
Learning Resets of Neural Working Memory

J.O. Rombouts1, P.R. Roelfsema2 and S.M. Bohte1 ∗

1- Centrum Wiskunde & Informatica - Life Sciences
Science Park 123 - The Netherlands

2- Netherlands Institute for Neuroscience - Vision and Cognition
Meibergdreef 47 - The Netherlands

Abstract. Working memory is a key component of intelligence that
the brain implements as persistent neural activations. How do persistent
neurons learn to store information, and how can they be made to forget
this information once it is no longer relevant? When animals learn episodic
tasks, neurons in prefrontal cortex learn to represent task ends. We show
that a biologically plausible neural network model equipped with persistent
memory and a ‘reset’ action can learn to store and forget information
at task ends by reinforcement learning. The new model has competitive
performance compared to a variety of (biologically implausible) models.

1 Introduction

Animals can learn very complex tasks based on simple reward and punishment
schemes. Such tasks may require working memory (e.g. [1, 2]) where the correct
sequence of actions depends on past information. It could be argued that most,
if not all, tasks require some form of working memory, making the study of these
types of tasks particularly relevant.

Successful models for learning working memory tasks employ a form of persis-
tent memory, e.g. [3, 4, 5, 6, 7]. From neuroscience, there is ample experimental
evidence that brains contain neurons that have persistent activations in working
memory tasks [1, 2]. Persistent memory was also found to be powerful for super-
vised training of Recurrent Neural Networks (RNNs) [8]. However, models that
employ persistent memory also need some mechanism for forgetting [8]. The
reason for this is intuitive: Imagine performing a sequence of tasks where the
information from a previous task may interfere with the execution of the current
task (known as proactive interference). Clearing memory representations at task
boundaries eliminates this problem.

The mathematical framework for modeling the learning of optimal sequences
of actions from rewards and punishments is Reinforcement Learning (RL, [9]).
A large body of work has modeled (animal) learning in the RL framework. Most
work has focussed on tasks that can be modeled as Markov Decision Problems,
or MDPs. Working memory tasks fall in the class of Partially Observable MDPs,
or POMDP tasks [6] as they require information presented at some previous time
to make an optimal decision at a later point in time.

In the RL literature, learning episodic tasks involves a transition to a special
terminal state and a subsequent reset of all dynamic parameters such as eligibility

∗JOR is funded by NWO grant 612.066.826

111

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301647581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

traces before starting a new trial [9]. However, autonomously learning agents
do not have access to such ‘trial-end’ information. Learning task-ends should
therefore be part of learning the task, and this may in fact not be trivial. When
interacting with a new task, the animal has to learn that actions performed
in the current task do not influence rewards in the next task, i.e. that they
are independent. If tasks are independent, then it is beneficial to also clear
working memory. Experimental neuroscience shows that animals indeed learn
to recognize the beginnings and endings of tasks (e.g. [10]).

Here, we introduce re-AuGMEnT, a biologically plausible neural network
model that can learn whole tasks, including trial ends, by reinforcement learning.
The model is based on AuGMEnT [7], which can learn challenging working
memory tasks but requires supervised ‘reset’-signals to reset working memory
representations. We propose to include an ‘internal’ action that implements the
‘reset’. This action can be included naturally in the AuGMEnT framework, and
appropriately timed reset signals can then indeed be learned. As far as we are
aware, this is the first paper that suggests a possible role for ‘end’ signals found
in the brain [10] within the RL framework. We show that the model can learn
the tasks in [7], and we show that AuGMEnT and re-AuGMEnT outperform a
range of other RL working memory models on a T-Maze task.

2 Model

We describe re-AuGMEnT adopting the same notation as [7] and indicating
where the models differ. We suppress time indices t when expressions do not
include information from previous time-steps. re-AuGMEnT is a three layer
neural network that computes Q-values for alternative actions [9], and where
the hidden layer includes integrating units that learn to store task relevant in-
formation. (Fig 1a). The top layer contains two types of units: instantaneous
and transient on(+)/off(-) units. Instantaneous units xi(t) encode sensory vari-
ables si(t) at time step t, and on/off units code truncated temporal derivatives
of these same sensory variables as:

x+i (t) = [si(t)− si(t− 1)]+ ; x−i (t) = [si(t− 1)− si(t)]+ ,

where [x]+ = x for x > 0 and 0 otherwise. The hidden layer also contains two
kinds of units; regular units (superscripted with R) and memory units (super-
scripted with M). Regular units j receive inputs from all instantaneous units in
the input layer via weights vRij (with vR0j a bias weight). Their activation yRj is

determined by a standard sigmoidal transformation of their inputs aRj :

yRj = σ(aRj , θ) = 1/
(
1 + exp (θ − aRj)

)
with aRj =

∑
i
vRijxi .

where θ shifts the squashing function. Memory units integrate input from the
on/off units x′l = {x+l , x−l } through connections vMlm:

aMm (t) = aMm (t− 1) +
∑

l
vMlmx

′
l(t),

where activations yMm are computed as yMm = σ(aMm , θ). Memory units and regu-
lar hidden units project to output layer units k through, respectively, connections

112

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

wM
mk and wR

jk (with wR
0k a bias weight). The Q-value for action k in state s, qs,k

(where s is implicitly defined by the hidden layer activations) is:

qs,k = qk =
∑

j
yRj w

R
jk +

∑
m
yMmwM

mk .

Given the Q-values computed by the network, actions are selected using a max-
Boltzmann Winner-Takes-All (WTA) mechanism [11] with exploration rate ε,
situated in an external controller. The network learns by minimizing SARSA
Temporal Difference errors δ(t) by stochastic gradient descent [7]:

E(t) =
1

2
δ(t)2 =

1

2
(r(t) + γqs′,K′(t)− qs,K(t− 1))

2
,

where r is the reward received after executing the action K in state s at time
(t− 1), qs′,K′ is the predicted value of the winning action K ′ for the next state
s′, and γ is the discount rate. Learning is implemented by an interaction of
feedforward and feedback signals and a globally available neuromodulator like
dopamine which represents δ(t). The activation of the winning output unit is set
to 1, and the activations of the other output units are set to 0: zk = δkK , where
δkK is the Kronecker delta function. The winning unit sends feedback through
feedback connections w′ (Fig 1a, dashed connections). The feedback interacts
with the feedforward activations to form synaptic tags Tagxy on each connection
commensurate to the degree that this connection influenced the action selection.
Connection strengths wxy are modified as Δwxy = βδTagxy, with β the learning
rate. Synaptic tags are then updated as:

ΔTagRjk = (λγ − 1)TagRjk + yRj zk ,

ΔTagMjk = (λγ − 1)TagMmk + yMm zk ,

ΔTagRij = (λγ − 1)TagRij + w′R
Kjy

R
j (1− yRj)sTrace

R
ij ,

ΔTagMlm = (λγ − 1)TagMlm + w′M
Kmy

M
m (1− yMm)sTraceMlm ,

with λ a decay parameter [9] and w′R
Kj and w′M

Kj feedback weights from the
output layer to the hidden layer. sTraces are intermediate variables:

sTraceRij = xi(t) ; sTraceMlm =
∑t

t′=0
x′l(t

′) .

The sTrace variables are new to re-AuGMEnT. A Tag effectively encodes an
eligibility trace [9], and an sTrace encodes the history of activations that were
transmitted through the associated synapse. Having separate Tags and sTraces
has two advantages: all Tags are now treated identically (in contrast to [7] where
λ = 0 for memory Tags) and sTraces can be reset independently from Tags.

When the ‘reset’ action is selected, parameters are updated as normal. Then,
the values of memory sTraces and the activations of memory units are set to zero.
After this reset, new feedforward activations are computed given the current
observation, and an action is selected with the restriction that the reset action
cannot be selected twice in a row. Weights, sTraces and Tags are then again
updated as defined above. In addition to these modifications to AuGMEnT [7],
we extended the observation layer with information about the reward and with
the previous action of the network (including the new reset action). This is
helpful as these signals can contain information about trial-ends.

113

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

+

0.9

0.7

0.5

0.3

–0.3

–0.5

–0.7

–0.9

–

A
ssigned w

eights

Favouring green

Favouring red

S
ha

pe
s

a Pro

Fi
x

C
ue

D
el
ay

G
o

Antib

S
1

S
4
..

c

[2 , 0 , 1]

G

d

Fig. 1: (a) AuGMEnT (black lines) and extended re-AuGMEnT (grey lines). Dashed
lines: feedback connections, Diamonds: memory units (b). Saccade/Antisaccade (SA)
task after [1]. (c) Probabilistic Classification (YS) task after [2]. (d) T-Maze task after
[4]. Corridor length N = 3. Dashed lines show agent’s observation space (coded as in
grey numbers). Circle indicates location of reward at end of maze (G - invisible)

3 Experiments

We tested our model on the same set of (non-linear) tasks as were used for testing
AuGMEnT [7] (Fig. 2b,c) and also to the T-Maze task from [4] (Fig. 1d). For
AuGMEnT we used networks with three regular units and four memory units in
the hidden layer, as in [7]. As the re-AuGMEnT model expands the input layer,
we used ten regular and ten memory units in the hidden layer. The number
of output units (possible actions) depended on the task. For AuGMEnT we
used the same parameters for the network and tasks as [7]. For re-AuGMEnT
networks, we set β = 0.05 and λ = 0.10. Unless otherwise noted, results are
based on runs with 100 randomly initialized networks.

Saccade/Antisaccade. The Saccade/Antisaccade (SA) task is based on [1]
(Fig. 1b). We implemented the task as in [7]. Briefly, the model is presented
with a fixation mark (filled or empty square), then a cue (circle) appears on the
left or right. After a delay the fixation mark turns off and the model has to select
‘left’ or ‘right’. For the filled square the model has to select the cue direction
and the opposite direction for the empty square. The trial ends without reward
if the model breaks fixation before the fixation mark turns off. A correct trial
yielded a reward of 1.5. We gave both models at most 1 × 105 trials to learn
the task. After networks made 90% optimal choices for each of the four possible
subtasks over the last 50 examples of each, we checked for correct performance
by running 100 validation trials with β and ε set to 0.

Probabilistic Classification. The probabilistic classification task is based on [2]
(Fig. 1c). Trial structure is similar to that of the SA task discussed above,
but now four shapes are presented to the model. After a delay period with
only the fixation mark visible, the model has to select ‘left’ or ‘right’. The
optimal choice depends on the four shapes s1–s4 that were shown; each shape
has an associated weight (inset Fig. 1c) that determines the conditional reward

distribution P (Red|W) = 1/(1+10−W), with W =
∑4

i=1 w(si); P (Green|W) =

114

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

(lo
g)

(lo
g)

M
ed
ia
n

a b c d
MBits

RNN RL-LSTM

re-AuGMEnT

AuGMEnT

Fig. 2: Success rates for (a) AuGMEnT (�) and re-AuGMEnT (�) learning SA and
YS task. (b) T-Maze task (N=100 for our models; N=10 for results from [4]). See
labels inset in d. Bars: 95% confidence intervals (by R method prop.test). (c) Median
number of trials for learning the SA and YS tasks. Bars show 1st and 3rd quartile of
distribution. (d) Mean number of time-steps (not trials) for learning the T-Maze.

1− P (R|W). The colored targets are randomly assigned to the left or right on
each trial. The model received a reward of 1.5 for its choice for the Red or Green
target according to the conditional distributions. We gave both models at most
5 × 105 trials to learn the task. Learning was complete when the model made
85% optimal choices over the last 2× 104 trials.

T-Maze. The T-Maze task is based on [4] (Fig. 1d). Information presented
at the beginning of the maze is required to make optimal decisions at the end.
The agent has actions N, E, S, W to move in all compass directions; task difficulty
is scaled by increasing the corridor length N . When the agent remains in the
same place (e.g. by moving into a wall), it receives a negative reward (−.1).
The correct decision at the end of the maze is worth 4, and the wrong decision
−.1. We added a time-out condition to the task: after 1.2N + 2 time-steps we
automatically stopped the trial, and started a new one. For the simulations we
gave each network at most 5 × 105 trials to learn the task. Convergence was
determined as for the SA task, but checked at 80% optimal choices as in [4].

The results in Fig. 2a show that re-AuGMEnT is able to learn the same tasks
as AuGMEnT with similar success rates. The learning process does take sig-
nificantly longer, and the within-model variance of learning speed is also larger
(Fig. 2c). Given the increased complexity of the task, such increased learning
time is to be expected. Figures 2b,d compare the performance of AuGMEnT,
re-AuGMEnT, and the methods tested in [4]: RL-LSTM, Memory Bits [3] and
Elman Simple Recurrent Networks; note that none of these methods are biolog-
ically plausible. It is clear that AuGMEnT outperforms all other algorithms.
At N = 70, this method still learns the task perfectly while convergence for
RL-LSTM, the second best algorithm, drops to 30%. re-AuGMEnT does fairly
well: it outperforms all models except RL-LSTM and AuGMEnT. Learning
in re-AuGMEnT is significantly slower than the learning in AuGMEnT. This
demonstrates that supervised reset signals contain a significant amount of in-
formation about the task. Importantly, both models automatically generalize

115

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

over different delays (SA and YS tasks) and corridor lengths due to the on/off
units; e.g. a re-AuGMEnT network that learned the N = 5 maze also solves the
N = 70 maze (results not shown). This is not guaranteed for the other models.

4 Discussion

The connection between memory and forgetting has been noted earlier: neural
algorithms that include persistent memory are known to fail when this memory
is not reset at appropriate times [8]. This was resolved for LSTM by coupling
memory elements to special forget-gates that can reset the memory and the
associated gradients in [8]. These gates are sigmoidal units which set the ‘leak’
of an associated memory cell in a multiplicative fashion. The LSTM algorithm
with forget gates is one of the most powerful supervised learning algorithms for
training RNNs. While AuGMEnT shares a key idea of LSTM, we implemented
resets by an internal reset action rather than forget-gates. A reset provides a
binary on/off signal that is hard to achieve with sigmoidal gates, since gradients
vanish at the extremes–solutions thus tend to be fit to typical timescales of the
task, and do not automatically generalize to changes in delay length, unlike
re-AuGMEnT. Some ideas in the RL literature are related to the current work.
One notion is that of a memory cell that can be reset or overwritten by ‘internal’
actions as in [3, 6], but neither of these models is biologically plausible. The
PBWM model [5], a biologically based learning scheme for learning working
memory tasks is also closely related. Although the model is based in RL, it
requires a teaching signal that provides the correct actions on each time-step and
the architecture and learning rules are elaborate. In summary, we have shown
that ‘reset’ actions allow a neural network to learn sequences of difficult working
memory tasks, including when to forget, purely by trial-and-error learning. We
hypothesize that such reset actions might explain the presence of task-end signals
found in the brain [10].

References

[1] Gottlieb and Goldberg. Activity of neurons in the lateral intraparietal area of the monkey
during an antisaccade task. Nat. Neurosci., 1999.

[2] Yang and Shadlen. Probabilistic reasoning by neurons. Nature, 2007.

[3] Peshkin, Meuleau, and Kaelbling. Learning Policies with External Memory. ICML, 1999.

[4] Bakker. Reinforcement learning with long short-term memory. In NIPS, 2002.

[5] O’Reilly and Frank. Making working memory work: a computational model of learning
in the prefrontal cortex and basal ganglia. Neural Comp., 2006.

[6] Todd, Niv, and Cohen. Learning to use working memory in partially observable environ-
ments through dopaminergic reinforcement. NIPS, 2009.

[7] Rombouts, Bohte, and Roelfsema. Neurally Plausible Reinforcement Learning of Working
Memory Tasks. NIPS, 2012.

[8] Gers, Schmidhuber, and Cummins. Learning to forget: Continual prediction with LSTM.
Neural Comp., 2000.

[9] Sutton and Barto. Reinforcement Learning: an introduction. MIT Press, 1998.

[10] Fujii and Graybiel. Representation of action sequence boundaries by macaque prefrontal
cortical neurons. Science, 2003.

[11] Wiering and Schmidhuber. HQ-learning. Adaptive Behavior, 1997.

116

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

