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Abstract. We build on our earlier finding that more than 95 % of the
triples in actual RDF triple graphs have a remarkably tabular structure,
whose schema does not necessarily follow from explicit metadata such as
ontologies, but for which an RDF store can automatically derive by look-
ing at the data using so-called “emergent schema” detection techniques.
In this paper we investigate how computers and in particular RDF stores
can take advantage from this emergent schema to more compactly store
RDF data and more efficiently optimize and execute SPARQL queries.
To this end, we contribute techniques for efficient emergent schema aware
RDF storage and new query operator algorithms for emergent schema
aware scans and joins. In all, these techniques allow RDF schema proces-
sors fully catch up with relational database techniques in terms of rich
physical database design options and efficiency, without requiring a rigid
upfront schema structure definition.

1 Emergent Schema Introduction

In previous work [15], we introduced emergent schemas: finding that >95%
of triples in all LOD datasets we tested, including noisy data such as Web-
Data Commons and DBpedia, conform to a small relational tabular schema. We
provided techniques to automatically and at little computational cost find this
“emergent” schema, and also to give the found columns, tables, and “foreign key”
relationships between them short human-readable labels. This label-finding, and
in fact the whole process of emergent schema detection, exploits not only value
distributions and connection patterns between the triples, but also additional
clues provided by RDF ontologies and vocabularies.

A significant insight from that paper is that relational and semantic prac-
titioners give different meanings to the word “schema”. It is thus a misfortune
that these two communities are often distinguished from each other by their dif-
ferent attitude to this ambiguous concept of “schema” — the semantic approach
supposedly requiring no upfront schema (“schema-last”) as opposed to relational
databases only working with a rigid upfront schema (“schema-first”).

Semantic schemas, primarily ontologies and vocabularies, aim at modeling a
knowledge universe in order to allow diverse current and future users to denote
these concepts in a universally understood way in many different contexts. Rela-
tional database schemas, on the other hand, model the structure of one particular
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dataset (i.e., a database), and are not designed with a purpose of re-use in dif-
ferent contexts. Both purposes are useful: relational database systems would be
easier to integrate with each other if the semantics of a table, a column and even
individual primary key values (URIs) would be well-defined and exchangeable.
Semantic data applications would benefit from knowledge of the actual patterns
of co-occurring triples in the LOD dataset one tries to query, e.g. allowing users
to more easily formulate SPARQL queries with a non-empty result (this often
results from using a non-occurring property in a triple pattern).

In [15], we observed partial and mized usage of ontology classes across LOD
datasets: even if there is an ontology closely related to the data, only a small
part of its class attributes actually occur as triple properties (partial use), and
typically many of the occurring attributes come from different ontologies (mixed
use). DBpedia on average populates <30% of the class attributes it defines
[15], and each actually occurring class contains attributes imported from no less
than 7 other ontologies on average. This is not necessarily bad design, rather
good re-use (e.g. foaf), but it underlines the point that any single ontology
class is a poor descriptor of the actual structure of the data (i.e., a “relational”
schema). Emergent schemas are helpful for human RDF users, but in this paper,
we investigate how RDF stores can exploit emergent schemas for efficiency.

We address three important problems faced by RDF stores. The first and
foremost problem is the high execution cost resulting from the large amount
of self-joins that the typical SPARQL processor (based on some form of triple
table storage) must perform: one join per additional triple pattern in the query.
It has been noted [7] that SPARQL queries very often contain star-patterns
(triple patterns that share a common subject variable), and if the properties
of the patterns in these stars reference attributes from the same “table”, the
equivalent relational query can be solved with a table scan, not requiring any
join. Our work achieves the same reduction of the amount of joins for SPARQL.

The second problem we solve is the low quality of SPARQL query optimiza-
tion. Query optimization complexity is exponential in the amount of joins [17].
In queries with more than 12 joins or so, optimizers cannot analyze the full
search space anymore, potentially missing the best plan. Note that SPARQL
query plans typically have F' times more joins than equivalent SQL plans. Here
F is the average size of a star pattern'. This leads to a 3F times larger search
space. Additionally, query optimizers depend on cost models for comparing the
quality of query plan candidates, and these cost models assume independence of
(join) predicates. In case of star patterns on “tables”, however, the selectivity
of the predicates is heavily correlated (e.g. subjects that have an ISBN property,
typically instances of the class Book, have a much higher join hit ratio with
AuthoredBy triples than the independence assumption would lead to predict)
which means that the cost model is often wrong. Taken together, this causes the
quality of SPARQL query optimization to be significantly lower than in SQL.

1 A query of X stars has X x F triple patterns, so needs P; = X x ' — 1 joins. When
each star is collapsed into one tablescan, just P, = (X — 1) joins remain: % > F
times.
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Our work eliminates many joins, making query optimization exponentially eas-
ier, and eliminates the biggest source of correlations that disturb cost modeling
(joins between attributes from the same table).

The third problem we address is that mission-critical applications that
depend on database performance can be optimized by database administrators
using a plethora of physical design options in relational systems, yet RDF system
administrators lack all of this. A simple example are clustered indexes that store
a table with many attributes in the value order of one or more sort key attributes.
For instance, in a data warehouse one may store sales records ordered by Region
first and ProductType second — since this accelerates queries that select on a
particular product or region. Please note that not only the Region and Product-
Type properties are stored in this order, but all attributes of the sales table,
which are typically retrieved together in queries (i.e. via a star pattern). A simi-
lar relational physical design optimization is table-partitioning or even database
cracking [9]. Up until this paper, one cannot even think of the RDF equiva-
lent of these, as table clustering and partitioning implies an understanding of
the structure of an RDF graph. Emergent schemas allow to leave the “pile of
triples” quagmire, so one can enter structured data management territory where
advanced physical design techniques become applicable.

In all, we believe our work brings RDF datastores on par with SQL stores in
terms of performance, without losing any of the flexibility offered by the RDF
model, thus without introducing a need to create upfront or enforce subsequently
any explicit relational schema.

2 Emergent Schema Aware RDF Storage

The original emergent schema work allows to store and query RDF data with
SQL systems, but in that case the SQL query answers account for only those
“regular” triples that fit in the relational tables. In this work, our target is to
answer SPARQL queries over 100 % of the triples correctly, but still improve the
efficiency of SPARQL systems by exploiting the emergent schema.

RDF systems store triple tables 7' in multiple orders of Subject (S), Property
(P) and Object (O), among which typically Tpso (“column-wise”), Tspo (“row-
wise”) and either Tosp or Tops (“value-indexed”) — or even all permutations.?

In our proposal, RDF systems storage should become emergent schema aware
by only changing the Tpgo representation. Instead of having a single Tpgo triple
table, it gets stored as a set of wide relational tables in a column-store — we use
MonetDB here. These tables represent only the regular triples, the remaining
<5 % of “exception” triples that do not fit the schema (or were updated recently)
remain in a smaller PSO table T},,,. Thus, Tpgo is replaced by the union of a
smaller T}, table and a set of relational tables.

2 To support named RDF graphs, the triples are usually extended to quads. Our
approach trivially extends to that but we discuss triple storage here for brevity.
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Relational storage of triple data has been proposed before (e.g. property
tables [20]), though these prior approaches advocated an explicit and human-
controlled mapping to a relational schema, rather than a transparent, adaptive
and automatic approach, as we do. While such relational RDF approaches have
performance advantages, they remained vulnerable in case SPARQL queries do
not consist mainly of star patterns and in particular when they have triple pat-
terns where the P is a variable. This would mean that many, if not all, relational
tables could contribute to a query result, leading to huge generated SQL queries
which bring the underlying SQL technology to its knees.

Our proposal hides relational storage behind Tpso, and has as advantage
that SPARQL query execution can always fall back on existing mechanisms —
typically MergeJoins between scans of Tspo, Tpso and Tops. Our approach at
no loss of flexibility, just makes Tpgso storage more compact as we will discuss
here, and creates opportunities for better handling of star patterns, both in query
optimization and query execution, as discussed in the following sections.

Formal Definition. Given the RDF triple dataset A = {¢|t = (ts,tp,t0)}, an
emergent schema (A, £, 1) specifies the set £ of emergent tables Ty, and mapping
u from triples in A to emergent tables in £. A common idea we apply is rather
than storing URIs as some kind of string, to represent them as an OID (object
identifier) — in practice as a large 64-bit integer. The RDF system maintains
a dictionary D : OID — URI elsewhere. We use this D dictionary creatively,
adapting it to the emergent schema.

Definition 1. Emergent tables (€ = {T4,..}): Let s,p1,p2,..., pn be subject
and properties with associated data types OID and D1, Ds, ..., Dy, then T} =
(Tx.s:01ID, Ty,.p1:D1, Ti.p2:Da, ..., T.pn:Dy,) is an emergent table where Ty.p;
is a column corresponding to the property p; and Ty.s is the subject column.

Definition 2. Dense subject columns: Ty.s consists of densely ascending
numeric values Ok, .. Ok + |Tk| — 1, so s is something like an array indez, and
we denote Ty, [s] .p as the cell of row s and column p. For each Ty, its base OID
Br = k * 2%, By choosing B to be sufficiently apart, in practice the values of
column Tj.s and Tj.s never overlap when i # j.3

Definition 3. Triple-Table mapping (1 : A — &): For each table cell Ty, [s] .p;
with non-NULL value o, 3(s,p;,0) € A and p(s,pj,0) = Ty. These triples we
call “reqular” triples. All other triples t € A are called “exception” triples and
w(t) = Tpso. In fact Tpso is exactly the collection of these exception triples.

The emergent schema detection algorithm [15] assigns each subject to at most 1
emergent table — our storage exploits this by manipulating the URI dictionary
D so that it gives dense numbers to all subjects s assigned to the same T}.

3 In our current implementation with 64-bit OIDs we thus can support up to 2
emergent tables with each up to 2%° = 1 trillion subjects, still leaving the highest 8
bits free, which are used for type information — see footnote 4.
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Columnar Relational Storage. On the physical level of bytes stored on disk,
columnar databases can be thought of as storing all data of one column consecu-
tively. Column-wise data generally compresses better than row-wise data because
data from the same distribution appears consecutively, and column-stores exploit
this by having advanced data compression methods built-in in their storage and
query execution infrastructure. In particular, the dense property of the columns
Ty.s will cause column-stores to compress it down to virtually nothing, using
a combination of delta encoding (the difference between subsequent values is
always 1) and run-length encoding (RLE), encoding these subsequent 1’s in just
a single run. Our evaluation platform MonetDB supports densely ascending OIDs
natively with its VOID (virtual OID) type, that requires no storage.

Figure 1 shows an example of representing RDF triples using the emergent
tables {T7, Ty, T5} and the triple table of exception data T, (in black, below).
We have drawn the subject columns Tk.s transparent and with dotted lines to
indicate that there is no physical storage needed for them.

For each individual property column T}.p;, we can define a triple table view
Pj i = (pj, Tk.s, Tk.0), the first column being a constant value (p;) which thanks
to RLE compression requires negligible storage and the other two reusing storage
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from emergent table T},. If we concatenate these views P; ordered by j and &,
we obtain table Ppgo = U; 1 Pj . This Ppgo is shown in Fig. 2. Note that Ppso
is simply a re-arrangement of the columns Tj.p;. Thus, with emergent schema
aware storage, one can always access the data Ppgo as if it were a PSO table at
no additional cost.* In the following, we show this cost is actually less.

Space Usage Analysis. Ppgo storage is more efficient than PSO storage in
an efficient columnar RDF store such as Virtuoso would be. Normally in a PSO
table, the P is highly repetitive and will be compressed away. The S column is
ascending, so delta-compression will apply. However, it would not be dense and
it will take some storage (loga(W) bits per triple, where W is the average gap
width between successive s values®) — while a dense S column takes no storage.

Compressing-away the S column is only possible for the regular part Ppgo,
whereas the exception triples in T}, must fall back to normal PSO triple storage.
However, the left table column of Fig.3 shows that the amount of exception
triples is negligible anyway — it is almost 0 in synthetic RDF data (stemming from
the LUBM, BSBM, SP2Bench and LDBC Social Network Benchmark), as well
as in RDF data with relational roots (EuroStat, PubMed, DBLP, MusicBrainz),
and is limited to <10 % in more noisy “native” RDF data (WebData Commons
and DBpedia). A more serious threat to storage efficiency could be the NULL
values that emergent tables introduce, which are table cells for which no triple
exists. In the middle column we see that the first-generation RDF benchmarks
(LUBM, BSBM, SP2Bench) ignore the issue of missing values. The more recent
LDBC Social Network benchmark better models data with relational roots where
this percentage is roughly 15 %. Webdata Commons, which consists of crawled
RDFa, has most NULL values (42 %) and DBpedia roughly one third. We note
that the percentage of NULLs is a consequence of the emergent table algorithm
trying to create a compact schema that consists of relatively few tables. This
process makes it merge initial tables of property-combinations into tables that
store the union of those properties: less, wider, tables means more NULLs. If
human understandability were not a goal of emergent table detection, parameters
could be changed to let it generate more tables with less NULLs. Still, space
saving is not really an argument for doing so, as the rightmost table column
of Fig. 3 shows that emergent table storage is overall at least a factor 1.4 more
compact than default PSO storage.

Query Processing Microbenchmark. While the emergent schema can be
physically viewed as a compressed PSO representation, we now will argue that
every use a RDF store will give to a PSO table can be supported at least as
efficiently on emergent table aware storage.

Typically, the PSO table is used for three access patterns during SPARQL
processing: (i) Scanning all the triples of a particular property p (i.e., p is known),
(ii) Scanning with a particular property p and a range of object value (i.e., p is
known + condition on o), and (iii) Having a subset of S as the input for the scan

* SQL-based SPARQL systems (MonetDB, Virtuoso) still allow SQL on T}, tables.

tw=-L 71“1(5”1 — s;) where s; is the subject OID at row 4 (table with n rows).
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on a certain p value (i.e., typically s is sorted, and the system performs a filtering
MergeJoin). The first and the second access patterns can be processed on the
emergent schema in the similar way as with the original PSO representation by
using a UNION operator: o(pso, p,0) = 0(Ppgo, p,0) U 0(Tpso, D, 0).

The third access pattern, which is a JOIN with s candidate OIDs is very
common in SPARQL queries with star patterns. We test two different cases:
with and without of exceptions (i.e. Tpso)-

Without Tpso. In this case, the JOIN can be pushed through the Ppso view
and is simply the UNION of JOINs between the s candidates and dense Tj.s
columns in each emergent table T}. MonetDB supports joins into VOID columns
very efficiently, essentially this is sequential array lookup.

We conducted a micro-benchmark to compare the emergent schema aware
performance with normal PSO access. It executes the JOIN between a set of I.s
input OIDs with two different Ty.s columns: a dense column and a sorted (but
non-dense) column; in both cases retrieving the Tg.o object values. The bench-
mark data is extracted from the subjects corresponding to the Offer entities in
BSBM benchmark, containing ~5.7 million triples. Each JOIN is executed 10
times and the minimum running time is recorded. Figure 4 shows that dense OID
joins are 3 times faster on small inputs: array lookup is faster than MergeJoin.

With Tpso. Handling exception data requires merging the result produced by the
JOIN between input (I.s) and the dense S column of emergent table T}.s with
the result produced by the JOIN between I.s and the exception table T},.5
— the latter requires an actual MergeJoin. We implemented an algorithm that
performs both tasks simultaneously. In order to form the JOIN result between
I.s with both T}.s and T},.5 simultaneously, we modify the original MergeJoin
algorithm by checking for each new index of I.s, whether the current element
from I.s belongs to the dense range of T}.s.
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We conducted another micro-benchmark using the same 5.7 million triples.
The exception data is created by uniformly sampling 3% of the regular data
(BSBM itself is perfectly tabular and has no exceptions). We note that 3% is
already more than the average percentage of exception data in all our tested
datasets. The list of input I.s candidates is also generated by sampling from 5 %
to 90 % of the regular data. Figure5 shows that the performance of the JOIN
operator on the emergent schema still outperforms that on the original PSO
representation even though it needs to handle exception data.

The conclusion of this section is that emergent schema aware storage reduces
space by 1.4 times, provides faster PSO access, and importantly hides the rela-
tional table storage from the SPARQL processor — such that query patterns
that would be troublesome for property tables (e.g. unbound property variables)
can still be executed without complication. We take further advantage of the
emergent schema in many common query plans, as described next.

3 Emergent Schema Aware SPARQL Optimization

The core of each SPARQL query is a set of (s,p,0) triple patterns, in which s,
p, o are either literal values or wvariables. Viewing each pattern as a property-
labeled edge between a subject and object, these triples form a SPARQL graph.
We group these triple patterns, where originally each triple pattern is a group of
one.

Definition 4. Star Pattern (p = (3s,p1,01), ($s,p2,02),...): A star pattern is
a collection of more than one triple patterns from the query, that each have a
constant property p; and an identical subject variable $s.
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To exploit the emergent schema, we identify star patterns in the query and
at the query optimization, group query’s triple patterns by each star. Joins are
needed only between these triple pattern groups. Each group will be handled by
one table scan subplan that uses a new “RDFscan” operator described further
on. SPARQL query optimization then largely becomes a join reordering problem.
The complexity of join reordering is exponential in the number of joins.

To show the effects on query optimization performance, we created a micro-
benchmark that forms queries consisting of (small) stars of size FF = 4. The
smallest query is a single star, followed by one with two stars that are con-
nected by sharing the same variable for an object in the first star and the sub-
ject of the star, etc. (hence queries have 4, 8, 12, 16 and 20 triple patterns).
Our optimization identifies these stars, hence after grouping star patterns their
join graph reduces to 0, 1, 2 and 3 joins respectively. We ran the resulting
queries through MonetDB and Virtuoso and measured only query optimization
time. Figure 6 shows that emergent schema aware SPARQL query optimization
becomes orders of magnitude faster thanks to its simplification of the join order-
ing problem. The flattening Virtuoso default line beyond 15 patterns suggests
that with large amount of joins, it stops to fully traverse the search space using
cutoffs, introducing the risk of choosing a sub-optimal plan.

4 Emergent Schema Aware SPARQL Execution

The basic idea of emergent schema aware query execution is to handle a complete
star pattern p with one relational table scan(7}, [p1, p2,..]) on the emergent table
T; with whose properties p; from p. Assuming a SQL-based SPARQL engine, as is
the case in Virtuoso and MonetDB, it is crucial to rely on the existing relational
table scan infrastructure, so that advanced relational access paths (clustered
indexes, partitioned tables, cracking [9]) get seamlessly re-used.

In case of multiple emergent tables matching star pattern p, the scan plan
(denoted ¥,) we generate consists of the UNION of such table scans. In 9, we
also push-down certain relational operators (at least simple filters) below these
UNIONSs — a standard relational optimization. This push-down means that selec-
tions are executed before the UNIONs and optimized relational access methods
can be used to e.g. perform IndexScans. For space reasons we cannot go into all
details, although we should mention that OPTIONAL triple patterns in p are
marked and can be ignored in the generated scans (because missing property
values are already represented as NULL in the relational tables). Another detail
is that on top of ¥,, we must introduce a Project operator to cast SQL literal
types to a special SPARQL value type, that allows multiple literal types as well
as URIs to be present in one binding column.® Executing (pushed-down) filter
operations while values are still SQL literals allows to avoid most casting effort,
since after selections much fewer tuples remain.

5 In our MonetDB implementation, the 64-bits OID that encodes (subject) URISs, also
encodes literals by using other patterns in its highest 8 bits.
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This whole approach will still only create bindings for the “regular” triples.
To generate the 100 % correct SPARQL result, we introduce an operator called
RDFscan, that produces only the missing bindings. The basic idea is to put
another UNION on top of the scan plan 9, that adds the RDFscan(p) bindings
to the output stream, as shown in Fig.9. Unlike normal scans, we cannot push
down filters below the RDFscan - hence these selections remain placed above it,
at least until optimization 1 (see later).

Generating Exception Bindings. Correctly generating all result bindings
that SPARQL semantics expect is non-trivial, since the exception triples in T},
when combined with any emergent table Ty (not only those covering p) could
produce valid bindings. Consider the example SPARQL query, consisting of a
single star pattern and two selections (01 > 10, 03 = 5):

SELECT ?s 7ol 702 WHERE { ?s pl 7ol
?s p2 702 .
?s p3 5 . FILTER (7ol > 10) }

Figure 8 shows the expected result of this query on an example data. (For
a better view of the example, we assume s base OID of T, T5 are 100, 200,
respectively). In this result, the first two tuples come from the regular triples
while the last three tuples is the combination of triples stored in T, table (i.e.,
in red color) with those stored in tables T} and Tb.

Basic Approach. RDFscan returns all the bindings for a star pattern, in which
each binding is generated by at least one irregular triple (the missing bindings).
Formally, given a star pattern p = {(s,p;,0;),7 = 1,..,k}, the RDF dataset A,
the output of the RDFscan operator for this star pattern is defined as:

RDFscan(p) = {(s,01,...,01)}(8,0i,0;) € AN (i :(8,pi,0:) € Tpso) (1)

RDFscan generates the “exception” bindings in 2 steps:
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Step 1: Get all possible bindings (s, 01,...,0x) where each o; stems from triple
(8,pi,0;) € Tpso (for those p; from p), or o; = NULL if such a triple does not
exist, with the constraint that at least one of the object values o; is non-NULL.
Step 2: Merge each binding (s, 01,...,0x) with the emergent table T} corre-
sponding to s (B < s < Bk + |Tk|) to produce output bindings for RDF'scan.

Step 1 is implemented by first extracting the set F; of all {(s, 0;)} corre-
sponding to each property p; from the Tpso: E; = 0p—p, (Tpso)- Then, it returns
the output, S;, by performing a relational OuterJoin on s between all F;. We
note that, as T}, table is sorted by p, extracting F; from T, can be done with
no cost by reading a slice of T),5, from the starting row of p; and the ending row
of p; (the information on starting, ending rows of each p in T, table is pre-
loaded before any query processing). Furthermore, as for each p in Tps0, {(s,0)}
are sorted according to s, F; are also sorted by s. Thus, the full OuterJoin of all
FE; can be efficiently done by using a multi-way sort merging algorithm. Figure 10
demonstrates Step 1 for the example query.

Step 2 merges each tuple in S; with a tuple of the same s in the regular table
in order to form the final output of RDF'scan. For example, the 4th tuple of
S1 (201, 15, 4, null) merged with the 2nd tuple of Ty (201, null, 5, 2) returns
a valid binding (201, 15, 4) for the (s, 01, 02) of the example query. Figure 11
shows the detailed algorithm of Step 2. For each tuple ¢ in S7, it first extracts
the corresponding regular table and row Id of the current t.s from encoded
information inside each s OID (Line 2). Then, for each property p;, the algorithm
will check whether there is any non-NULL object value appearing in either ¢
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(i.e., t.0;) or the regular column p; (i.e., £ [id][r] .p;) (Line 5). If yes, the non-
NULL value will be placed in the binding for p; (Line 9). Otherwise, if both
of the values are NULL, there will be no valid binding for the current checking
tuple ¢. Finally, the binding that has non-NULL object values for all non-optional
properties will be appended to the output table T';,.

Optimization 1: Selection Push-Down. Pushing selection predicates down
in the query plan is an important query optimization technique to apply filters
as early as possible. This technique can be applied to RDFscan when there
is any selection predicate on the object values of the input star pattern (e.g.,
o1 > 10, o3 = 5 in the example query). Specifically, we push the selection
predicates down in Step 1 of the RDFscan operator to reduce the size of each
set E; (i.e., 0p=p, (Tpso)), accordingly returning a smaller output Sy of this step.
Formally, given \; being a selection predicate on the object o;, the set E; of
{(s,0i)} from T,s,) is computed as: E; = op—p, x,(Tpso). In the example query,
E1 = 0p=p;,0,>10(Tpso)- Figure12 shows that the size of E; and the output
S1 are reduced after applying the selection pushdown optimization, which thus
improves the processing time of RDFscan operator.

Optimization 2: Early Check for Missing Property. If a regular table T}
does not have p; in its list of columns, to produce a valid binding by merging a
tuple ¢ of S; (i.e., output of Step 1) and T, the exception object value t.0; must
be non-NULL. Thus, we can quickly check whether ¢ is an invalid candidate
without looking into the tuple from T} by verifying whether ¢ contains non-NULL
object values for all missing columns of Tj. We implement this by modifying the
algorithm for Step 2. Before considering the object values of all properties from
both exception and regular data (Line 4), we first check exception object value
t.0; of each missing property to prune the tuple if any ¢.0; is NULL. Then, we
continue the original algorithm with the remaining properties.

Optimization 3: Prune Non-matching Tables. The exception table T,
mostly contains triples whose subject was mapped to some emergent table. For
example, the triple (201, po, 4) refers to the emergent table Ty because s >
200 = f3. During the emergent schema exploration process [15] this triple was
temporarily stored in the initial emergent table Tj, but was then moved to Tps,
during the so-called “schema and instance filtering” step. This filtering moves
not only triples but also whole columns from initial emergent tables to T}, in
order to derive a compact and precise emergent schema. Assume column ps was
removed from 75 during schema filtering. We observe that before filtering, all
triples (regular + exception triples) of subject s were part of the initial emergent
table which means that had a particular set of properties. Accordingly, if C' is
the set of columns of an initial emergent table 7" and if C' does not contain the
set of properties in p, there cannot be a matching subject with all properties of p
stemming from 7" even with the help of T},5,. This observation can be exploited
to prune all subject ranges corresponding to (initial) emergent tables that cannot
have any matching for p from the pass over T},.
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Specifically, we pre-store, for each emergent table, its set of columns C before
schema and instance filtering was applied during emergent schema detection.
Then, given the input star pattern p, the possible matching tables for p are
those tables whose set of columns C' contain all properties in p. Finally, Step 1
is optimized by removing from E; all the triples that the subject does not refer
to any of the matching tables.

5 Performance Evaluation

We tested with both synthetic and real RDF datasets BSBM [1], LUBM [§],
LDBC-SNB [6] and DBpedia (DBPSB) [12]; and their respective query work-
loads. For BSBM, we also include its relational version, namely BSBM-SQL,
in order to compare the performance of the RDF store against a SQL system
(i.e., MonetDB-SQL). We used datasets of 100 million triples for LUBM and
BSBM, and scale factor 3 (=200 million triples) for LDBC-SNB. The experi-
ments were conducted on a Linux 4.3 machine with Intel Core i7 3.4 GHz CPU
and 16 GBytes RAM. All approaches are implemented in the RDF experimental
branch of MonetDB.

Query Workload. For BSBM, we use the SELECT queries from Explore work-
load (ignoring the queries with DESCRIBE and CONSTRUCT). For LUBM, we
use its published queries and rewrite some queries (i.e., Q4, Q7, Q8, Q9, Q10,
Q13) that requires certain ontology reasoning capabilities in order to account
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Fig. 13. Query processing time: Emergent schema-based vs triple-based
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Table 1. Properties of DBpedia queries

Queries Q1 1 Q2| Q3 Q41 Q5 | Q6 Q7 | Q8 | Q9 Q10
Operators: OPTIONAL, FILTER, UNION | - - O - U F |- F,U|O/F,U|O
Modifiers: Distinct, Limit, ORDER D |bD |DLO|D |DL|D |D,JL|- - D
# of triple pattern 4 5 5 3 10 3 6 4 6 7

# constraints on O7 1 0 1 1 2 2 1 4 2 0
Has multi-valued prop.? N RVARRVA v oV v |V - VA

for the ontology rules and implicit relationships. For LDBC-SNB, we use its
short read queries workload. DBPSB exploits the actual query logs of the DBpe-
dia SPARQL endpoints to build a set of templates for the query workload.
Using these templates, we create 10 non-empty result queries w.r.t DBpedia
3.9 dataset”. Table 1 shows the features of tested DBpedia queries. In Figs. 13,
14 and 15, X-axis holds query-numbers: 1 means Q1. For each benchmark query
we run three times and record the last query execution (i.e., Hot run).

Emergent Schema Aware vs Triple-Based RDF Stores. We perform the
benchmarks against two different approaches of MonetDB RDF store: the orig-
inal triple-based store (MonetDB-triple) and the emergent schema-based store
(MonetDB-emer).

Figure 13 shows the query processing time using two approaches over four
benchmarks. For BSBM and LDBC-SNB, the emergent schema aware approach
significantly outperforms the triple-based approach in all the queries, by up to
two orders of magnitude faster (i.e., Q1 SNB). In a real workload such as DBpe-
dia where there is significant amount of exception triples, our approach is still
much faster (note: logscale) by up to more than an order of magnitude (Q8). We
also note that multi-valued properties appear in most of DBpedia queries, and
this is costly for the emergent schema aware approach as it requires additional
MergeJoins to retrieve the object values. In Fig. 13d, the best-performing query
Q8 is the one having no multi-valued property.

For LUBM, a few queries (i.e. 7, 14) show comparable processing times for
triple-table based and emergent schema aware query processing. The underlying
reason is that each subject variable in these queries only contains one or two
common properties (e.g., Q14 only contains one triple pattern with the properties
rdf:type). Thus, the emergent schema aware approach will not improve the
query execution time — however as the optimization does not trigger then it
also does not degrade performance in absence of fruitful star patterns. For the
queries having discriminative properties [15] in a star pattern (e.g., Q4, 11,
12), the emergent schema aware approach significantly outperforms the original
triple-based version, by up to two order of magnitude (i.e., Q4).

Emergent Schema-Based RDF Store vs RDBMS. As shown in Fig. 13c,
the emergent schema aware SPARQL processing (MonetDB-emer) provides com-
parable performance on most queries (i.e., Q1, Q3, Q4, Q5, Q8) compared to

" The detailed DBpedia queries can be found at goo.gl/RxzOmy.
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MonetDB-SQL. In other queries (Queries 7,10), the emergent schema aware app-
roach also significantly reduces the performance gap between SPARQL and SQL,
from almost two orders of magnitude slower (MonetDB-triple vs MonetDB-SQL)
to a factor of 3.8 (MonetDB-emer vs MonetDB-SQL).
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Fig. 14. Query processing with/with-out optimizations

RDFscan Optimizations. Figure 14 shows the effects of each of the three
described RDFscan optimization by running the DBpedia benchmark without
using with each of them. All optimizations have positive effects, though in dif-
ferent queries, and the longer running queries show stronger effects. Selection
push-down (Opt. 1) has most influence, while the early check in T, to see if
it delivers missing properties has the least influence. Obviously, selection push-
down does not give any performance boost when there is no constraint on the
object variables in the queries (e.g., Query 2). For queries having constraints on
the object variables, which are quite common in any query workload, it does
speed up query processing by up to a factor of 24 (i.e., Q8).
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Fig. 15. Optimization time: Emergent schema-based vs triple-based



478 M.-D. Pham and P. Boncz

Query Optimization Time. Figure 15 shows query optimization time on
LDBC-SNB and DBPSB (due to lack of space, we omit similar results for BSBM
and LUBM). For all queries, the emergent schema aware approach significantly
lowers optimization time, by even up to two orders of magnitude (Q1 SNB)
or a factor of 37 (Q7 DBPSB). Note also that due to the smaller plan space
and strong reduction of join correlations, query optimization also qualitatively
improves, a claim supported by its performance improvements across the board.

6 Related Work

Most state-of-the-art RDF systems store their data in triple- or quad-tables
creating indexes on multiple orders of S,P,O [5,14,16,19]. However, according to
[7,15], these approaches have several RDF data management problems including
unpredictably bad query plans and low storage locality.

Structure-aware storage was first exploited in RDF stores with the “property
tables” approach [4,10,18,20]. However, early systems using this approach [4,20]
do not support automatic structure recognition, but rely on a database adminis-
trator doing the table modeling manually. Automatic recognition is introduced
in some newer systems [10,11, 18], however unlike emergent schemas these struc-
tures are not apt for human usage, nor did these papers research in depth inte-
gration with relational systems in terms of storage, access methods or query
optimization. Recently, Bornea et al. [2] built an RDF store, DB2RDF, on top
of a relational system using hash functions to shred RDF data into multiple
multi-column tables. This approach (nor any of the others) allows both SQL
and SPARQL access to the same data, as emergent schemas do. Gubichev et al.
[7] and Neumman et al. [13] use structure recognition to improve join ordering
in SPARQL queries alone. Brodt et al. [3] proposed a new operator, called Pivot
Index Scan, to efficient deliver attribute values for a resource (i.e., subject) with
less joins using something similar to a SPO index — as such it does not recognize
structure in RDF to leverage it on the physical level.

7 Conclusion

Emergent Schema detection is a recent technique that automatically analyzes
the actual structure an RDF graph, and creates a compact relational schema
that fits most of the data. We investigate here how these Emergent Schemas,
beyond helping humans to understand a RDF dataset, can be used to make RDF
stores more efficient. The basic idea is to store the majority of data, the “reg-
ular” triples (typically >95% of all data) in relational tables under the hood,
and the remaining “exception” triples in a reduced PSO triple table. This stor-
age still allows to see the relational data as if it were a PSO table, but is in fact
>1.4x more compact and faster to access than a normal PSO table. Furthermore,
we provide a simple optimization heuristic that groups triple patterns by star-
shape. This reduces the complexity of query optimization by often more than
a magnitude, since the size of the join graph is reduced thanks to only joining
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these groups. Finally, we contribute the RDFscan algorithm with three impor-
tant optimizations. It is designed to work in conjunction with relational scans,
which perform most of the heavy-lifting, and can benefit from existing physical
storage optimizations such as table clustering and partitioning. RDFscan keeps
the overhead of generating additional binding results for “exception” triples low,
yielding overall speed improvements of 3-10x on a wide variety of datasets and
benchmarks, closing the performance gap between SQL and SPARQL.
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