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Abstract 

We consider the question whether two queries to SAT are 
as powerful as one query. We show that if pNP[i] = pNP{2] 
then 

• Locally either NP = coNP or NP has polynomial
size circuits. 

9 pNP = pNP[lJ. 

• ~i = upNP[l] n RPNP{!J. 

• PH = sppNPf1l. 

Moreover we extend work of Hemaspaandra, Hemas
paandra and Hempel to show that if pB~[l] = pB~[2l then 
~i = ITi. We also give a relativized world where pNP[l] = 
pNP[2] but NP -:/= coNP. 

1 Introduction 

Are two queries to SAT as powerful as one query? This 
question has a long history in computational complexity 
theory. 

When computing functions, Krentel [Kre88] showed 
that if two queries can be simulated by one query to SAT, 
that is FPNP[I] = FPNP[2l, then P = NP. 

When we focus on languages instead of functions life 
gets more complicated. Kadin [Kad88] showed that if 
pNP[l] = pNP[2J then NP <;;; coNP/poly and thus PH <;;; 

~j [Yap83]. Beige!, Chang and Ogihara [BC093] build
ing on Chang and Kadin [CK96] improve this to show 
that every language in the polynomial-time hierarchy can 
be solved by an NP query and a L:i query. 
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One would like to prove that pNP[l] = pNP[2J im

plies NP = coNP. Hemaspaandra, Hemaspaandra and 
Hempel [HHH97a) made a step into that direction. They 
showed that fork > 2, if pBWJ = pB=[2l then~~ = TI~. 

We extend their techniques to show that if pB~[l] = 
"''[?] p~, - then L:~ = Ili. However, the techniques cannot 

be pushed down to k = l. We show a relativized world 
where pNP[l] = pNP£2J but NP-:/= coNP. 

What does happen when pNP[I] = pNP£2J? 

Building on the techniques of the above papers we 
show several new collapses if pNP[l] = pNP[2J including: 

• Locally either NP = coNP or NP has polynomial
size circuits. 

• pNP = pNP[l]. 

• I:i = upNP[1J n RpNP[1J. 

• PH = sppNP(iJ. 

2 Preliminaries 

We assume the reader familiar with basic notions of com
plexity theory as can be found in many textbooks in the 
area (such as [GJ79, HU79, BDG88, BDG90]). 

For a set A we will identify A with its characteristic 
function. Hence for a string x, A( x) E { 0, 1} and A( x) = 
1 iff x EA. 

An oracle Turing machine is nonadaptive, if it pro
duces a list of all of the queries it is going to make before it 
makes the first query. SAT is the set of satisfiable boolean 
formulae. For any set A, pA[k] is the class of languages 
that are recognized by polynomial time Turing machines 
that access the oracle A at most k times on each input. The 

class ~[k] will allow only nonadaptive access to A. We 
note that pNP[l] = pNP[2l if pNP[l] = p~P[2l [CK95], so all 

our results could be stated assuming pNP[l] = P~P[2l. 
UP is the set of languages that are recognized by poly

nomial-time nondetenninistic Turing machines that have 
at most one accepting path on each input. 



We can generalize NP by defining the polynomial
time hierarchy. We define ~b = P and inductively define 

..... p p . 
I/'+ 1 =NP-· for i > 0. We let Ili = coEi. In parucu-
1~, we have NP = ~~ and coNP = Il~. Many complexity 
theorists conjecture that the polynomial-time hierarchy is 
infinite, i.e., Er+i 'f:. ~r for a11 i. 

A function h is polynomial bounded if for all n > 0, 
h( n) ~ p( n) for some polynomial p. Let C be a complex
ity class, a set A is in C/poly if there exists a polynomial 
bounded function h, and a set B E C such that x E A iff 
<x,h(lxl)> E B. 

Given a formula r/J on n variables we define the self
reduction tree of <P as follows: <P is the root and if the 
formularj>'(x 1 , .. ., Xm) is a node in the tree then <P'(x1 := 
true, x2, ••• , xm) and <P'(x 1 :=false, xz, ... , xm) are the 
two children of ef/. We say <P' ( x 1 , ... , x m) self-reduces 
to the formulae 4>'(x1 :=true, x2, ... , xm) and 4>'(x1 := 
false, x2 , . •. , Xm ). A formula with no free variables is a 
leaf in the tree. A node in a tree is satisfiable if and only 
if either of its children are satisfiable. One can determine 
easily in polynomial time whether a leaf is true or false. 

3 Collapse if pE~111 = Pft~121 

Hemaspaandra, Hemaspaandra and Hempel [HHH97a] ex-
. '\"P[l) E"(2] hibited a strong collapse 1f p-. = P11 k for k > 2. 

Theorem 3.1 (HHH) For every level k > 2, if PE:[i] = 
P:t:121 h ~p ITP 

it t en ~k = k' 

Extending their techniques we improve their result to 
k = 2. 

'<"'[!] E'[?) P P Theorem 3.2 If P-2 = Ptt2 - then E2 = II 2• 

Proof: For languages A and B define AD..B to be the 
symmetric difference of A and B, i.e., (An B) U (An B). 

For complexity classes C and 1J define the class CD.TI 
as 

{AD..B I A EC and BE 'V} 

For a predicate R(y) we use the notation 3my R(y) 
to mean 3y (lyl = m /\ R(y)) and 'r/"'y R(y) to mean 
'Vy (lyj = m => R(y)). 

Since :E~.C.NP ~ P~~!2l, Theorem 3.2 follows imme
diately from the following lemma. 

Lemma 3.3 lfE~ilNP ~ pE~[l) then E~ =IT~. 

Proof: Fix K a complete set for I:~. Given an input 
x we will give a I:~ algorithm for determining that x is 
not in K. Let n = Ix!. We can assume there exists a 
polynomial-time predicate P such that 

x EK<=> 3nyV'z P(x,y,::) 

where the quantification is done over strings of length n. 
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3 </>, ll 

h(x,,P)- (::,+) 
if, E SAT 

h(x, <P) = (::, -) 

't/ v 
P(.:, u, v) 
</;(/.SAT 

'Iv 
P(z, u, v) 

'I u 
Assuming that 

for all </;, 
<PE SAT 

iff 
h(x, q;) = (.:, -) 
use self-reduction 

to find v 
such that-iP(x, u, v) 

Figure 1: Ei algorithm to determine nonmembershi~ in 
A-. The 3 and 'r/ quantifiers have appropriate polynom1al
length bounds. The Ei algorithm accepts if any row ac
cepts. 

Define the set D E ~i~NP as follows: 

D = {(x,<P) I (x EK /\<f; ft SAT)V(x (f. I\ /\</J E SAT)} 

By assumption, there exists a polynomial-time com
putable function h : I;• x E· ___. I:* x { +, - } such 
that (x,</l) E D if h(x,4>) = (z,+) and:: E J\ or 
h(x, </l) = (.:,-)and z ft I\. 

We give the~~ algorithm for determining that x is not 
in /{ in Figure 1. Lemma 3.3 follows from the following 
claim. 

Claim 3.4 The algorithm in Figure I accepts exactly when 
x is not in !\. 

Proof: Suppose the algorithm accepts in the bottom 
row. For every u we will have found a counterexample v 
to P(x, u, v) so x is not in/\. 

If the first or second rows accepts then we have x '!. 
I\ <==::> z E ]{ <==::> 3l•lu yl•lv P(z, u, v). 

Suppose that x is not in K. If the assumption in the 
bottom row is true then the self-reduction will al ways find 
the appropriate v. 

If the assumption in the bottom row is wrong then ei
ther there is some </; such that <I> E SAT and h ( x, 4>) = 
(z,+)or<P ft SATandh(x,,P) = (z,-). Then we will 
have either the first or second row accepting respectively. 
0 

Hemaspaandra, Hemaspaandra and Hempel [HHH97a] 
give a more general version of Theorem 3.1 for the boolean 
hierarchy over I;~ fork > 2. In a later paper, Hemaspaan
dra, Hemaspaandra and Hempel [HHH97b] show that our 
Theorem 3.2 similarly extends to the boolean hierarchy 
over l;~. 



Beigel and Chang [BC97] use the techniques in the 
proof of Theorem 3.2 for some new results on commuta
tive queries. 

4 Limitations of PNPcii = pNP£21 

We show that Theorem 3.2 cannot carry over for NP with 
a relativizable proof. 

Theorem 4.1 There exists a relativized world relative to 
which NP -:/= coNP but pNP[l] = pNP!lJ = PSPACE. 

We will use UP-generics as developed by Fortnow and 
Rogers [FR94]. To create a UP-generic start with an or
acle like TQBF that makes P = PSPACE and add a 
generic set restricted to have at most one string at lengths 
that are towers of 2 and no strings at any other lengths. 
UP-generics also plays an important role in creating a rel
ativized world where the Berman-Hartmanis isomorphism 
conjecture holds and one-way functions exist [Rog97]. 

Given an input x a polynomial-time process can only 
access one interesting string in the oracle. The others are 
either too large to be queried or so small that they can be 
found quickly. We refer to this interesting string as the 
"cookie". 

Fortnow and Rogers [FR94] show that relative to UP
generics G: 

1. pG-:/= NPG. 

2. pG = NPG n coNPG. 

Immediately we have the following corollary. 

Corollary 4.2 Relative to VP-generics G, 

NPG f. coNPG. 

Fix a PSPACEG language L accepted by some alter
nating polynomial-time Turing machine MG. We now de
scribe the pNP0 l1l algorithm for L. 

Use the P = PSPACE base oracle to determine if x 
is accepted by MG if there is no cookie. There are two 
cases: 

No: Accept if the following NP question is true (us
ing P = PSPACE base oracle): Does there exist 
a cookie such that MG ( x) accepts? 

Yes: Accept if the following NP question is false (us
ing P = PSPACE base oracle): Does there exist a 
cookie such that MG ( x) rejects? 

In either case we ask a single NP question and accept 
if and only if MG ( x) accepts. D 

As a bonus we get the following corollary about com
plete sets for PSPACE. 
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Corollary 4.3 There exists a relativized world where the 
1-tr-complete degree for PSPACE is not the same as the 
many-one complete degree. 

We cannot extend theorem 4.1 to get NP f. coNP and 
pNP[i] = EXP since Homer, Kurtz and Royer [HKR93] 
give a relativizable proof that the 1-tt-complete degree for 
EXP is the same as the many-one complete degree. In a 
later paper, Beige), Buhrman and Fortnow [BBF98] give 
a relativized world where the 1-tt-complete degree for NP 
is not the same as the many-one complete degree. 

5 Collapses for PNP[tJ = pNP121 

In this section we examine collapses that occur if pNP[l] = 
pNP[2J. 

Kadin [Kad88] showed that the polynomial-time hier
archy collapse under this assumption. 

Theorem 5.1 (Kadin) pNP[l] = pNPClJ implies that NP~ 
coNP/po/y. 

Yap [Yap83] shows that if NP~ coNP/po/y then PH = 
:E~. 

Beigel, Chang and Ogihara [BC093] building on work 
of Chang and Kadin [ CK96] improved the collapse to just 
above :E~. 

Theorem 5.2 (BCO) If pNP[l] = pNP!lJ then the poly
nomial-time hierarchy collapses to :E~ANP. 

Building on the work of Kadin [Kad88], Chang and 
Kadin [CK96], Beige), Chang and Ogihara [BC093] and 
Hemaspaandra, Hemaspaandra and Hempel [HHH97a], 
we will show several other collapses under this same as
sumption. 

Theorem 5.3 /fpNP(l) = pNP!lJ then 

I. For all A in coNP, A = B UC where Bis in NP 
and C is in P /poly. Moreover for every n either 

(a) An:En = Bn:En,or 

( b) A n :En = C n :En. 

2. pNP = pNP[lJ. 

3. I;~ = upNP(lJ. 

4. :E~ = RpNP[lJ. 

5. PH = BPPNP[1J. 

For clarity, we leave off the polynomial-length bounds 
on the 3 and\;/ quantifiers in the proofs below. 



Define the languages D, E and F by 

D = {(</>, 1/.1) I (4> E SAT/\ t,11 ~SAT)} 

u {(4>1 t,11) I (4> ~SAT/\ ~I E SAT)} 

E {(<P, 111) I</>~ SAT/\ t,1 1 E SAT} 

F = {(r,+)jrESAT}U{(r,-)jr~SAT} 
We have D and E in pNPl2J = pNP[l] by assumption 

and F is pNP{l] complete. So there exist polynomial-time 
computable functions g and h that reduce D to F and E 
to F respectively. 

Informally, we use the term easy to denote formulae 
that have proofs of nonsatifiability. Formally, we will need 
several types of easy formulae. 

Definition 5.4 

I. The formula </> is Easy-I if there is a t/; such that 
h(<P,t/;) = (r,+) andr E SAT. 

2. The formula</> is Easy-II if 

(a) </> is Easy-I, or 

(b) </>is a leaf of a self-reduction tree and false or 

( c) </> self-reduces to two Easy-I formulae. 

3. The fomiula </> is Easy-III if 

(a) </> is Easy-II. or 

(b) There exists an Easy-II formula t/; such that 
h( 1/J, </>) = ( r, - ) and r E SAT. 

4. The formula </> is Easy-IV if 

(a) </> is Easy-lll, or 

(b) There is a iL1 E SAT such that g(<f;,t,11) = 
( r, +) and r E SAT. 

(c) There is an Easy-ll/ formula 1/! such that 
g(</>, 1/.1) = (r, -) and r E SAT. 

Nonsatisfiable formulae that are not easy are called 
hard formulae. 

Definition 5.5 The formula 4> is Hard-I, Hard-II, Hard-III 
or Hard-IV if <P ~ SAT and</> is not Easy-I, Easy-II, Easy
lll or Easy-IV respectively. 

The following facts are easily derivable from the above 
definitions. 

Lemma5.6 

1. The sets Easy-], Easy-II, Easy-lll and Easy-IV all 
sit in NP. 

2. The sets Hard-I, Hard-II, Hard-lll and Hard-IV all 
sit in coNP. 
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3. Easy-I~ Easy-11 ~ Easy-JJI ~Easy-IV~ SAT. 

4. Hard-IV~ Hard-JJI ~ Hard-II~ Hard-1 ~ SAT. 

5. If</> is Hard-I then for a/l 1/;, t,11 is in SAT if and only 
ifh(<P, t,li) = (r, -) with r ft SAT. 

If we have a Hard-IV formula </J, then <P gives us a 
polynomial-time separator between SAT and the Easy-III 
formulae: 

Lemma 5.7 For any Hard-JV formula <P we have 

I. If11,1 E SAT then g(</J, t,li) = ( r, -)for some r. 

2. lfi/; is Easy-lll then g(</J, t,li) = (r, +)forsome r. 

Proof: If either of these items were not true we would 
have r in SAT and thus </> would be Easy-IV. D 

We also show how to get a separator between SAT and 
the Hard-III formulae. 

Lemma 5.8 If there is a Hard-I formula <P then there is a 
Hard-I formula a that is Easy-II. 

Proof: Consider the self-reduction tree for </J. All the 
formulae in the tree are unsatisfiable. Consider the lowest 
Hard-I formula a in the tree. Either a is a leaf of the tree 
or a self-reduces to two Easy-I formulae. D 

We can use the formula a to separate SAT from the 
Hard-III formulae. 

Lemma 5.9 For any Hard-I Easy-JI formula a we have 

I. lft,11 E SAT then h(a, t,li) = (r, -)forsome r. 

2. If 1/; is Hard-JJI then h( a 1 1/J) = ( r, +)for some r. 

Proof: If the first case fails then a is Easy-I. If the 
second case fails then t/; is Easy-III. D 

Now we can put Lemmas 5.7 and 5.9 together. 

Proof of Theorem 5.3(1): We need only prove this 
item for A = SAT since SAT is complete and has nice 
padding properties. Let B be the Easy-IV formulae. By 
Lemma 5.6, Bis an NP subset of SAT. 

Fix n and suppose there is some <P oflength n in SAT-
E. By definition</> is Hard-IV. By Lemma 5.6, the formula 
</> is also Hard-I so there is some Hard-I Easy-II formula 
a by Lemma 5.8. 

Using as advice <P and a and a bit indicating whether 
or not a Hard-IV formula of length n exists, we define the 
following P /poly language C on inputs 1/; of length n: 

I. If there are no Hard-IV formulae of length n then 
reject. 

2. If g( </>, t,li) = ( r, +) for some r then accept. 

3. If h( a, 1/;) = ( r, +) for some r then accept. 



4. Otherwise reject. 

If 1/; is in SAT then by Lemma 5.7 and 5.9, both lines 2 
and 3 will reject. If V' is in SAT then either !/.• is Easy-III 
or Hard-III. If V' is Easy-III then line 2 will accept. If V' is 
Hard-III then line 3 will accept. D 

Proof of Theorem 5.3(2): The proof follows from 
Lemmas 5. 10 and 5.11. 

Lemma 5.10 (CK) If p~IP[l] = pNP[iJ then pNP[l] = p~P. 
Lemma 5.11 lf PNP[l] = pNP12l then p~P = pNP_ 

Chang and Kadin [CK95) prove Lemma 5.10 by look
ing at computation trees. Their proof can not be used to 
generalize the result to k versus k+ 1 queries. We present a 
different proof using hard and easy strings. Chang [Cha97) 
uses the ideas of our proofs of Lemma 5.10 and 5.11 to ex
tend Theorem 5.3(2) to show pNP[k] = pNP(k+l] implies 
pNP(kJ = pNP_ He then applies these results to approxi
mation questions of various NP-complete problems. 

Proof of Lemma 5.10: 
Fix an input x to our ~t machine M. Let Q be the 

polynomial-size set of queries to SAT made by M ( x). 
For the first query, ask if every member of Q is either 

satisfiable or Easy-I. 
If the answer to the first query is yes then ask if Af ( x) 

accepts using "yes" for each satisfiable element of Q and 
"no" for each Easy-I element of Q. 

If the answer to the first query is no then some element 
of Q is Hard-I. We then ask for our other query whether 
the following nondeterministic algorithm accepts. 

I. Guess S a set of satisfiable formula in Q. Guess 
satisfying assignments for each element of S. 

2. Guess E a set of Easy-I elements in Q. Verify that 
each of the elements of E is Easy-I. 

3. For each <P and tt' in Q- (SUE) check if h( d>, v·) = 
( r, +) for any T or h ( </;, 1/•) = ( T, - ) for some T in 
SAT. 

4. If all of the above tests pass then simulate M using 
"yes" for queries in Sand "no" for queries in Q- S. 

If Sand E guess all of the SAT and Easy-I elements of 
Q respectively then the remaining formulae are all Hard-I 
so the third test will pass by Lemma 5.6. 

We need to show that if S is not Q n SAT then the 
above algorithm rejects. Let cjJ be a Hard-I element of Q 
and 1/; be in QnSAT-S. We have <P and 1/> in Q-(SUE). 
ByLemma5.6,h(<P,l/.') = (r,-)withr rJ. SATsothe 
third test will fai I. D 

Proof of Lemma 5.11: Let MSAT be a pNP machine 
that runs in time 11 k. Consider the formulae cPi that for 
each i, 1 ::; i ::; nk encodes: There exists a computation 
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path of M ( x) where for the first i queries q1, •.• , q;, either 
q; is satisfiable and q; is answered "yes" or q; is Easy-I and 
q; is answered "no". 

Also consider the formulae 1/;; that for each i, 0 ::; i ::; 
nk encodes: There exists an accepting computation path 
of M(x) such that 

I. for the first i queries q1 , ... , q;, either q; is satisfi
able and q; is answered "yes" or q; is Easy-I and q; 
is answered "no", and 

2. For each qi, j > i, either 

(a) qi is answered "yes" and qj is satisfiable, 

(b) qi is answered "no" and h( q;+1, qj) = ( r, +) 
for some Tor 

(c) qi is answered "no" and h( q;+ 1, qi) = ( r, -) 
for some r in SAT. 

We ask all of the c/J; and V'i questions to a SAT oracle 
in parallel. 

Consider the largest i such that </J; is satisfiable. If i = 
nk then MSAT( x) accepts if and only if v•; is satisfiable. 

If i < nk then consider an accepting path encoded by 
a satisfying assignment of 1/;;. The query q;+ 1 must be 
Hard-I or </J;+ 1 would be satisfiable. By Lemma 5.6, all 
the answers to the queries are correct. Again we have that 
MSAT ( x) accepts if and only if 1/•; is satisfiable. D 

Proof of Theorem 5.3(3): Toda and Ogihara [T092] 
show that upNP = upNP(l]. We need only prove I:i 
upNP_ 

Let L be in I:i. Express L as 

{x I 3y Vz P(x, y, z)} 

for some polynomial-time predicate P. Fix x and let c/ly 
encode "3.::: -,P(x, y, .::)". We have x E L if and only if 
there exists a y such that c/Jy rJ. SAT. 

Consider a formula V'y that encodes "c/Jy is satisfiable 
or there is some w < y such that h( c/ly, cPw) = ( T, +) for 
some Tor h(c/ly, <Pw) = (r, -) for some TE SAT." 

Our upNP machine works as follows: 

1. Query the NP oracle to determine if there are any y 
such that t/;y is Easy-I. If so immediately accept. 

2. Otherwise accept if there exists a y such that 1/Jy is 
not satisfiable. 

If the first step does not accept then all the V'y are ei
ther satisfiable or Hard-I. If all of the c/Jy are satisfiable 
then so are all of the 1/;y. If there is some w < y such that 
<Pw and c/Jy are both Hard-I then by Lemma 5.6, V'y will be 
satisfiable. If y is the lexicographically least string such 
that c/ly is Hard-I then by Lemma 5.6, V'y is not satisfiable. 
D 



Proof of Theorem 5.3(4): By Theorem 5.3(2) we 

need only prove~~ = RrNP. 
Consider L. P and the 'Py as in the proof of Theo

rem 5.3(3). 
Our RP algorithm first queries the NP oracle to deter

mine if there are any Easy-IV l)y. If so then immediately 
accept. 

If this fails then either all of the 'Py are satisfiable or 
one of them is Hard-IV. If the second condition holds then 
by the proof of Theorem 5.3( I) there exists polynomial
advice for SAT. 

Use the algorithm of Bshouty, Cleve, Gavalda. Kan
nan and Tamon [BCG+96] that randomly using an NP or
acle finds the advice for SAT. If it fails to find advice then 
reject. Otherwise query the NP oracle again to determine 
if there is some y such that the advice says <i>y is not satis
fiable. D 

Proof of Theorem 5.3(5): Zachos [Zac88) gives a 
relativizable proof that NP ~ BPP implies PH = BPP. 
Relativizing to SAT we have ~~ ~ BPPNP implies PH = 
BPrNP. The result follows by applying Theorem 5.3((4) 
and (2)). D 

Corollary 5.12 lf PNP{l] = pNP!lJ and NP does not have 
measu~ zero in EXP then PH= pNPl1l. 

Proof: Lutz [Lut97] shows that if NP does not have 
measure zero in EXP then BppNP = pNP. o 

6 Open Questions 

Theorem 5.3 still leaves many questions open. In particu
lar we do not know whether pNP{l] = pNPClJ implies 

l. PH = pNP{l] 

2. ~~ = n~ 

3. SAT is the union of an NP set and a BPP / 1 set 

4. PH~ PP 

even in relativized worlds. 
One might also look at implications of related state

ments on two queries, such as BPPNPf2J = BPPNP{!J. 
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