang and
Kadin [CK96], Beige), Chang and Ogihara [BC093] and
Hemaspaandra, Hemaspaandra and Hempel [HHH97a],
we will show several other collapses under this same as
sumption.

Theorem 5.3 /fpNP(l) = pNP!lJ then

I. For all A in coNP, A = B UC where Bis in NP
and C is in P /poly. Moreover for every n either

(a) An:En = Bn:En,or

(b) A n :En = C n :En.

2. pNP = pNP[lJ.

3. I;~ = upNP(lJ.

4. :E~ = RpNP[lJ.

5. PH = BPPNP[1J.

For clarity, we leave off the polynomial-length bounds
on the 3 and\;/ quantifiers in the proofs below.

Define the languages D, E and F by

D = {(</>, 1/.1) I (4> E SAT/\ t,11 ~SAT)}

u {(4>1 t,11) I (4> ~SAT/\ ~I E SAT)}

E {(<P, 111) I</>~ SAT/\ t,1 1 E SAT}

F = {(r,+)jrESAT}U{(r,-)jr~SAT}
We have D and E in pNPl2J = pNP[l] by assumption

and F is pNP{l] complete. So there exist polynomial-time
computable functions g and h that reduce D to F and E
to F respectively.

Informally, we use the term easy to denote formulae
that have proofs of nonsatifiability. Formally, we will need
several types of easy formulae.

Definition 5.4

I. The formula </> is Easy-I if there is a t/; such that
h(<P,t/;) = (r,+) andr E SAT.

2. The formula</> is Easy-II if

(a) </> is Easy-I, or

(b) </>is a leaf of a self-reduction tree and false or

(c) </> self-reduces to two Easy-I formulae.

3. The fomiula </> is Easy-III if

(a) </> is Easy-II. or

(b) There exists an Easy-II formula t/; such that
h(1/J, </>) = (r, -) and r E SAT.

4. The formula </> is Easy-IV if

(a) </> is Easy-lll, or

(b) There is a iL1 E SAT such that g(<f;,t,11) =
(r, +) and r E SAT.

(c) There is an Easy-ll/ formula 1/! such that
g(</>, 1/.1) = (r, -) and r E SAT.

Nonsatisfiable formulae that are not easy are called
hard formulae.

Definition 5.5 The formula 4> is Hard-I, Hard-II, Hard-III
or Hard-IV if <P ~ SAT and</> is not Easy-I, Easy-II, Easy
lll or Easy-IV respectively.

The following facts are easily derivable from the above
definitions.

Lemma5.6

1. The sets Easy-], Easy-II, Easy-lll and Easy-IV all
sit in NP.

2. The sets Hard-I, Hard-II, Hard-lll and Hard-IV all
sit in coNP.

16

3. Easy-I~ Easy-11 ~ Easy-JJI ~Easy-IV~ SAT.

4. Hard-IV~ Hard-JJI ~ Hard-II~ Hard-1 ~ SAT.

5. If</> is Hard-I then for a/l 1/;, t,11 is in SAT if and only
ifh(<P, t,li) = (r, -) with r ft SAT.

If we have a Hard-IV formula </J, then <P gives us a
polynomial-time separator between SAT and the Easy-III
formulae:

Lemma 5.7 For any Hard-JV formula <P we have

I. If11,1 E SAT then g(</J, t,li) = (r, -)for some r.

2. lfi/; is Easy-lll then g(</J, t,li) = (r, +)forsome r.

Proof: If either of these items were not true we would
have r in SAT and thus </> would be Easy-IV. D

We also show how to get a separator between SAT and
the Hard-III formulae.

Lemma 5.8 If there is a Hard-I formula <P then there is a
Hard-I formula a that is Easy-II.

Proof: Consider the self-reduction tree for </J. All the
formulae in the tree are unsatisfiable. Consider the lowest
Hard-I formula a in the tree. Either a is a leaf of the tree
or a self-reduces to two Easy-I formulae. D

We can use the formula a to separate SAT from the
Hard-III formulae.

Lemma 5.9 For any Hard-I Easy-JI formula a we have

I. lft,11 E SAT then h(a, t,li) = (r, -)forsome r.

2. If 1/; is Hard-JJI then h(a 1 1/J) = (r, +)for some r.

Proof: If the first case fails then a is Easy-I. If the
second case fails then t/; is Easy-III. D

Now we can put Lemmas 5.7 and 5.9 together.

Proof of Theorem 5.3(1): We need only prove this
item for A = SAT since SAT is complete and has nice
padding properties. Let B be the Easy-IV formulae. By
Lemma 5.6, Bis an NP subset of SAT.

Fix n and suppose there is some <P oflength n in SAT-
E. By definition</> is Hard-IV. By Lemma 5.6, the formula
</> is also Hard-I so there is some Hard-I Easy-II formula
a by Lemma 5.8.

Using as advice <P and a and a bit indicating whether
or not a Hard-IV formula of length n exists, we define the
following P /poly language C on inputs 1/; of length n:

I. If there are no Hard-IV formulae of length n then
reject.

2. If g(</>, t,li) = (r, +) for some r then accept.

3. If h(a, 1/;) = (r, +) for some r then accept.

4. Otherwise reject.

If 1/; is in SAT then by Lemma 5.7 and 5.9, both lines 2
and 3 will reject. If V' is in SAT then either !/.• is Easy-III
or Hard-III. If V' is Easy-III then line 2 will accept. If V' is
Hard-III then line 3 will accept. D

Proof of Theorem 5.3(2): The proof follows from
Lemmas 5. 10 and 5.11.

Lemma 5.10 (CK) If p~IP[l] = pNP[iJ then pNP[l] = p~P.
Lemma 5.11 lf PNP[l] = pNP12l then p~P = pNP_

Chang and Kadin [CK95) prove Lemma 5.10 by look
ing at computation trees. Their proof can not be used to
generalize the result to k versus k+ 1 queries. We present a
different proof using hard and easy strings. Chang [Cha97)
uses the ideas of our proofs of Lemma 5.10 and 5.11 to ex
tend Theorem 5.3(2) to show pNP[k] = pNP(k+l] implies
pNP(kJ = pNP_ He then applies these results to approxi
mation questions of various NP-complete problems.

Proof of Lemma 5.10:
Fix an input x to our ~t machine M. Let Q be the

polynomial-size set of queries to SAT made by M (x).
For the first query, ask if every member of Q is either

satisfiable or Easy-I.
If the answer to the first query is yes then ask if Af (x)

accepts using "yes" for each satisfiable element of Q and
"no" for each Easy-I element of Q.

If the answer to the first query is no then some element
of Q is Hard-I. We then ask for our other query whether
the following nondeterministic algorithm accepts.

I. Guess S a set of satisfiable formula in Q. Guess
satisfying assignments for each element of S.

2. Guess E a set of Easy-I elements in Q. Verify that
each of the elements of E is Easy-I.

3. For each <P and tt' in Q- (SUE) check if h(d>, v·) =
(r, +) for any T or h (</;, 1/•) = (T, -) for some T in
SAT.

4. If all of the above tests pass then simulate M using
"yes" for queries in Sand "no" for queries in Q- S.

If Sand E guess all of the SAT and Easy-I elements of
Q respectively then the remaining formulae are all Hard-I
so the third test will pass by Lemma 5.6.

We need to show that if S is not Q n SAT then the
above algorithm rejects. Let cjJ be a Hard-I element of Q
and 1/; be in QnSAT-S. We have <P and 1/> in Q-(SUE).
ByLemma5.6,h(<P,l/.') = (r,-)withr rJ. SATsothe
third test will fai I. D

Proof of Lemma 5.11: Let MSAT be a pNP machine
that runs in time 11 k. Consider the formulae cPi that for
each i, 1 ::; i ::; nk encodes: There exists a computation

17

path of M (x) where for the first i queries q1, •.• , q;, either
q; is satisfiable and q; is answered "yes" or q; is Easy-I and
q; is answered "no".

Also consider the formulae 1/;; that for each i, 0 ::; i ::;
nk encodes: There exists an accepting computation path
of M(x) such that

I. for the first i queries q1 , ... , q;, either q; is satisfi
able and q; is answered "yes" or q; is Easy-I and q;
is answered "no", and

2. For each qi, j > i, either

(a) qi is answered "yes" and qj is satisfiable,

(b) qi is answered "no" and h(q;+1, qj) = (r, +)
for some Tor

(c) qi is answered "no" and h(q;+ 1, qi) = (r, -)
for some r in SAT.

We ask all of the c/J; and V'i questions to a SAT oracle
in parallel.

Consider the largest i such that </J; is satisfiable. If i =
nk then MSAT(x) accepts if and only if v•; is satisfiable.

If i < nk then consider an accepting path encoded by
a satisfying assignment of 1/;;. The query q;+ 1 must be
Hard-I or </J;+ 1 would be satisfiable. By Lemma 5.6, all
the answers to the queries are correct. Again we have that
MSAT (x) accepts if and only if 1/•; is satisfiable. D

Proof of Theorem 5.3(3): Toda and Ogihara [T092]
show that upNP = upNP(l]. We need only prove I:i
upNP_

Let L be in I:i. Express L as

{x I 3y Vz P(x, y, z)}

for some polynomial-time predicate P. Fix x and let c/ly
encode "3.::: -,P(x, y, .::)". We have x E L if and only if
there exists a y such that c/Jy rJ. SAT.

Consider a formula V'y that encodes "c/Jy is satisfiable
or there is some w < y such that h(c/ly, cPw) = (T, +) for
some Tor h(c/ly, <Pw) = (r, -) for some TE SAT."

Our upNP machine works as follows:

1. Query the NP oracle to determine if there are any y
such that t/;y is Easy-I. If so immediately accept.

2. Otherwise accept if there exists a y such that 1/Jy is
not satisfiable.

If the first step does not accept then all the V'y are ei
ther satisfiable or Hard-I. If all of the c/Jy are satisfiable
then so are all of the 1/;y. If there is some w < y such that
<Pw and c/Jy are both Hard-I then by Lemma 5.6, V'y will be
satisfiable. If y is the lexicographically least string such
that c/ly is Hard-I then by Lemma 5.6, V'y is not satisfiable.
D

Proof of Theorem 5.3(4): By Theorem 5.3(2) we

need only prove~~ = RrNP.
Consider L. P and the 'Py as in the proof of Theo

rem 5.3(3).
Our RP algorithm first queries the NP oracle to deter

mine if there are any Easy-IV l)y. If so then immediately
accept.

If this fails then either all of the 'Py are satisfiable or
one of them is Hard-IV. If the second condition holds then
by the proof of Theorem 5.3(I) there exists polynomial
advice for SAT.

Use the algorithm of Bshouty, Cleve, Gavalda. Kan
nan and Tamon [BCG+96] that randomly using an NP or
acle finds the advice for SAT. If it fails to find advice then
reject. Otherwise query the NP oracle again to determine
if there is some y such that the advice says <i>y is not satis
fiable. D

Proof of Theorem 5.3(5): Zachos [Zac88) gives a
relativizable proof that NP ~ BPP implies PH = BPP.
Relativizing to SAT we have ~~ ~ BPPNP implies PH =
BPrNP. The result follows by applying Theorem 5.3((4)
and (2)). D

Corollary 5.12 lf PNP{l] = pNP!lJ and NP does not have
measu~ zero in EXP then PH= pNPl1l.

Proof: Lutz [Lut97] shows that if NP does not have
measure zero in EXP then BppNP = pNP. o

6 Open Questions

Theorem 5.3 still leaves many questions open. In particu
lar we do not know whether pNP{l] = pNPClJ implies

l. PH = pNP{l]

2. ~~ = n~

3. SAT is the union of an NP set and a BPP / 1 set

4. PH~ PP

even in relativized worlds.
One might also look at implications of related state

ments on two queries, such as BPPNPf2J = BPPNP{!J.

Acknowledgments

We thank Leen Torenvliet, Dieter van Melkebeek and Steve
Fenner for helpful discussions and Richard Beige! for com
ments on an earlier draft.

18

References

[BBF98] R. Beige!, H. Buhrman, and L. Fortnow. NP
might not be as easy as detecting unique solu
tions. In Proceedings of the 30th ACM Sym
posium on the Theory of Computing. ACM,
New York, 1998. To appear.

[BC97] R. Beige! and R. Chang. Commutative
queries. In Proceedings of the 5th Israeli
Symposium on Theory of Computing and Sys
tems, pages 159-165, 1997. To appear in In
formation and Computation.

(BCG+96] N. Bshouty, R. Cleve, R. Gavalda, S. Kan
nan, and C. Tamon. Oracles and queries that
are sufficient for exact learning. Journal of
Computer and System Sciences, 52(3):421-
433, June 1996.

[BC093] R. Beige!, R. Chang, and M. Ogihara. A re
lationship between difference hierarchies and
relativized polynomial hierarchies. Mathe
matical Systems Theory, 26:293-310, 1993.

[BDG88] J. Balcazar, J. Diaz, and J. Gabarr6. Struc
tural Complexity I. Springer, 1988.

[BDG90] J. Balcazar, J. Diaz, and J. Gabarr6. Struc
tural Complexity II. Springer-Verlag, 1990.

[Cha97] R. Chang. Bounded queries, approximations
and the boolean hierarchy. Technical Report
TR CS-97-04, Department of Computer Sci
ence and Electrical Engineering, University
of Maryland Baltimore County, 1997. To ap
pear in Information and Computation.

[CK95] R. Chang and J. Kadin. On computing
boolean connectives of characteristic func
tions. Mathematical Systems Theory, 28: 173-
198, 1995.

[CK96) R. Chang and J. Kadin. The Boolean hierar
chy and the polynomial hierarchy: A closer
connection. SIAM Journal on Computing,
25(2):340-354, April 1996.

[FR94] L. Fortnow and J. Rogers. Separability and
one-way functions. In Proceedings of the
5th Annual International Symposium on Al
gorithms and Computation, volume 834 of
Lecture Notes in Computer Science, pages
396-404. Springer, Berlin, 1994.

[GJ79] M. Garey and D. Johnson. Computers and
intractability. A Guide to the theory of NP
completeness. W. H. Freeman and Company,
New York, 1979.

[HHH97a] E. Hemaspaandra, L. Hemaspaandra, and
H. Hempel. A downward translation in the
polynomial hierarchy. In Proceedings of the
14th Symposium on Theoretical Aspects of
Computer Science, volume 1200 of Lecture
Notes in Computer Science, pages 319-328.
Springer, Berlin, 1997. To appear in the
SIAM Journal on Computing.

[HHH97b] E. Hemaspaandra, L. Hemaspaandra, and
H. Hempel. Translating equality downward.
Technical Report TR 97-657, University of
Rochester Department of Computer Science,
April 1997.

[HKR93] S. Homer, S. Kurtz, and J. Royer. A note
on many-one and I -truth table complete sets.
Theoretical Computer Science, 115(2):383-
389, July 1993.

[HU79] J. Hopcroft and J. Ullman. Introduction to Au
tomata TheOI}'. Languages and Computation.
Addison-Wesley, Reading, Mass., 1979.

[Kad88] J. Kadin. The polynomial time hierarchy
collapses if the Boolean hierarchy collapses.
SIAM Journal on Computing, 17(6):1263-
1282, December 1988.

[Kre88] M. Krentel. The complexity of optimization
problems. Journal of Computer and System
Sciences, 36:490-509, 1988.

[Lut97] J. Lutz. Observations on measure and low
ness for -0.~. Theory of Computing Systems,
30(4):429-442,July/August 1997.

[Rog97] J. Rogers. The isomorphism conjecture holds
and one-way functions exist relative to an or
acle. Journal of Computer and System Sci
ences, 54(3):412-423, June 1997.

[T092] S. Toda and M. Ogiwara. Counting classes are
at least as hard as the polynomial-time hierar
chy. SIAM Journal on Computing, 21 (2):316--
328, 1992.

[Yap83] C. Yap. Some consequences of nonunifonn
conditions on uniform classes. Theoretical
Computer Science, 26:287-300, 1983.

[Zac88] S. Zachos. Probabilistic quantifiers and
games. Journal of Computer and System Sci
ences, 36:433-451, 1988.

19

