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numerical solutions

ABSTRACT
A system of gas discharge and semiconductor layer forms spatial and temporal patterns
spontaneously when a DC voltage is applied. The system is modeled here with a simple glow
discharge model for positive ions, electrons and electric field, and the semiconductor is
approximated as a linear conductor. This model in previous work has reproduced the diagram
for the phase transition from homogeneous stationary to homogeneous oscillating states semi-
quantitatively. In the present work, the formation of spatial patterns is investigated, both through
linear stability analysis and through numerical simulations of the initial-value problem. The two
methods show very good agreement. They show the onset of spatio-temporal patterns for high
semiconductor resistance in agreement with experiments. The parameter dependence of
temporal or spatio-temporal pattern formation is discussed in detail.
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A system of gas discharge and semiconductor layer forms spatial and temporal patterns sponta-
neously when a DC voltage is applied. The system is modeled here with a simple glow discharge
model for positive ions, electrons and electric field, and the semiconductor is approximated as a
linear conductor. This model in previous work has reproduced the diagram for the phase tran-
sition from homogeneous stationary to homogeneous oscillating states semi-quantitatively. In the
present work, the formation of spatial patterns is investigated, both through linear stability analysis
and through numerical simulations of the initial-value problem. The two methods show very good
agreement. They show the onset of spatio-temporal patterns for high semiconductor resistance in
agreement with experiments. The parameter dependence of temporal or spatio-temporal pattern
formation is discussed in detail.

PACS numbers: 52.80.–s, 05.45.–a, 47.54.–r, 51.50.+v

I. INTRODUCTION

Spontaneous pattern formation is a general feature in
the natural and technical sciences in systems far from
equilibrium [1]. The present work deals with a simple
gas discharge system whose external boundary condi-
tions allow a homogeneous stationary state, however, the
system spontaneously forms spatial and temporal struc-
tures, similarly to, e.g., the classical example of Rayleigh-
Bénard convection. The aim of the work is the quantita-
tive prediction of the formed structures.

More specifically, we consider a layer of gas discharge
sandwiched with a semiconductor layer between planar
electrodes to which a DC voltage is applied. The system
is sketched in Fig. 1; and we refer to the experiments
described in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
There the transversal extension in the x direction was
so large that patterns could form spontaneously in the
transversal direction without being immediately affected
by the lateral boundaries. These experiments showed
that the system can show a rich variety of structures:
homogeneous stationary and oscillating modes, and pat-
terns with spatial and spatio-temporal structure (stripes,
spots, spirals in the plane orthogonal to the layers) [16].
For some physical mechanisms for the structures, we re-
fer, e.g., to [17, 18].

In previous work [19, 20], we concentrated on the
purely temporal oscillations that occur in a spatially ho-
mogeneous mode, therefore the analysis was restricted
to the direction normal to the layers, assuming homo-
geneity in the transversal direction. The results pre-
sented in [19] showed that a simple two-component

∗Electronic address: rafatov@metu.edu.tr,ebert@cwi.nl

FIG. 1: Scheme of the layers of semiconductor and gas dis-
charge sandwiched between electrodes with DC voltage.

reaction-diffusion approximation for current and volt-
age in the gas discharge layer can not be sufficient to
describe the oscillations, though such a model is sug-
gested through phenomenological analogies with pat-
tern forming systems like Belousov-Zhabotinski reac-
tion, Rayleigh-Bénard convection, patterns in bacterial
colonies etc. In [20], we predicted the phase transition
diagram from a homogeneous stationary to a homoge-
neous oscillating state. These predictions were in semi-
quantitative agreement with the experiments described
in [3].

While our previous work dealt with the stationary
solutions [22, 23] or the dynamics in the single direc-

mailto:rafatov@metu.edu.tr,ebert@cwi.nl


2

tion orthogonal to the layers [19, 20], we here include
the transversal direction into analysis and simulations.
In particular, the experimental paper [4] and thesis [6]
describe that the system from [4] never forms time-
independent, but spatially structured modes. Rather,
starting from a homogeneous stationary state, either the
homogeneous oscillating state from [20] is reached, or a
spatially structured time-dependent state. Furthermore,
for high semiconductor resistivity, typically a spatially
structured oscillating state is reached while for low resis-
tivity, the oscillating structures are homogeneous in the
transversal direction. The resistivity could be changed
by photo-illumination. Within the present paper we in-
vestigate whether we can predict this transition as well
from the analysis of our simple model for gas discharge
and semiconductor layer.

The paper is organized as follows. In Sec. II we in-
troduce the model, perform dimensionless analysis, and
reduce the model by adiabatic elimination of electrons.
In Sec. III, the problem of linear stability analysis of the
homogeneous stationary state is formulated, the equa-
tions are rewritten and numerical solution strategies are
discussed. Sec. IV contains the results of the stability
analysis, first the qualitative behavior of the dispersion
relation as a function of the transversal wave number k,
and then predictions on the parameter dependence of the
dispersion relations. Sec. V presents numerical solutions
of the full initial value problem and a comparison with
the stability analysis results; they reveal that both meth-
ods can be trusted. Finally, Sec. VI contains discussion
and conclusions. The numerical details for the full p.d.e.
system are given in the appendix.

II. THE MODEL

In this section, the simplest model for the full two-
dimensional glow discharge–semiconductor system is in-
troduced. Its schematic structure is shown in Fig. 1. For
the gas discharge, it contains electron and ion drift in the
electric field, bulk impact ionization and secondary emis-
sion from the cathode as well as space charge effects. The
semiconductor is approximated with a constant conduc-
tivity. The same physics was previously studied, e.g., in
[24, 25] and in our previous papers [19, 20, 22, 23]. How-
ever, in these previous papers, any pattern formation in
the transversal direction was excluded and only the sin-
gle dimension orthogonal to the layers was resolved. The
model then only allows for stationary solutions [22, 23]
or temporal oscillations [19, 20]. We now study the onset
of patterns in the direction parallel to the layers. If the
layers are laterally sufficiently extended, there is rotation
and translation invariance within the plane. Linear per-
turbations can then be decomposed into Fourier modes.
These Fourier modes can be studied in a two-dimensional
setting, i.e., in one direction orthogonal and one direction
parallel to the layers. They are the subject of the paper.

A. Gas-discharge and semiconductor layers

The gas-discharge part of the model consists of conti-
nuity equations for two charged species, namely, electrons
and positive ions with particle densities ne and n+:

∂tne + ∇ · Γe = source, (1)

∂tn+ + ∇ · Γ+ = source, (2)

which are coupled to Poisson’s equation for the electric
field in electrostatic approximation:

∇ · Eg =
e

ε0
(n+ − ne) , Eg = −∇Φ. (3)

Here, Φ is the electric potential, Eg is the electric field
in the gas discharge, e is the electron charge, and ε0 is
the dielectric constant. The vector fields Γe and Γ+ are
the particle current densities, that in simplest approx-
imation are described by drift only. Drift velocities are
assumed to depend linearly on the local electric field with
mobilities µe ≫ µ+:

Γe = −µene Eg, Γ+ = µ+n+ Eg. (4)

Two types of ionization processes are taken into account:
the α process of electron impact ionization in the bulk of
the gas, and the γ process of electron emission by ion im-
pact onto the cathode. In a local field approximation, the
α process determines the source terms in the continuity
equations (1) and (2):

source = |Γe| ᾱ (|Eg|) , ᾱ (|Eg|) = α0 α

(

|Eg|

E0

)

. (5)

We use the classical Townsend approximation

α (|E|/E0) = exp (−E0/|E|) . (6)

The gas discharge layer has a thickness dg, where sub-
scripts g or s refer to gas or semiconductor layer, re-
spectively. The semiconductor layer of thickness ds is
assumed to have a homogeneous and field-independent
conductivity σ̄s and dielectric constant εs:

Γs = σ̄sEs, q = εsε0∇ · Es. (7)

B. Boundary conditions

In dimensional units, X parametrizes the direction par-
allel to the layers, and Z the direction orthogonal to
them. The anode of the gas discharge is at Z = 0, the
cathode end of the discharge is at Z = dg, and the semi-
conductor extends up to Z = dg + ds. (Below, in dimen-
sionless units, this corresponds to coordinates (x, z) and
z = 0, L, L + Ls.)

When diffusion is neglected, the ion current and the
ion density at the anode vanish. This is described by the
boundary condition on the anode Z = 0:

Γ+ (X, 0, t) = 0 ⇒ n+ (X, 0, t) . (8)
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The boundary condition at the cathode, Z = dg, de-
scribes the γ-process of secondary electron emission:

|Γe (X, dg, t)| = γ |Γ+ (X, dg, t)|

⇒ µene (X, dg, t) = γµ+n+ (X, dg, t) . (9)

Across the boundary between gas layer and semiconduc-
tor layer, the electric potential is continuous while the
discontinuity of the normal electric field is determined
by the surface charge

qb =
(

εsε0Es − ε0Eg

)

· n̂, (10)

where n̂ is the normal vector on the boundary, directed
from the gas toward the semiconductor, i.e., in the direc-
tion of growing Z. The change of surface charge in ev-
ery point (X, t) of the line Z = dg is determined by the
electric current densities in the adjacent gas and semi-
conductor layers as

∂tqb =
(

Γg − Γs

)

· n̂, (11)

where Γg and Γs are the current densities at Z = dg ± 0
in gas and semiconductor. Γs is given in Eq. (7), Γg on
the boundary due to condition (9) is

Γg = eΓ+ − eΓe
Z=dg

= (1 + γ) eµ+n+Eg. (12)

Equations (10)–(12) are summarized as

qb =
(

εsε0Es − ε0Eg

)

· n̂ (13)

= qb|t=0 +

∫ t

0

dt
(

(1 + γ)en+µ+Eg − σ̄sEs

)

· n̂.

This boundary condition is valid in any point (X, t) of
the gas-semiconductor boundary Z = dg.

Finally, a DC voltage Ut is applied to the gas-
semiconductor system determining the electric potential
on the outer boundaries

Φ (X, 0, t) = 0, Φ (X, dg + ds, t) = −Ut. (14)

Here the first potential vanishes due to gauge freedom.

C. Dimensional analysis

The dimensional analysis is performed essentially as in
[19, 20, 21, 22, 23]. However, as it is useful to measure
the time in terms of the ion mobility rather than the
electron mobility, we introduce the intrinsic parameters
of the system as

t
(µ)
0 =

1

α0µ+E0
=

t0
µ

, r0 =
1

α0
, q0 = ε0α0E0. (15)

Here time immediately is measured in units of t
(µ)
0 , while

in [20], first the time scale t0 was used. The intrinsic

dimensionless parameters of the gas discharge are the
mobility ratio µ of electrons and ions and the length ratio
L of discharge gap width and impact ionization length:

µ =
µ+

µe
, L =

dg

r0
. (16)

The dimensionless time, coordinates and fields are

r =
R

r0
, τ =

t

t
(µ)
0

, σ(r, τ) =
e ne (R, t)

q0
,

ρ(r, t) =
e n+ (R, t)

q0
, E(r, t) =

E (R, t)

E0
. (17)

Here the dimensional R is expressed by coordinates
(X, Z) and the dimensionless r by (x, z).

The total applied voltage is rescaled as

Ut =
Ut

E0r0
. (18)

The dimensionless parameters of the semiconductor are
conductivity σs and width Ls:

σs =
σ̄s

µ+q0
, Ls =

ds

r0
. (19)

Note that the dimensionless conductivity is now also
measured on the scale of ion mobility. Dimensionless
capacitance and resistance of the semiconductor and its
characteristic relaxation time are expressed in terms of
these quantities as

Rs =
Ls

σs
, Cs =

εs

Ls
, τs = CsRs =

εs

σs
. (20)

D. Adiabatic elimination of electrons and final

formulation of the problem

The dynamics of a glow discharge takes place through
ion motion where the ions are much slower than the elec-
trons. As in [20], the electrons therefore equilibrate on
the time scale of ion motion and can hence be adiabat-
ically eliminated: After substituting s = σ/µ, the gas
discharge part of the system has the form

µ ∂τs −∇ · (Es) = s|E|α(|E |), (21)

∂τρ + ∇ · (Eρ) = s|E|α(|E |), (22)

∇ · E = ρ − µ s, E = −∇φ, (23)

and in the limit of µ → 0, it becomes

−∇ · (Es) = s|E |α(|E |), (24)

∂τρ + ∇ · (Eρ) = s|E |α(|E |), (25)

∇ · E = ρ, E = −∇φ. (26)

As in [20], the electric field E is now only influenced by
the ion density ρ, and not by the much smaller density of
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fast electrons (since the electrons are generated in equal
numbers, but leave the system much more rapidly), and
the electrons s follow the ion motion instantaneously:
given the electron density on the cathode s(x, L, τ) and
the field distribution E in the gas gap, the electron den-
sity is determined everywhere through (24). The bound-
ary conditions (8) and (9) for electrons and ions are

ρ(x, 0, τ) = 0, s(x, L, τ) = γρ(x, L, τ). (27)

After rescaling, the semiconductor is written as

∇ · E = 0, E = −∇φ, js = σs E , (28)

and the condition (13) for the charge on the
semiconductor-gas boundary becomes

qb

q0
=

(

εsE
∣

∣

z=L+ − E
∣

∣

z=L−

)

· n̂ (29)

=
qb

q0

∣

∣

∣

∣

τ=0

+

∫ τ

0

dτ
(

(1 + γ) ρE
∣

∣

L−
− σs E

∣

∣

L+

)

· n̂.

In the perturbation analysis, the differential form of
charge conservation on the boundary is used

∂τ
qb

q0
=

(

(1 + γ) ρE
∣

∣

L−
− σs E

∣

∣

L+

)

· n̂. (30)

The total width of the layered structure is Lz = L +
Ls. At its outer boundaries z = 0 and z = Lz, the
electrodes are on the electric potential φ (x, 0, τ) = 0 and
φ (x, Lz, τ) = −Ut, respectively. Finally, in the numerical
solutions of the PDEs, lateral boundaries at x = 0 and
x = Lx with periodic boundary conditions for φ, ρ, and
s are introduced.

E. Dimensional and non-dimensional parameters

Our choice of parameters was guided by the exper-
iments in Ref. [3, 4] and taken as previously in [20].
The experiments are performed on a discharge in nitro-
gen at 40 mbar in a gap of 1 mm. The semiconductor
layer consists of 1.5 mm of GaAs with dielectric con-
stant εs = 13.1. The applied voltages were in the range
of 580–740 V. Through photosensitive doping, the con-
ductivity of the semiconductor layer could be increased
by an order of magnitude; the dark conductivity was
σ̄s = 3.2 × 10−8/(Ω cm).

For the gas discharge, we used the ion mobility
µ+ = 23.33 cm2/(V s) and electron mobility µe =
6666.6 cm2/(V s), therefore the mobility ratio is µ =
µ+/µe = 0.0035. For α0 = Ap = [27.8 µm]−1 and for
E0 = Bp = 10.3 kV/cm, we used values from [25]. The
secondary emission coefficient was taken as γ = 0.08.

Therefore the intrinsic scales from (15) are

r0 = 27.8 µm, t
(µ)
0 = 11.6 ns, (31)

q0 = 2.04 · 1012 e/cm3, E0 = 10.3 kV/cm,

the gas gap width of d = 1 mm corresponds to L = 36
in dimensionless units, and the semiconductor width of
ds = 1.5 mm to a dimensionless value of Ls = 54. The
dimensionless applied voltages are in the range of 17.5 ≤
Ut ≤ 50, which correspond to the dimensional range of
500 V ≤ Ut ≤ 1425 V. The dimensionless capacitance of
the semiconductor is Cs = 0.243. We investigate the con-
ductivity range of 6·10−8/(Ω cm) ≤ σ̄s ≤ 6·10−7/(Ω cm)
which corresponds to a semiconductor resistance Rs of
700 to 7000 in the new dimensionless units (or to 2 · 105

to 2 ·106 in the units of our previous papers [19, 20]). For
the lowest conductivity of σ̄s = 3.2 × 10−8/(Ω cm), pat-
tern formation consistently occurs neither in our analysis
nor in the experiment.

III. STABILITY ANALYSIS: METHOD

In this section, the stability analysis of the homoge-
neous stationary state is set up. While in earlier work
[20], only temporal oscillations were admitted, here the
stability with respect to temporal and spatial perturba-
tions is analyzed. In particular, linearized equations are
derived that define an eigenvalue problem, and the nu-
merical solution strategy is discussed. It becomes par-
ticularly demanding for large wave numbers k. This
forms the basis for the derivation of dispersion relations
in Chapter IV.

A. Linear perturbation analysis for transversal

Fourier modes: problem definition

Here the equations are derived that describe linear per-
turbations of the stationary state that is furthermore
homogeneous in the transversal direction, in agreement
with the external boundary conditions. The analysis is
set up as in [20], but now also transversal perturbations
are admitted. The unperturbed equations are denoted
by a subscript 0, they are for µ → 0

∂zj0 = −j0α(E0), where j0 = s0E0, (32)

E0ρ0 + j0 = J0, ∂zJ0 = 0, (33)

∂zE0 = ρ0, ∂zφ0 = −E0, (34)

with boundary conditions

j0(0) = J0, φ0(0) = 0, (35)

j0(L) =
1 + γ

γ
J0, φ0(L) = −U0, Ut = U0 + RsJ0.

Here J0 is the total current and Ut is the applied voltage.
For a further discussion, see [20, 22, 23].

The first order perturbation theory is denoted by a sub-
script 1. As the transversal modes can be decomposed
into Fourier modes with wavenumber k within linear per-
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turbation theory, the ansatz

s(x, z, τ) = s0(z) + s1(z) eikx+λτ , (36)

ρ(x, z, τ) = ρ0(z) + ρ1(z) eikx+λτ , (37)

φ(x, z, τ) = φ0(z) + φ1(z) eikx+λτ . (38)

is used where the perturbation is supposed to be small.
Insertion of this ansatz into the equations for the gas
discharge (24)–(26) yields

∂zs1 = −

(

α(E0) +
∂zE0

E0

)

s1 −
s0

E0
ρ1 (39)

−

(

s0

E0
α(E0) +

∂zs0

E0
+ s0α

′(E0)

)

E1,

∂zρ1 = α(E0)s1 −

(

λ + ρ0 + ∂zE0

E0

)

ρ1 (40)

+

(

s0

E0
α(E0) −

∂zρ0

E0
+ s0α

′(E0)

)

E1,

∂zE1 = ρ1 − k2φ1, (41)

∂zφ1 = −E1. (42)

Here E1 is the field perturbation in the z direction. The
boundary conditions are:

ρ1(0) = 0, φ1(0) = 0 , s1(L) = γρ1(L), (43)

where z = L is the boundary between gas discharge and
semiconductor layer.

In the semiconductor layer, the equation ∆φ = 0 with
the boundary condition φ(Lz) = −Ut at the position of
the cathode Lz = L + Ls has to be solved. For φ1, this
means that we have to solve ∆φ1 = 0 with φ1(Lz) = 0.
This problem is solved explicitly for L ≤ z ≤ Lz by

φ1(z) = C1 sinh(k(z − Lz)), (44)

with the arbitrary coefficient C1. The ’jump’ condition
(29), (30) for the electric field on the semiconductor gas
discharge boundary is expressed as

−C1k cosh(kLs) [λ εs + σs]

=
[

(1 + γ)(ρ0E1 + E0ρ1) + λE1

]

L
, (45)

after qb is eliminated. As the potential (44) is continuous
we get on the boundary z = L− of the gas discharge
region

φ1(L
+) = φ1(L

−) = −C1 sinh(kLs). (46)

Now C1 in (45) can be substituted by φ1(L) through (46).
The result is the second boundary condition at z = L

φ1(L) =
(1 + γ)(ρ0E1 + E0ρ1) + λE1

λ εs + σs

∣

∣

∣

∣

L

tanh(kLs)

k
.

(47)
Now the semiconductor is integrated out, and we are
left with four first order ordinary differential equations
(39)–(42) and four boundary conditions (43), (47) that
together determine an eigenvalue problem for λ = λ(k).

B. New fields lead to compacter equations

It is convenient to write the equations (39) in terms of
the fields h and g

h =
s1

s0
+

E1

E0
and g = E0 E1 (48)

as in [20]. Furthermore, for non-vanishing wave-numbers
k, it is convenient to use charge conservation

0 = ∂τρ + ∇ ·
(

sE + ρE
)

= ∇ ·
(

∂τE + (s + ρ)E
)

(49)

to eliminate particle densities completely in favor of the
z component of the total charge

j1 = λE1 + (s1 + ρ1)E0 + (s0 + ρ0)E1. (50)

This leads to a compacter form of the system (39)–(42):

∂zh = −
α′

E0
g −

k2

E0
φ1, (51)

∂zg = −j0 h −
λ

E0
g + j1 − k2 E0 φ1, (52)

∂zj1 = −k2

(

λ +
J0

E0

)

φ1, (53)

∂zφ1 = −
1

E0
g. (54)

The boundary conditions (43) and (47) are rewritten as:

j1(0) =
λ

E0(0)
g(0) + J0 h(0), (55)

φ1(0) = 0, (56)

j1(L) =
λ

E0(L)
g(L) + J0 h(L), (57)

φ1(L) =
Rs j1(L)

1 + λ τs

tanh(kLs)

kLs
. (58)

Note that in the last equation, the identity (λ εs +σs) =
(1 + λτs)Ls/Rs was used. Note further that the limit of
k → 0 of these equations reproduces the limit of µ → 0
of the analogous 1D equations in [20].

C. Formal solution and numerical implementation

In matrix form, the linearized equations (51)–(54) are

∂z v = Mλ · v, where v(z) =







h
g
j1
φ1






(59)

and Mλ(z) =







0 −α′/E0 0 −k2/E0

−j0 −λ/E0 1 −k2E0

0 0 0 −k2 (λ + J0/E0)
0 −1/E0 0 0






.
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The matrix Mλ(z) depends on wavenumber k and eigen-
value λ. It depends on z through the functions E0(z),
α(E0(z)), and j0(z).

The boundary conditions (55), (56) at z = 0 mean that
the general solution of the linear equation can be written
as a superposition of two independent solutions of (59)

v(z) = c1v
(1)(z) + c2v

(2)(z), ∂zv
(i) = Mλ · v(i),

v(1)(0) =







1/J0

0
1
0






, v(2)(0) =







0
E0(0)/λ

1
0






. (60)

The solution (60) has to obey the boundary conditions
(57) and (58) at z = L as well. Denoting the components

of the solutions as v(i) =
(

h(i), g(i), j
(i)
1 , φ

(i)
1

)

for i = 1, 2,
we get

c1

[

j
(1)
1 −

λ

E0
g(1) − J0 h(1)

]

z=L

+c2

[

j
(2)
1 −

λ

E0
g(2) − J0 h(2)

]

z=L

= 0, (61)

c1

[

Rs j
(1)
1 −

(1 + λ τs) kLs

tanh(kLs)
φ

(1)
1

]

z=L

+c2

[

Rs j
(2)
1 −

(1 + λ τs) kLs

tanh(kLs)
φ

(2)
1

]

z=L

= 0. (62)

These equations have nontrivial solutions, if the determi-
nant

∆(z) = (63)
∣

∣

∣

∣

∣

j
(1)
1 − λ

E0
g(1) − J0 h(1) j

(2)
1 − λ

E0
g(2) − J0 h(2)

Rs j
(1)
1 − (1+λτs) kLs

tanh(kLs) φ
(1)
1 Rs j

(2)
1 − (1+λτs) kLs

tanh(kLs) φ
(2)
1

∣

∣

∣

∣

∣

vanishes at z = L

∆(z = L) = 0. (64)

Now for a fixed k, we start with some initial estimate for
the eigenvalue λ(k) and solve equation (60) numerically
for both initial values. The next estimate for λ can be
found from condition (64) since it is quadratic in λ. This
process is iterated until the accuracy is sufficient. We
used the condition

∣

∣λ(n+1) − λ(n)
∣

∣ /
∣

∣λ(n+1)
∣

∣ < 10−8 for
the n’th iteration step to finish iterations. For the sta-
bility of the iteration process under-relaxation was used.
For the integration of the equations (59), we used the
classic fourth-order Runge-Kutta method on a grid with
500 nodes. The majority of investigated solutions of the
present problem are oscillating, therefore the eigenvalues
λ are complex, and the eigenfunctions v(z) are complex
as well. We have taken this into account by working with
complex fields.

After the eigenvalue λ(k) is found, the eigenfunction is
determined by inserting the ratio

c2

c1
= −

tanh(kLs) Rs j
(1)
1 (L) − kLs (1 + λτs) φ

(1)
1 (L)

tanh(kLs) Rs j
(2)
1 (L) − kLs (1 + λτs) φ

(2)
1 (L)

(65)

into Eq. (60).

D. The numerical strategy for large k

The above method gives reliable results for small val-
ues of k and has been used to derive the results presented
in Sect. IVB. However, for investigating possible insta-
bilities for large wave number k as in Sect. IVA, e.g., for
finding both solution branches for k > O(100) in Fig. 3,
a better strategy is needed.

There are two points where the integration routine has
to be improved for large k. There is first the fact that
the matrix of coefficients is poorly conditioned. This can
be seen by noting that one column is much bigger than
another one. A more precise measure of numerical ill-
conditioning of a matrix is provided by computing the
normalized determinant of the matrix. When the nor-
malized determinant is much smaller than unity, the ma-
trix is ill-conditioned. The normalized determinant is
obtained by dividing the value of the determinant of the
matrix by the product of the absolute values of the vec-
tors forming the rows of the matrix.

The second point is the so-called ‘build-up’ error. The
difficulty arises because the solution (60) requires com-
bining numbers which are large compared to the desired
solution; that is v(1)(z) and v(2)(z) can be up to 3 or-
ders of magnitude larger than their linear combination,
which is the actual solution. Hence significant digits are
lost through subtraction. This error cannot be avoided
by a more accurate integration unless all computations
are carried out with higher precision. Godunov [26] pro-
posed a method for avoiding the loss of significance which
does not require multi-precision arithmetics and which is
based on keeping the matrix of base solutions orthogonal
at each step of the integration.

A modification of Godunov’s method [27], which is
computationally more efficient and which yields better
accuracy, is implemented in the algorithm used for large
k. The main difference to the algorithm described in
Section III C is that here we examine the base solutions
(obtained by any standard integration method) at each
mesh point and when they exceed certain nonorthogo-
nality criteria we orthonormalize the base solution. We
have to start with initial conditions that are orthogonal
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to each other and not only to the boundary conditions:

v(1)(0) =









−1
−1

− λ
E0(0) − J0

0









,

v(2)(0) =









H0

1
λ

E0(0)
+ J0H0

0









,

where H0 = −
1 + λ

E0(0)

(

J0 + λ
E0(0)

)

1 + J0

(

λ
E0(0)

+ J0

) . (66)

Based on the orthogonalization developed in [27], the dif-
ferential equation (59) can be solved very accurately even
for large k, which allows us to find the eigenvalues accord-
ing to the criteria described in the previous section.

Since we must solve the matrix equation (59) several
times for different values of λ, we must insist that the
orthonormalization is the same for all these solutions. In
essence we must insist that the determinant is uniformly
scaled in order for the successive approximations for λ
to be consistent. Numerically this can be accomplished
by determining the set of orthonormalization points and
matrices for the solution corresponding to the first initial
guess for λ and thereafter applying the same matrices at
the corresponding points for all successive solutions.

The program is written in C, and the integration
method is one-step simple Runge-Kutta and on the do-
main L=36 the number of grid points is varied from
n=500 to n=18000 depending on the range of k.

IV. STABILITY ANALYSIS: DISPERSION

RELATIONS

In previous work [20], we have derived bifurcation di-
agrams like the one shown in Fig. 2 indicating where
the homogeneous stationary state becomes unstable to
homogeneous oscillations. Any lateral inhomogeneities
were excluded in this earlier work. We now take this di-
agram as a basis and investigate which additional spatial
or spatio-temporal instabilities can occur.

A. Qualitative behavior: most unstable modes

with k = 0 or k 6= 0

If patterns form spontaneously in the system due to
a linear instability, i.e., in a supercritical bifurcation,
its signature will be found in the dispersion relation
λ = λ(k). More precisely, there will be a band of Fourier
modes with positive growth rate Re λ(k) > 0. If the
instability is purely growing without oscillations, then
Im λ(k) = 0. On the other hand, oscillations cause
the imaginary part of the dispersion relation to be non-
vanishing: Im λ(k) 6= 0.

10 20 30 40 50
0

0.5

1

1.5
x 10

−3

1/
R

s

U
t

Re(λ)>0 

Re(λ)<0 

FIG. 2: The bifurcation line where the homogeneous station-
ary state becomes unstable to homogeneous temporal oscilla-
tions; hence structure formation in the transversal direction
is here excluded. The bifurcation is drawn as a function of Ut

and 1/Rs while all other parameters keep the constant val-
ues described in Sect. II E. We recall that Rs can be varied
by a factor of 10 by photo-illumination. The maximal value
1/Rs = 1.4 · 10−3 in the figure corresponds to Rs = 700.
The present figure reproduces Fig. 10 from [20] with the new
convention for Rs.

FIG. 3: Real part of the dispersion relation for Rs = 700 and
Ut = 23.

Three values of Rs are investigated, namely 700, 1400
and 7000. They correspond to 1/Rs = 1.4 · 10−3, 7 ·
10−4 and 1.4 · 10−4. For these values, the dependence
of the dispersion relation on the applied voltage Ut was
investigated. The stability of the k=0-modes were found
in Fig. 2, now also non-vanishing wave-numbers k are
investigated.

For Rs = 700, a generic shape of the dispersion rela-
tion is presented in Fig. 3. Here a very large range of k
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FIG. 4: Real part of the dispersion relation for Rs = 7000
and Ut = 40.

values is shown on a logarithmic scale. The mode with
the largest growth rate Re λ(k) is the one with vanishing
wave number k = 0 that was already investigated in [20].
It is oscillating in time: Im λ(k) 6= 0.

For k = O(100), the two complex conjugate solutions
λ(k) in Fig. 3 merge and form two solutions with differ-
ing real part and vanishing imaginary part. If the upper
solution would develop a positive growth rate Re λ(k) for
large k, we had found an exponentially growing, purely
spatial instability with short wave length, but we haven’t
found such behavior. Variation of the applied voltage
Ut leads to qualitatively the same behavior: the tempo-
rally oscillating, but spatially homogeneous mode k = 0
has the largest growth rate and is oscillating in time.
Whether this maximal growth rate is positive or negative,
can be read from Fig. 2. The behavior for Rs = 1400 is
qualitatively the same.

Further increase of the semiconductor resistivity to
Rs = 7000 creates a new feature, namely a finite wave
length instability: the growth rate becomes maximal for
some non-vanishing, but very small value of k = k∗, as
can be seen in Fig. 4.

In Fig. 5, this case is investigated further: the real and
imaginary part of the two largest eigenvalues can be seen
for a larger range of k. Up to k ≈ 8, a pair of com-
plex comjugate eigenvalues is found, then two different
branches of purely real eigenvalues emerge. This behav-
ior for larger k is the same as for smaller resistance Rs.

Finally, Fig. 6 shows that the most unstable branch
of eigenvalues approaches Re λ(k) = 0 from below for
k → ∞, but does not develop any positive growth rate.
Clear evidence for positive growth rates of a purely real
eigenvalue for large k has not been found when varying
parameters of the system. If they would exist, they would
indicate a purely growing spatial mode with short wave
length.

The results of this section can be summarized as fol-
lows: within the upper part of Fig. 2, i.e., for small resis-

FIG. 5: Real and imaginary part of the two branches of the
dispersion relation with largest growth rate for the same pa-
rameters as in Fig. 4.

FIG. 6: Real part of the dispersion relation in the limit of
k → ∞ for the same parameters as in Figs. 4 and 5.

tivity Rs, the results on spatially homogeneous temporal
oscillations from [20] apply. In the lower part, the most
unstable mode is oscillating as well, but it has a preferred
finite wave length k > 0.

B. Dependence on gap lengths , resistance, and

feeding voltage

We now investigate how these dispersion relations
change when other system parameters are varied. When
keeping material parameters like gas type and density
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and the dielectricity constant of the semiconductor fixed,
the following physical parameters can be varied: the
widths Ls and L of the semiconductor and the gas
layer, the externally applied voltage Ut and the semi-
conductor resistance Rs by a factor of 10 through photo-
illumination.

Our idea is to start from one point in phase space (pre-
sumably always the same one) and then investigate influ-
ence of above listed physical parameters. Unfortunately,
there are some limitations to this approach. First, pa-
rameter space is huge and therefore, it is practically im-
possible to systematically investigate all possibilities of
dispersion relations behavior. Second, some of these pa-
rameters can not be changed independently. Still, we find
it useful to present here examples on how different pa-
rameters influence dispersion relation with the purpose
to give to experimentalist directions where to search for
certain behavior of the system.

1. Dependence on Ls

In Fig. 7, we fixed conductivity σs = 54/7000 =
7.714 · 10−3 and varied Ls from 10 to 150 in equal steps,
calculating then Rs ∝ Ls and Cs ∝ 1/Ls according to
equation (20) in the section II C. In physical units, the
width of the semiconductor layer was changed from 0.27
mm to 4.16 mm. The other parameters we fixed were
J0 = 1.32 · 10−5 and L = 36, which, together with cho-
sen σs, at Ls = 54 led to the parameters Rs = 7000,
Cs = 0.243 and Ut = 40 as in the previous section in
Figs. 4, 5 and 6.

Here for small Ls maximal growth rate is for k = 0-
mode, but with the increase in Ls, nonzero k becomes
dominant mode, i.e. spatially homogeneous temporal in-
stability shifts towards small k instability when increas-
ing semiconductor width. It is also observed that in
the case of Fig. 3, the most unstable mode can become
nonzero when Ls is increased sufficiently.

For the standard width Ls = 54 the most unstable
mode already had a nonvanishing wavenumber k = k∗,
its growth rate Re λ(k∗) slightly decreases with increas-
ing Ls, approaching a certain limit, while its oscillation
frequency Im λ(k∗) increases. A decreasing Ls, on the
other hand, can shift the most unstable mode back to
vanishing wavenumber k∗ = 0.

Increasing the width of the semiconductor layer actu-
ally means decreasing the capacitance of the system and
increasing the resistivity and the necessary applied volt-
age. Consequently, all that may lead to long wave length
instabilities.

2. Dependence on Rs

In Fig. 8, resistance Rs varies in the interval between
700 and 7000, at fixed J0 = 1.32 · 10−5, while the other
parameters are chosen as in the previous section: L =

0 0.05 0.1
−8
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e(

λ(
k)

)

0 0.05 0.1
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

k

Im
(λ

(k
))

L
s
=10

L
s
=150

L
s
=10

L
s
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FIG. 7: The influence of the width Ls of the semiconductor
layer on real and imaginary part of the dispersion relation
λ(k), for equidistant Ls from the range between Ls = 10 and
150 at J0 = 1.32 · 10−5, L = 36. At Ls = 54, the parameters
are as in Figs. 4, 5 and 6: Rs = 7000, Cs = 0.243, and
Ut = 40.

36, Ls = 54, Cs = 0.243, and Ut = 40 at Rs = 7000.
Therefore, the upper line in Fig. 8 for the Rs = 7000 is
the same as the one in Figs. 4, 5 and 6. This allows us
to follow changes of dispersion relation when resistivity
(and proportionally the feeding voltage) is decreased.

For smaller values of resistivity, growth rate Re λ(k∗)
is always negative, while for larger values we can expect
spatially periodic pattern to emerge. Furthermore, for
the smallest investigated Rs (Rs = 700), when Ut =
16.25, growth rate is always negative as can be seen in
Fig. 8, but when Ut = 23, growth rate is positive (for the
same k range) and has maximum for k = 0 as can be
seen in Fig. 3.

Combining all observations lead to conclusion that in
order to observe spatially periodic patterns one must
search in the range of high resistivity and high feeding
voltages.

3. Dependence on L

Fig. 9 shows for the same parameter values that with
increasing gas gap width L, the growth rate Re(λ(k)) in-
creases and the oscillation frequency Im(λ(k)) decreases,
while the most unstable mode stays nonvanishing: k∗ >
0.
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FIG. 8: The influence of the resistance Rs of the semiconduc-
tor layer on real and imaginary part of the dispersion relation
λ(k) for equidistant Rs from the range between Rs = 700 and
7000. The current is J0 = 1.32 · 10−5. All other parameters
are as in Figs. 4, 5 and 6: L = 36, Ls = 54, Cs = 0.243, and
Ut = 40 at Rs = 7000.

0 0.05 0.1
−6

−4

−2

0

2

4

6
x 10

−4

k

R
e(

λ(
k)

)

0 0.05 0.1

5

6

7

8

9

10

11

12

13

14

x 10
−3

k

Im
(λ

(k
))

L=40

L=30

L=30

L=40

FIG. 9: The influence of the width L of the gas gap on real
and imaginary part of the dispersion relation λ(k) for L =
30, 31, 32, . . . , 40. The current is J0 = 1.32 · 10−5. All
other parameters are as in Figs. 4, 5 and 6: Rs = 7000,
Cs = 0.243, Ls = 54, and Ut = 40 at L = 36.

4. Dependence on Ut

Figure (10) shows how the most unstable wavenum-
ber k∗ and real and imaginary part of the corresponding
eigenvalue depend on the feeding voltage Ut at differ-
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(a) 

(c) 

(b) 

FIG. 10: (a) Most unstable wavenumber k, (b) real part and
(c) imaginary part of the corresponding eigenvalue λ(k) as a
function of the total voltage Ut for Rs = 700, 1400, 7000.
The change of Rs can be achieved by photo-illumination.

ent dimensionless resistivities Rs = 700, 1400 and 7000.
The curves begin where the applied voltage Ut equals the
Townsend breakdown voltage [22, 23, 25].

Fig. (10)(a) shows that for small Ut, the most unstable
wavelength is always non-vanishing, and it decreases for
growing Ut until it vanishes exactly beyond some critical
Ut. Fig. (10)(b) shows that the growth rate Re λ of the
most unstable mode can still be negative in the range
of dominant finite wave lengths. This explains why the
finite wave length instabilities were not seen in Sect. IVA
for small Rs. In Fig. (10)(c), it can be seen that the most
unstable modes are always oscillating in time.
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τ = 7920

τ = 8160

τ = 8040

τ = 8280

FIG. 11: Profiles and contour lines of electron and ion particle
densities s = σ/µ and ρ in the discharge region, and electric
field component Ez in discharge and semiconductor region at
time steps τ = 7920, 8040, 8160, 8280 for Ut = 46.4 and
Rs = 7000. x and z coordinates are as in Fig. 1 and the text.
For each time step, the data is represented as a 3D plot in
the upper row and as a contour plot in the lower row.
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V. NUMERICAL SOLUTIONS OF THE INITIAL

VALUE PROBLEM

A. Implementation and results

The full dynamical problem was also solved numeri-
cally as an initial value problem. This allows us on the
one hand to test the results of the stability analysis, on
the other hand, to study the behavior beyond the range
of linear stability analysis. Details of the numerical im-
plementation are given in the appendix.

We study the case of high resistivity Rs = 7000 that
leads to spatial pattern formation as discussed above.
Two values of the applied potential were investigated:
Ut = 23.7 where the homogeneous stationary state is
stable, and Ut = 46.4 where this state is unstable and
the fastest growing mode is an oscillating one with finite
wavenumber k∗.

In the transversal direction, we use periodic boundary
conditions. We choose the lateral extension Lx as a mul-
tiple of the most unstable wave length 2π/k∗. After some
tests with higher multiples showing essentially the same
behavior, we used Lx = 2× 2π/k∗. The initial condition
is

ρ(x, z, 0) = ρ0(z) + C ρ1(z) eik∗x + c.c., (67)

where k∗ is the wavenumber of the most unstable mode,
ρ0(z) is the stationary solution, and ρ1(z) is the eigen-
function for k = k∗ constructed in Sect. III C. The con-
stant C is chosen such that the perturbation is small
compared to ρ0(z). Note that we need to specify the
initial conditions for the ion density only, since electron
density and field are determined by it.

Figure 11 shows about one period of oscillation within
4 time steps for the pattern forming case (Ut = 46.4).
For each instant of time, the rescaled electron density
s = σ/µ and the ion density ρ are shown in the gas
discharge region, and the electric field is shown both in
the gas discharge and the semiconductor region. The
upper row contains 3D plots and the lower row contour
plots. The figures show the characteristic electron and
ion distribution of a glow discharge, but with a strong
spatio-temporal modulation.

The temporal period predicted by linear perturbation
theory is 528. This is agrees approximately with the nu-
merical results. On the other hand, the destabilization
of the homogeneous stationary state in Fig. 11 is already
far developed and in the fully nonlinear regime. There-
fore the results of the stability theory at this time give
only an indication for the full behavior. In particular, the
nonlinearity has created an onset to doubling the spatial
period that is absent for small perturbations.

For presenting the evolution in time, the spatial struc-
ture has to be represented on a line rather than in
the full (x, z)-plane. Obviously, the ion density on
the semiconductor-gas-interface (x, L) is an appropriate
quantity, since it characterizes the local intensity of the
discharge glow in the transversal direction. Figures 12

FIG. 12: Evolution of ion density at the internal border z = L
for Ut = 23.7 and Rs = 7000 as a function of the transversal
coordinate x and time τ . Note that time τ increases towards
the back.

FIG. 13: The same as in the previous figure, but now for
Ut = 46.4. Temporal snapshots in the full (x, z)-plane of the
same numerical experiment can be found in Fig. 11.
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FIG. 14: Temporal evolution of the transversally averaged
electric field and of the spatial modulation of the field at the
internal border z = L for Ut = 23.7 and Rs = 7000: (a)
log(Eh(τ ) − E0(L)) and (b) log Es(τ ) as a function of τ .

and 13 show the complete temporal evolution in such
a presentation. Fig. 12 presents data of a perturbation
decaying towards the stationary homogeneous state for
Ut = 23.7, while Fig. 13 shows the growing destabiliza-
tion of the homogeneous stationary state for Ut = 46.4;
the late stage of this evolution was shown in Fig. 11.

B. Comparison of numerical and stability results

When one wants to compare results of the numerical
simulation and of the stability analysis, the evolution of
different spatial modes has to be extracted from the sim-
ulation. Appropriate quantities are the transversally av-
eraged electric field on the gas-semiconductor interface

Eh(τ) =
1

Lx

∫ Lx

0

Ez (L, x, τ) dx, (68)

and the spatial modulation of the field

Es(τ) = max
x

Ez(L, x, τ) − min
x

Ez(L, x, τ). (69)

These quantities, or rather the logarithms of
Eh(τ) − E0(L) and of Es(τ) are shown for the stabilizing
case Ut = 23.7 in Fig. 14, and for the destabilizing case
Ut = 46.4 in Fig. 15.

In this logarithmic plot for the fields, the lines through
the maxima are approximately straight, which means
that the growth is exponential. For the destabilizing case,
the growth rate of the spatial mode Es(τ) is slightly larger
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FIG. 15: The same as in the previous figure, now for Ut =
46.4.

than that of the homogeneous mode Eh(τ) which implies
that the most unstable mode has a non-vanishing wave
number k∗: Re[λ(k∗)] > Re[λ(0)]. Furthermore, at late
stages when the dynamics is beyond the range of linear
perturbation theory and becomes nonlinear, the growth
of all modes accelerates.

Figs. 16 and 17 show a quantitative comparison
between stability analysis and computational results.
Fig. 16 shows the stabilizing case Ut = 23.7. The sta-
bility analysis predicts that k∗ = 0.050 is the most un-
stable mode; it has the eigenvalue λ(k∗) = −0.2807 ·
10−3 + 0.4320 · 10−2 i. Therefore, the period of the tem-
poral oscillations is predicted as 2π/Im(λ) = 1454, the
characteristic decay time as 1/Re(λ) = 3563, and the
characteristic wave length as 2π/k∗ = 126. This pre-
dicted behavior is shown as the dashed line in the upper
panel of Fig. 16. The solid lines show the numerical solu-
tion, more precisely the time evolution of the ion density
ρ(x, L, τ) evaluated on the grid nodes in the range be-
tween x = 0 and x = Lx/4 on the gas-semiconductor
interface z = L. Period and growth rate agree quantita-
tively, therefore both simulations and stability analysis
can be trusted.

The predictions on the k=0-mode are tested in the
lower panel of Fig. 16: here the transversal extension
of the simulation system was chosen so narrow that
transversal modes had no space to develop: the width
was taken as Lx = 2π/(100k∗) where k∗ is the most un-
stable wave length. In this case, only the k = 0-mode
can grow, it has λ(0) = −0.3547 · 10−3 + 0.7102 · 10−2 i.
The plot again shows a very good agreement between
stability analysis and simulation, now effectively for the
one-dimensional case.

Finally, in Fig. 17 again the destabilizing state for Ut =
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FIG. 16: (Color online) Comparison of results of the PDE
solutions (solid lines) and of the stability analysis (dashed
line). Ion density ρ at the computational nodes between x = 0
and x = Lx/4 of the internal border z = L as a function of
time for Ut = 23.7 and Rs = 7000.

46.4 is shown. The stability analysis predicts the most
unstable wave number k∗ = 0.0267 and its eigenvalue
λ(k∗) = 0.4615 · 10−3 + 0.1191 · 10−1 i. The two panels
show again the predicted and the simulated oscillations
in a laterally wide system allowing the formation of the
k∗-mode, and in the narrow system that only has space
for the k=0-mode. Again, the agreement is convincing.

At this point, the numerical calculations are tested.
This should be the starting point for new simulation pre-
dictions in the nonlinear regime that are not accessible
by stability analysis.

VI. CONCLUSIONS AND DISCUSSIONS

We have investigated the spatio-temporal pattern for-
mation in a semiconductor-gas discharge system with the
simplest model possible. Only the drift motion of elec-
tron and ion densities is taken into account, and the elec-
trons are adiabatically eliminated. The semiconductor is
approximated as a linear Ohmic conductor, and nonlin-
ear effects come in only through the space charges of the
ions in the gas discharge gap and through the surface
charges on the gas-semiconductor interface.

Results of the linear stability analysis of the homoge-
neous stationary state and of the full numerical simula-
tion of the initial value problem are presented. The choice
of parameters is guided by the experiment described in
[4]; they are summarized in Sect. II E. In the experiment
[4], the resistance of the semiconductor can be changed
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FIG. 17: (Color online) The same as in the previous figure,
now for Ut = 46.4.

by a factor of 10 by photo-illumination without changing
any other system parameter. It is seen that the system
never relaxes to a spatially structured time-independent
state, but depending on the resistance, it either forms a
homogeneous oscillating or a spatially structured oscil-
lating state. These spatially structured oscillating states
actually appear at high resistivity of the semiconductor
layer.

The results of our stability analysis agree with these
experimental observations: no unstable modes at a large
wavenumber k were observed where the instability would
be purely growing (Im(λ(k))=0) and finally saturating.
All most unstable modes were oscillating and had a small
or vanishing wave number k. Furthermore, when increas-
ing the applied voltage Ut for fixed Rs = 700 or 1400,
a spatially homogeneous temporal instability occurred,
while for the large resistivity Rs = 7000, it was spa-
tially structured, in agreement with experiments. Fur-
thermore, the thesis [6] reports that when increasing the
voltage Ut for fixed large resistance Rs, first a state with
wide “diffuse” moving bands occurs, before the blinking
filaments described in [4] set in. These stripes are likely
to correspond to the instabilities with large wave length
2π/k∗ predicted by our stability analysis, though no ex-
perimental data is available that would allow a quantita-
tive comparison. It is interesting to note that the physi-
cal mechanism of these “diffuse” bands has nothing to do
with particle diffusion, but only with the Laplacian na-
ture of the created electric fields. For further predictions
on the parameter dependence of the linear instability, we
refer to Section IVB.

Finally, our numerical solutions of the initial value
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problem show good agreement with linear stability anal-
ysis within its range of validity. First of all, this proves
the correct implementation of both methods. Second, for
larger amplitudes, new spatial structures appear such as
the spatial period doubling in Fig. 11. For Rs = 7000
and Ut = 40, these oscillations actually have been seen
to be reach a limit cycle that corresponds to a standing
wave. Of course, it should be noted that the 2D approach
is only justified in the regime of linear stability theory.
Nevertheless our 2D-calculations also give a qualitative
picture of the full nonlinear 3D dynamics.

We remark finally that only the simplest possible
model with nonlinear space charge effects was investi-
gated. Of course, the model can be extended by various
additional effects, but obviously the simple model already
contains all relevant physics to predict the onset of pat-
tern formation in the experimental system.
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APPENDIX A: NUMERICAL PROCEDURE

Here we describe the numerical method used for solv-
ing the initial value problem numerically. The compu-
tation is based on a finite-difference technique to solve
equations (24)–(26) with boundary conditions (27)–(30)
and periodic boundary conditions in the transversal di-
rection.

The computational domain is a rectangular region
[0, Lx]×[0, Lz] on a two-dimensional Cartesian coordinate
system (x, z), which consists of two layers – gas and semi-
conductor, see Figs. 1 and 18. We use a uniform vertex-
centered grid in the ’vertical’ z-direction with nodes

zj = j∆z, ∆z =
Lz

N
, j = 0, 1, · · · , N

and a uniform cell-centered grid with nodes

xi =

(

i −
1

2

)

∆x, ∆x =
Lx

M
, i = 1, 2, · · · , M

FIG. 18: Computational domain and computational cell.

on the ’horizontal’ x-direction. The grid is spaced such
that the internal interface between semiconductor and
gas region lies exactly on the grid line.

The densities s = σ/µ and ρ and the electric potential
φ are evaluated on the nodes of the grid, while the x and z
components of the electric field (Ex and Ez, respectively)
are calculated on the surfaces of the computational cell
(Fig. 18).

To obtain a finite-difference representation of equa-
tions (24) and (25), we first integrate them over the cell
volume xi−1/2 ≤ x ≤ xi+1/2, zj−1/2 ≤ z ≤ zj+1/2. Let
us consider in detail the equation for the ions (25). After
its integration, we come to

dρj,i

dτ
=

(Ex ρ)j,i−1/2 − (Ex ρ)j,i+1/2

∆x
+

(Ez ρ)j−1/2,i − (Ez ρ)j+1/2,i

∆z
+ fj,i . (A1)

The subscripts i and j are related to x (transversal) and
z (longitudinal) directions respectively and f stands for
the source term of Eq. (25).

The choice of ρj±1/2,i and ρj,i±1/2 at the surfaces of the
computational cell determines the concrete discretization
method for the convective terms of Eq. (25). We used the
third-order upwind-biased scheme (see, e.g., [28], p. 83),
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which in z- and x-direction is given by

(Ezρ)j+1/2,i =
1

6

[

E+
z j+1/2,i (−ρj−1,i + 5ρj,i + 2ρj+1,i)

+E−

z j+1/2,i (2ρj,i + 5ρj+1,i − ρj+2,i)
]

,

(Exρ)j,i+1/2 =
1

6

[

E+
x j+1/2,i (−ρj,i−1 + 5ρj,i + 2ρj,i+1)

+E−

x j,i+1/2 (2ρj,i + 5ρj,i+1 − ρj,i+2)
]

.

(A2)

Here, the electric field components are

E+
... = max

[

0, E...

]

, E−

... = min
[

0, E...

]

,

and E = −∇φ is discretized as

Ez j+1/2,i = −
φj+1,i − φj,i

∆z
,

Ex j,i+1/2 = −
φj,i+1 − φj,i

∆x
. (A3)

For the numerical time integration, we used the ex-
trapolated second order BDF2 method, see [28], p. 204,
[29], p. 197, whose variable step size version has the form

ρm −
(1 + r)2

1 + 2r
ρm−1 +

r2

1 + 2r
ρm−2

=
(1 + r)

1 + 2r
∆τm (2Fm−1 − Fm−2) , m ≥ 2, (A4)

where the superscript m denotes the time τm with
step size ∆τm = τm − τm−1 and step size ratio r =
∆τm/∆τm−1. Here F contains the discretized convective
terms and a source term. Note that we have dropped spa-
tial indices in Eq. (A4). Since the two-step method needs
ρ0 and ρ1 as starting values, the explicit Euler method

ρm = ρm−1 + ∆τm F (τm−1, ρ
m−1) (A5)

is used for the first step m = 1. Because of the explicit
time integration, we are restricted by the standard CFL
stability condition.

The same space discretization technique and time in-
tegration method are used also for the electron density

equation (24) that contains no temporal derivative. Note
that in this case the z-direction plays the role of ’time’
in (A4) and (A5).

To obtain a finite-difference approximation for Pois-
son’s equation (26), we use the traditional second order
discretization:

−
φm

j,i−1 − 2φm
j,i + φm

j,i+1

(∆x)2
−

φm
j−1,i − 2φm

j,i + φm
j+1,i

(∆z)2

=

{

0 , gas-discharge layer,
ρm−1

j,i , semiconductor layer.
(A6)

This equation is valid everywhere except at the gas
semiconductor interface where one has to account for a
finite surface charge as well as for a discontinuity of the
dielectricity constant. On this interface, the discrete ver-
sion of the ’jump’ condition (29) is used instead of (A6).
The system of resulting difference equations is solved by a
symmetrical successive over-relaxation method (SSOR),
see [30], p. 343.

The complete numerical procedure was organized as
follows. For every new (m + 1)th time step, first Pois-
son’s equation was solved using the known ion density ρm

and surface charge value qm
b in the jump condition (29),

determining the electric field components in the new time
step. Second, the electron density in the new time step
sm+1 was calculated. This determined the source term
in the continuity equation for ions. Third the ion density
ρm+1 was calculated, which finally determined the new
value for the surface charge in (29).

The numerical convergence was checked by performing
several calculations with different error tolerance param-
eters for Poisson’s equation, using refinement of the space
grid, and different time stepping parameters. The num-
ber of grid nodes used in the calculations was 52 × 361
in the x and z directions, respectively, for the potential
in the whole gas discharge - semiconductor region, and
54 × 147 in the x and z directions for the particle densi-
ties in the gas discharge region. When solving Poisson’s
equation, the iteration process is stopped when the rela-
tive error is ‖φ(k+1) − φ(k)‖/‖φ(k+1)‖ < 5 · 10−7.
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