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Abstract

We consider a data assimilation problem for imperfect models. We

propose a novel shadowing-based data assimilation method that takes

model error into account following the Levenberg-Marquardt regulariza-

tion approach. We illuminate how the proposed shadowing-based method

is related to the weak constraint 4DVar method both analytically and nu-

merically. We demonstrate that the shadowing-based method respects the

distribution of the data mismatch, while the weak constraint 4DVar does

not, which becomes even more pronounced with fewer observations. More-

over, sparse observations give weaker influence on unobserved variables for

the shadowing-based method than for the weak constraint 4DVar.

Key words: model error; data assimilation; shadowing; weak constraint;
variational data assimilation

1 Introduction

A data assimilation method [8] combines a solution of a physical system model
with measurement data to obtain an improved estimate for the state of a physical
system. In this paper we study problems for which the system model is discrete
in both space and time and contaminated by model errors

xn+1 = Fn(xn) +Qn, xn ∈ R
m, n = 0, . . . , N − 1, (1)

where Fn : Rm → R
m and Qn is some unknown model error drawn from a

Gaussian distribution with zero mean and covariance matrix Cm. We assume
Fn to be C3 for all n. Let the sequence X := {X0, . . .XN} be a distinguished
orbit of (1), referred to as the true solution of the model, and presumed to
be unknown. Suppose we are given a sequence of noisy observations y :=
{y0, . . . yN} related to X via

yn = H(Xn) + ξn, yn ∈ R
d, n = 0, . . . , N, (2)
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where H : Rm → R
d, d ≤ m, is the observation operator, and the noise variables

ξn are drawn from a normal distribution with zero mean and known observa-
tional error covariance matrix Co. The goal of data assimilation is to find
u = {u0, u1, . . . , uN}, un ∈ R

m, such that the differences ‖yn − H(un)‖ and
‖un+1 − Fn(un)‖, n = 0, . . . , N are small in an appropriately defined sense.

The data assimilation problem may be solved through algorithms known
as variational data assimilation methods, see [1] for a recent review of oper-
ational data assimilation. Those methods are based on minimization of cost
functions. We assume that N is big enough so that the contribution of a so-
called background cost function is negligible. Denote ‖v‖M :=

√
vTM−1v and

as a convenient abuse of notation denote Co (Cm) as a block diagonal matrix
with N + 1 identical blocks equal to the covariance matrix Co (Cm). Then we
define the observation cost function

Jo =
1

2
‖H(u)− y‖2Co

, (3)

and the model cost function

Jm =
1

2
‖G(u)‖2Cm

, (4)

where G(u) is the mismatch functional defined as

G(u) =











G0(u)
G1(u)

...
GN−1(u)











, Gn(u) = un+1 − Fn(un), n = 0, . . . , N − 1. (5)

Then a so-called strong constraint 4DVar problem [16] minimizes the ob-
servation cost functions (3) under the constraint that a model orbit should be
satisfied, G(u) = 0. Thus the strong constraint 4DVar is only applicable for
the models without model errors. When model error is present, one should
consider a so-called weak constraint 4DVar problem [17], which in the state
space formulation minimizes the sum of the observation (3) and model (4) cost
functions.

The data assimilation problem may also be solved using shadowing-based
methods. A shadowing data assimilation method known as pseudo-orbit data
assimilation (PDA) [3] solves a problem of minimizing 1

2‖G(u)‖2I . In order to
stay close to observations, PDA is initialized at observations and the minimiza-
tion is approximately solved using a fixed number of gradient descent steps. The
PDA methods have also been applied to the weak constraint problem with the
most recent approach [4] to still apply gradient descent to 1

2‖G(u)‖2I , but only
taking a limited number of steps using a stopping criterion.

Another shadowing-based approach to data assimilation is introduced in [2]
and named here Newton shadowing. It is concerned with finding a root of the
mismatch functional G(u) rather than a minimum of a cost function, but with
observations being an initial guess. It originates from numerical analyses to im-
pose bounds on numerical errors approximations of pseudo-orbits of dynamical
systems [5]. Newton shadowing is, however, limited to models without model
errors. In this paper, we develop a shadowing-based data assimilation method
for models with model errors. We adopt a regularization approach to find a
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solution of an imperfect model constrained by observations, namely an iter-
ative regularizing Levenberg-Marquardt approach [6]. This method has been
applied to data assimilation problems [7], though to stably minimize (3) under
a strong constraint. The “classical” iterative regularizing Levenberg-Marquardt
approach starts at a solution of a perfect model and aims at finding a solution
of an optimization problem close to observations. This approach depends on a
regularization parameter and a stopping criterion. According to Morozov’s dis-
crepancy principle, the regularization parameter can be determined uniquely.
For noise-free observations and under some regularity conditions, the conver-
gence theory guarantees that an iterative solution converges to a model orbit
satisfying the observations exactly, when the number of iterations goes to in-
finity. For noisy observations, the stopping criterion chosen according to the
discrepancy principle guarantees that at a finite iteration the distance between
an iterative solution and the minimum is smaller that the distance between
the initial guess and the minimum. In the present study, we start at obser-
vations and aim at finding a solution of an imperfect model. Determining the
regularization parameter uniquely and imposing an appropriate stoping crite-
rion, we ensure the correctly distributed data mismatch. We call this approach
weak constraint shadowing and compare it to the weak constraint 4DVar both
analytically and numerically.

The paper is organized as follows: we first recall the Newton shadowing data
assimilation method in Section 2, then introduce the weak constraint shadowing
data assimilation in Section 3. In Section 4 imperfect models are described and
in Section 5 results of the numerical experiments with the imperfect models are
discussed. Conclusions are drawn in the last section.

2 Newton shadowing data assimilation

In this section we describe Newton shadowing for strong constraint data as-
similation developed in [2]. Newton shadowing finds model orbits close to ob-
servations by employing Newton’s method for root searching of the mismatch
functional G(u) initialized at observations. Suppose u is an ε-orbit in a neigh-
borhood of a hyperbolic set for F , namely ‖Gn(u)‖ < ε, n = 0, . . . , N−1, where
‖ ·‖ is a norm in R

m. The shadowing lemma (e.g. Theorem 18.1.2 of [11]) states
that, for every δ > 0 there exists ε > 0 such that u is δ-shadowed by an orbit
of F , i.e. there exists an orbit x satisfying G(x) = 0 such that ‖un − xn‖ < δ
for all n = 0, . . . , N . For example, let F be the exact time-τ flow map of an
autonomous ODE ẋ = f(x). If the components of u are the iterates of a numer-
ical integrator with local truncation error bounded by ε, then these define an
ε-orbit of F . Shadowing refinement [5] employs the pseudo-orbit as an initial
guess for G(u) = 0 and, as opposed to proving the existence of a nearby zero of
G, iteratively refines the pseudo-orbit to obtain an improved approximation of
a true solution. The inverse problem to shadowing is to determine an optimal
initial condition u0 for a numerical integration, such that the numerical iterates
u δ-shadow a desired orbit of ẋ = f(x).

Denoting by k the index of the Newton’s iteration, we have at k = 0 u = y

and we seek an update δ(k) by approximately solving

G(u(k) + δ(k)) = 0. (6)
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We then update using u(k+1) = u(k)+δ(k). The solution to (6) is approximated
by iterating

G′(u(k))δ(k) = −G(u(k)), u(k+1) := u(k) + δ(k) (7)

to convergence. We solve each Newton’s step using the right pseudo-inverse of
G′, i.e.

δ(k) = −G′(u(k))†G(u(k)) = −G′T (G′ G′T )−1G.

The function G(u) has a zero for every orbit of the model. The Jacobian of G
has a m(N − 1)×mN block structure:

G′(u) =











−F ′
0(u0) I

−F ′
1(u1) I

. . .
. . .

−F ′
N−1(uN−1) I











.

We remark that through the use of the pseudo-inverse, for every Newton step,
δ(k) is the minimum 2-norm solution to (7).

3 Weak constraint shadowing data assimilation

Before we introduce weak constraint shadowing, we lift the Newton shadowing
assumption of the observation operator being the identity. We introduce com-
pleted observations, where the existing observations are completed with long
time ”climatological“ averages. Then the observation covariance matrix Co is
also completed by using the covariance of the completed observations.

3.1 Levenberg-Marquardt regularization

It is our aim to use an iterative regularization method to modify the Newton
shadowing into a weak constraint shadowing data assimilation method. We
propose using the Levenberg-Marquardt iteration

δ(k) = −CoG
′T (u(k))

(

G′(u(k))CoG
′T (u(k)) + α(k)Cm

)−1

G(u(k)), u(k+1) = u(k)+δ(k),

(8)
for α(k) > 0. Under some regularity conditions and algorithms for choosing
α(k), convergence to a model orbit can be proven as k → ∞ [6]. We remark
that if Co = I and we choose α(k) = 0, for all k, then (8) reduces to the Newton
shadowing (7). If Cm = Co = I and we choose α(k) → ∞, for all k, then (8)
reduces to the gradient descent algorithm of [10].

Dropping the trajectory dependency and iteration index for notational con-
venience, we rewrite (8) into a minimization problem. Assuming Cm and Co are
invertible, we have in exact arithmetic

δ = −CoG
′T (G′CoG

′T + αCm)
−1G

≡ −(G′TC−1
m G′ + αC−1

o )−1(G′TC−1
m G′ + αC−1

o )CoG
′T (G′CoG

′T + αCm)
−1G

≡ −(G′TC−1
m G′ + αC−1

o )−1(G′TC−1
m G′CoG

′T + αG′T )(G′CoG
′T + αCm)−1G

≡ −(G′TC−1
m G′ + αC−1

o )−1G′TC−1
m (G′CoG

′T + αCm)(G′CoG
′T + αCm)

−1G

≡ −(G′TC−1
m G′ + αC−1

o )−1G′TC−1
m G,
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which implies that
G′TC−1

m (G′δ +G) + αCoδ = 0. (9)

Introducing back the index notation and trajectory dependency, the solution
δ(k) to (9) is the minimizer of

1

2
‖G′

(

u(k)
)

δ(k) +G
(

u(k)
)

‖2Cm
+

α(k)

2
‖δ(k)‖2Co

and u(k+1) = u(k) + δ(k).

(10)
At the first iteration the weak constraint shadowing is identical to the weak
constraint 4DVar, when initialized at the full observations. As the iteration
proceeds it, however, becomes distinct since (10) does not stay fixed throughout
the iteration.

3.2 Parameters choice

The regularization parameter α(k) can be determined uniquely by imposing that
for some 0 < ρ < 1 α(k) is the smallest non-negative scalar satisfying

ρ−1‖δ
(

α(k)
)

‖Co
≤

√
Nd− ‖H(u(k))− y‖Co

, (11)

where we made the dependency of the update step δ on the parameter α(k)

explicit. In practice we fix ρ and search for α(k) in a sequence {0, 2ν} for ν ∈ N

by computing ρ−1‖δ
(

α(k)
)

‖Co
and accepting the update if (11) is satisfied. At

the next iteration (k + 1) we do not start from zero but rather from a previous
α(k).

For the stopping criterion we require that the distance between analysis and
observations remains bounded. Denoting the principal square root of the obser-

vational precision by C
− 1

2

o , C
− 1

2

o (H(X)− y) is distributed according to a stan-
dard normal distribution. In particular, E(‖H(X)−y‖2Co

)/Nd = 1 and when the
number of observations is large enough we may assume ‖H(X)−y‖2Co

)/Nd ≈ 1
with high probability. Thus we stop the algorithm at the minimum k for which
‖H(u(k))− y‖2Co

)/Nd > r for a predefined parameter r close to 1.

3.3 Comparison to the weak constraint 4DVar

We compare weak shadowing to weak constraint 4DVar following [9]. The max-
imum likelihood principle assumes that both model mismatches G(u) and the
observation mismatches H(u) − y are independent Gaussian variables. The
weak constraint 4DVar derived based on the maximum likelihood principle pro-
vides, however, a solution such that the model mismatches G(u) depend on the
observation mismatches H(u)− y as

H ′T (u)C−1
o (H(u)− y) = −G′T (u)C−1

m G(u). (12)

Therefore we compare the weak shadowing to the weak constraint 4DVar in

terms of distributions of C
−1/2
o (H(u)− y) and of C

−1/2
m G(u) for normally dis-

tributed C
−1/2
o (H(X)− y) and C

−1/2
m G(X) at the true trajectory X .
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4 Imperfect Models

We assume that a perfect model is given by equation (1) with Qn =
√
Cmηn,

where ηn is drawn form the normal distribution. The imperfect model is given
by equation (1) with Qn = 0. The imperfect and perfect models are related to
each other as the Euler and the Euler-Maruyama discretisation of an ODE or
an SDE with Brownian motion, respectively.

4.1 The double-well model

The stochastic double-well model has been used to test variational data assim-
ilation in [15]. It is described by

xn+1 = xn + τ
(

xn(1− x2
n)
)

+
√
τσmηn, (13)

where we choose the time step of the numerical discretization τ = 0.05 and the
model error Cm = τσ2

m with scalar σm. It has two stable equilibria at x = ±1
and one unstable equilibrium at x = 0. For sufficiently small stochastic noise,
the model (13) stays near one of the stable equilibria for most of the time. Over
long times, however, transitions between two stable equilibria occur. In the
absence of the stochastic noise, transitions do not occur. This means that no
orbit of the imperfect model is able to shadow the perfect model over long times.

4.2 The Lorenz 63 model

A stochastic version of the Lorenz 63 (L63) model [12] has been used in a data
assimilation context in [14]. It is given by

x1
n+1 = x1

n + τ10(x2
n − x1

n) +
√
τσmη

1
n,

x2
n+1 = x2

n + τ(28x1
n − x2

n − x1
nx

3
n) +

√
τσmη

2
n,

x3
n+1 = x3

n + τ(x1
nx

2
n − 8/3x3

n) +
√
τσmη

3
n,

where we use the standard parameter values, time step τ = 0.005 and scalar
σm.

4.3 The Lorenz 96 model

We also consider a stochastic version of the Lorenz 96 (L96) model [13] given
by

xl
n+1 = xl

n+τ(−xl−2
n xl−1

n +xl−1
n xl+1

n −xl
n+8)+

√

Cmη
l
n, l = 1, . . . , 15, (14)

where we use the standard parameter value for the forcing, time step τ = 0.005,
dimension size 15, and spatially correlated Cm

Cm = τσ2
m



















0.5 0.25 0 · · · 0 0.25
0.25 0.5 0.25 0 · · · 0
0 0.25 0.5 0.25 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 0.25 0.5 0.25
0.25 0 · · · 0 0.25 0.5



















(15)

with scalar σm.
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Method Iterations Jo/Nd Jm/Nm 2 (Jo + Jm) /N(d+m)
NA Shadowing 2± 0 0.516± 0.008 0.050± 0.002 0.565± 0.009
Shadowing 6.8± 0.6 0.492± 0.001 0.062± 0.005 0.554± 0.005
W4DVar 4.3± 0.5 0.365± 0.006 0.133± 0.003 0.499± 0.008

Table 1: Results for the stochastic double well model averaged over 100 experi-
ments and with standard deviations. The cost functions Jo and Jm are defined
in equations (3) and (4) respectively. NA Shadowing stands for Non-Adaptive
Shadowing.

5 Numerical experiments

We use a spin-up of 5 time units for a true trajectory to reside on the attractor.
We perform 100 numerical experiments with different truth and observation
realizations in order to check the robustness of the results. We initialize the weak
constraint 4DVar with (completed) observations, unless specified otherwise. The
minimization of the cost function of the weak constraint 4DVar is done by a
Matlab built-in Levenberg-Marquardt algorithm and stopping when the relative
change in the cost function compared to the initial value is less then 10−6. To
find an adaptive α(k) for the weak constraint shadowing we fix ρ = 0.8 and
r = 0.99. We also check the performance of the weak constraint shadowing
when α(k) ≡ 1, for all k, as this decreases the number of iterations.

5.1 Stochastic double well

For numerical experiments with the stochastic double well model we use N =
4000. We choose σm = 1 and take observations at each time step with Co = 0.16.
The histograms of the observation and model mismatches are shown in figure 1
for both the weak constraint shadowing and the weak constraint 4DVar. We
see that the weak constraint 4DVar overfits both distance to the observations,
though only slightly, and the model mismatch; while the weak constraint shad-
owing is overfitting only the model mismatch. In table 1, we show the mean and
standard deviation over 100 experiments for the number of iterations, the obser-
vation cost function (3), the model cost function (4), and the total cost function.
Results are given for the weak constraint 4DVar, the weak constraint shadow-
ing with adaptive α and the weak constraint shadowing with fixed α ≡ 1. We
observe that adaptive shadowing is outperforming the weak constraint 4DVar
but demands more iterations. By fixing α ≡ 1 the shadowing results get only
slightly worse but the number of iteration decreases considerably.

5.2 Stochastic Lorenz 63

For numerical experiments with the stochastic L63 model we use N = 2000 and
observe only the x1 coordinate every time step with observation error σ2

o . The
completed observations are obtained by averaging x2 and x3 of the determin-
istic L63 model over 2 × 107 time steps, (x2 x3)T = (0.1015 24.3515)T . The
observation covariance matrix is completed by the covariances of the long-time
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Figure 1: Histogram of the normalized data (left) and model (right) mismatches
from the shadowing method (top) and the weak constraint 4DVar (bottom), for
the stochastic double well model. In red we plot the standard normal distribu-
tion for reference.
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Figure 2: Histogram of the normalized data (left) and model (right) mismatches
from the shadowing method (top) and the weak constraint 4DVar (bottom), for
partially observed stochastic L63 model. In red we plot the standard normal
distribution for reference.

trajectories of x2 and x3 and is

Co :=





σ2
o 0 0
0 82.9135 0.3134
0 0.3134 67.2204



 ,

assuming there is no temporal correlation and no correlation between non-
observed states and the observation. We choose σ2

o = 0.05 and τσ2
m = 0.6.

In figure 2, we see that the shadowing method ensures the distances to obser-
vations are distributed approximately correctly, while the model mismatch is
overfitted. For the weak constraint 4DVar both distance to observations and
model mismatch are overfitted. Moreover, the model mismatch is not Gaussian
distributed for either method.

Comparing the methods in table 2, we observe that the weak constraint
4DVar overfits the total mismatch as well. Shadowing takes only one iteration
more on average compared to the weak constraint 4DVar. Fixing α to one does
not decrease the number of iterations substantially, though increases the overfit,
which could be improved by tuning r. We performed the same experiments but
with observations every 10 time steps by completing the observations every
unobservable time step. As we did not see qualitative differences compared to
observing every time step, we omit the results here.
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Method Iterations Jo/Nd Jm/Nm 2 (Jo + Jm) /N(d+m)
NA Shadowing (r = 0.9) 3.7± 0.5 0.54± 0.08 0.10± 0.01 0.41± 0.02
NA Shadowing (r = 0.99) 4± 0 0.6± 0.02 0.09± 0.003 0.43± 0.01
Shadowing 6.2± 0.6 0.494± 0.002 0.101± 0.005 0.398± 0.007
W4DVar 5.1± 0.3 0.064± 0.002 0.145± 0.005 0.249± 0.008

Table 2: Results for the partially observed stochastic L63 model averaged over
100 experiments and with standard deviations. The cost functions Jo and Jm
are defined in equations (3) and (4) respectively. NA Shadowing stands for
Non-Adaptive Shadowing with different values of r in brackets.

Method Iterations 10Jo/Nd Jm/Nm 2 (Jo + Jm) /N(0.1d+m)
NA Shadowing (r = 0.9) 3.2± 0.5 0.50± 0.06 0.03± 0.01 0.09± 0.03
NA Shadowing (r = 0.99) 3.7± 0.6 0.59± 0.06 0.03± 0.01 0.08± 0.02
Shadowing 6.5± 0.7 0.498± 0.002 0.03± 0.01 0.08± 0.02
W4DVar (Bg) 55± 29 0.017± 0.002 0.014± 0.003 0.028± 0.005
W4DVar (Obs) 49± 20 0.017± 0.002 0.011± 0.002 0.023± 0.003

Table 3: Results for the partially observed stochastic L96 model with obser-
vations every 10 steps, averaged over 100 experiments and with standard de-
viations. The cost functions Jo and Jm are defined in equations (3) and (4)
respectively. We adjust the cost function normalization, namely Nd 7→ 0.1Nd
to take into account the sparsity in time of the observations. NA Shadow-
ing stands for Non-Adaptive Shadowing with different values of r in brackets.
W4DVar (Bg) stands for initialization at background and W4DVar (Obs) stands
for initialization at observations.

5.3 Stochastic Lorenz 96

For numerical experiments with the stochastic L96 model we use N = 1000 and
observe x1, x6, and x11 coordinates every 10th time step with observation error
σo = 0.01. The competed observations are averages of 2 × 106 time steps of
the deterministic L96 model. For the model error we choose σm =

√
20. In

figure 3, we see that the shadowing method provides the correct distribution for
the data mismatch, while the weak constraint 4DVar drastically underestimates
its variance.

In table 3, we observe that the weak constraint 4DVar takes an order of
magnitude more iterations to converge than the shadowing method, independent
of initialization. The weak constraint 4DVar overfits both the data and the
model mismatch. Adaptive shadowing, on the other hand, provides the best
data mismatch distribution and takes only 6 iterations on average. When fixing
α to one and tuning r, an equivalent result can be achieved in even less iterations.

When so little data is given, data assimilation is not expected to give accu-
rate results for unobserved variables. However, their behavior is of importance
due to desirable dynamical consistency. Therefore we perform a long-time data
assimilation experiment with N = 105. Computing a distance between the true
solution X and a solution u, namely ‖X −u‖2I/N(m− d), a long-time average
for the deterministic L96 model gives 18.8, the weak constraint 4DVar 22.7, and
the shadowing method 16.5. This mainly reflects that the distance to the orig-
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Figure 3: Histogram of the normalized data (left) and model (right) mismatches
from the shadowing method (top) and the weak constraint 4DVar (bottom), for
partially observed stochastic L96 model. In red we plot the standard normal
distribution for reference.
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Figure 4: Histogram of all the unobserved variables for a partially observed
long trajectory of stochastic L96. The weak constraint 4DVar is in red, and the
shadowing method is in blue. The initial guess is in black.

inal ”true” state is not a good measure of the performance of data assimilation
algorithms for the weak constraint problem. Instead, we study the distribu-
tion of unobserved variables. The width of this distribution signifies how far
an analysis deviates from the initial guess, which is a long-time average for the
deterministic L96 model and is 2.31 in this case. In particular, it can be seen
in figure 4 that the weak constraint 4DVar produces any pseudo-trajectory for
the unobserved components. This pseudo-trajectory, however, is not particu-
larly close to the truth. For the shadowing method, the unobserved variables
do not significantly deviate from the initial background guess, which is shown
as a black line. This is related to the stability of the shadowing method with
respect to perturbations in the initial condition. Therefore, with little mean-
ingful information on the unobserved variables the shadowing method provides
a solution that is both stable with respect to the noise realization and a good
reflection of the lack of knowledge.

6 Conclusions

We proposed a data assimilation method for imperfect models. The method is
based on combination of numerical shadowing, a weak constraint formulation,
and regularization. Numerical shadowing ensures stability with respect to ob-
servational noise, the weak constraint formulation introduces model error in the
method, and Levenberg-Marquardt regularization prevents overshooting in the
estimation. The appropriately chosen regularization parameter together with

12



a data mismatch stopping criterion guarantees that the data mismatch is cor-
rectly distributed. We demonstrated that the shadowing method is successful
for observations that are sparse both in space and in time.

We compared the proposed weak constraint shadowing-based method to
the weak constraint 4DVar both analytically and numerically. We pointed out
that they are identical only at the first iteration. Numerical experiments with
stochastic models of double well, Lorenz 63, and Lorenz 96 confirmed analytic
results that the shadowing method always estimates accurately distributions of
the data mismatch. The weak constraint 4DVar, on the contrary, gives poor es-
timations of the data mismatch distributions, which become more deficient with
fewer data. Moreover, unobserved variables only weakly deviate from an initial
guess for the shadowing method, while strongly for the weak constraint 4DVar
without being particularly close to the true trajectory. This is an advantage of
the shadowing method, as sparse observations should not influence model states
that are far away from the observation locations.

With respect to the model mismatch distributions, both the shadowing
method and the weak constraint 4DVar perform poorly. This could be improved
in the shadowing method by applying “classical” Levenberg-Marquardt regular-
ization with a model mismatch stopping criterion. Then one gets the correct
model mismatch distribution but at a price of misestimating the data mismatch
distribution. As the goal of this study was to be close to accurate observations
rather than to erroneous model estimations, this approach is unsuitable.

Future work will consist of further development of the shadowing method
to use approximate adjoint models, generalizing the method to an ensemble
approximation, and applying it to structurally incorrect models.
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