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Abstract. We introduce JCC-H, a drop-in replacement for the data and
query generator of TPC-H, that introduces Join-Crossing-Correlations
(JCC) and skew into its dataset and query workload. These correlations
are carefully designed such that the filter predicates on table columns in
the existing TPC-H queries now suddenly can have effects on the value-
, frequency- and join-fan-out-distributions, experienced by operators in
the query plan. The query generator of JCC-H is able to generate para-
meter bindings for the 22 query templates in two different equivalence
classes: query templates that receive “normal” parameters do not expe-
rience skew and behave very similar to default TPC-H queries. Query
templates expanded with the “skewed” parameters, though, experience
strong join-crossing-correlations and skew in filter, aggregation and join
operations. In this paper we discuss the goals of JCC-H, its detailed
design, as well as show initial experiments on both a single-server and
MPP database system, that confirm that our design goals were largely
met. In all, JCC-H provides a convenient way for any system that is
already testing with TPC-H to examine how the system can handle
skew and correlations, so we hope the community can use it to make
progress on issues like skew mitigation and detection and exploitation of
join-crossing-correlations in query optimizers and data storage.

1 Introduction and Motivation

The past four decades of research into data storage and indexing, query exe-
cution and query optimization have yielded many research contributions, but
also impacted a wealth of systems in broad ICT use, whose reach significantly
surpasses database systems alone, as shown by the popularity of big data frame-
works, such as Spark, for data science, ETL, machine learning and stream
processing, which at heart are also powered by these techniques.

Benchmarks have helped significantly to quantitatively evaluate the proper-
ties of such techniques and have arguably played an important role in maturing
the state-of-the-art in systems. By now, a scalable data management system
with a SQL-like query language needs to meet a high bar of user expectations,
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set by previous database systems, and also codified in a number of database
benchmarks that it will be expected to be able to run. Significant benchmarks
that have influenced the field of analytical database systems are TPC-H [1],
TPC-DS [9], the Star Schema Benchmark [8] and BigBench [5].

Database benchmarks use synthetic data produced by data generators. This
allows controlled generation of any desired dataset scale-factor (SF), which is use-
ful for scalability analysis; yet regrettably so far this synthetic data has been rife
with uniformity, in terms of (a) value distributions, (b) frequency distributions
and (c) join fan-out distributions.! Any practitioner knows that in deployed use,
as opposed to in benchmark tests, database systems face data that is typically
skewed in all these aspects. To make matters worse, in real data, data tends to
be highly correlated. A well known example of correlation would be a CAR(brand,
model) table, where the predicate brand = Porsche and model = Panamera are cor-
related: after the selection on Panamera, there is 100% certainty that remaining
tuples are Porsche. This type of correlations was long elusive for query optimizers
using the independence assumption, but thanks to ample CPU power nowadays
available, cardinality estimation is increasingly done by executing predicates on
table samples, which catches any correlation within a single table. It was recently
confirmed [7] that faulty cardinality estimation is the main problem for join-order
optimization (which arguably is the most important query optimization prob-
lem), and as such the frontier for systems and for database research into this are
correlations not within the same table, but across different tables. To continue
the example, in a join of Panameras towards a SALES(date, price, brand, type)
table, the optimizer would probably mis-estimate the cardinality of extract (year
from date) between 2000 and 2010 because the Panamera was introduced only
in 2009. Between different referenced items, there can be a hugely different num-
ber of join partners (e.g. Panamera vs Golf or iPhones vs. Nokia handsets, lately).
These sales examples exemplify Join-Crossing-Correlations (JCC), which is as
far as we know a poorly supported aspect of reality in current data manage-
ment systems, and certainly unsupported in the current generation of database
benchmarks.

In this paper we describe a non-invasive variant of the well-known TPC-
H benchmark, that makes it a much harder benchmark to execute effi-
ciently by introducing join crossing correlations and skew in its data and
queries. As we explained above, a join-crossing-correlation means that values
occurring in tuples from one table, can influence the behavior of operations
(joins, filters,aggregations) involving data from other tables, in a query that joins
these tables. Barring the recent Interactive Workload for the LDBC Social Net-
work Benchmark (SNB [3]), which is focused on short-running graph traversal
queries rather than ad-hoc OLAP queries, there do not exist database bench-
marks that test join-crossing correlations; and none that contain join skew.

! The join fan-out distribution is the distribution of amount of join partners for values
in a primary key (PK) column, towards a particular foreign key (FK) column.
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The goals of JCC-H are as follows:

1. To be a drop-in replacement of TPC-H in terms of data generator and query
generator. The only difference being a single flag -k, that when passed to
dbgen generates skewed/correlated data, and for gqgen generates the skewed
query variants (see point 5). The advantage of being a drop-in replacement
is that many existing products and research prototypes already have TPC-
H testing suites that can be leveraged, and also, the nature of the TPC-H
queries is already well-understood by their development teams [1].

2. To introduce severe skew in all foreign key joins: for each referencing table,
25% of all tuples refer to just a handful of PKs (typically: 5). Having a handful
of very frequent values is a known practical issue and one of the effects it
causes is that if table partitioning is used, then the partition in which such
a frequent value happens to fall will be larger than others. Another effect is
that when joining or aggregating in a shuffled fashion, the worker responsible
for the frequent values will be overloaded (receive a lot of network traffic, and
have a lot of CPU work), which will lead to poor load balancing, unless specific
anti-skew measures are taken by the system. A deterioration of speedup when
e.g. comparing single-core to parallel execution is a good indication of the
adverse effects of skew.

3. To correlate the join-fan-out skew created by our modifications to the data
generator to (join-crossing) filter-predicates in the query. The correlation is
carefully generated to create as much effect as possible on the existing 22
query templates. This required a thorough understanding of all 22 TPC-
H queries and drawing up a plan how each query, given its existing filter
predicates, could be affected by join-crossing correlations.

4. To be able to generate different query parameters that cause the queries to
touch different data but behave identically performance-wise. Having such
multiple parameter bindings for usage in concurrent query stream tests is a
useful benchmark feature, as it helps guard against inflating the score of an
ad-hoc query benchmark using query result caching: a query variant can be
executed multiple times in a (throughput) test run, with different parameter
bindings, but with equivalent results in terms of performance, so the results
remain comparable.

5. To create for all or most of the 22 TPC-H queries two query variants:> one
normal variant whose behavior closely resembles the behavior of the query
on default TPC-H and one skewed variant that causes the skew to surface
during runtime.

6. To make the single-table statistics of the columns from which the query para-
meters are derived look innocuously uniform. That is, it should force the
query optimizer to understand join-crossing-correlations for it to predict that
a different parameter value leads to very different behavior, as the values
(used in equi- or range-comparisons) have similar frequencies in the column
accessed by the filter predicate.

2 Asin [6] the two variants stem from exactly the same query template: the only thing
that makes them different are the parameters that get pasted into the template.
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7. To design the “skewed” parameter bindings such that evaluating the query
takes typically much more effort than for a “normal” parameter binding. It
has been observed that for systems, workload scheduling could be eased if
queries that affect very large volumes of data (“whale” queries, as opposed
to normal “fish” queries) could be detected and handled differently. However,
due to errors in cardinality estimation (which are often caused by join-crossing
correlations and skew [7]) this is non-trivial.

A very important non-goal in JCC-H is to make TPC-H more “realistic”,
as has been done for instance in [2] by having the order-customer distribution
over nations more real-life-like. While this may also interesting, we think that
correlations that lead to unexpected and severe skew is a phenomenon that has
been observed in practitioner lore so often that we consider introducing such
correlation and skew a more important step in making TPC-H more “realistic”
than trying to have the value and frequency distributions of it regions, nations,
suppliers, customers, and orders to resemble real life more closely.

In order to fulfill all goals above, we must introduce skew and correlations
primarily based on the predicates found in the 22 queries of TPC-H rather than
on any overarching realism concerns.

This paper is organized as follows: in Sect.2 we provide a detailed design
of the JCC-H benchmark, while in Sect.3 we describe our experiments we ran
on multiple database systems, both single-server and MPP. In Sect. 4 we outline
future work and conclude the paper.

2 Benchmark Design

In the remainder we assume the reader to be familiar with the TPC-H bench-
mark, and if not, advise the reader to first study its specification and/or [1].

In the JCC-H data generator we make use of bijective permutation functions
based on a linear permutation polynomial, as also described in [4]. Given a key
domain K €]0..N), and a fixed, chosen, prime number P, these functions find a
number X where X * P mod N = 1. This number is easily found using linear
search and leads to a hash function: h(K) : K« P mod N. This is a perfect hash
in that it delivers an outcome € [0..N). Further, the function can be inversed
simply using h~*(H) : H x X mod N. The hash function can be made more
random by adding and subtracting a constant: h(K) : (K * P+ C') mod N and
h=(H): (H+ N — C) * X mod N. This is slightly different from [4], in that
instead of (H —C) we do (H + N — C) and choose C' < N such that (H+ N —C)
never underflows. This allows to use the fast C/C++ % operator (which is not
a pure mod, but just a remainder).

We chose to modify the existing TPC dbgen, rather than to write a new data
generator from scratch. The reason is that we want the tool to be an exact drop-in
replacement, with exactly the same options and functionality. The TPC-H dbgen
is arguably of a dated design, but it can generate data in parallel, or rather, it
can generate all of its main tables in pieces, and thus with scripting that starts
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multiple data generators generating different pieces at the same time, parallelism
is achieved (in a way that is independent of the parallelism framework).

In order to introduce correlations and skew, in the data generator we decide
what to generate based on the identity of the tuple we are generating. The TPC-
H dbgen does this by passing the primary key of the table to the routine that
generates the record. This number fulfills a similar function as the random seed
used in modern parallel data generators such as PGDF [4]. PDGF introduces
the concept of hierarchical seeds that follow the schema as the seed of each table
referenced by a parent table depends on the seed of the parent. The issue of table
dependencies is only partially addressed in TPC-H, because dbgen generates the
part and partsupp tables at the same time, as well as orders and lineitem. For our
purposes, though, this does not generate enough context to insert all correlations,
and therefore we designed an elaborate mechanism of dependencies that start
with orderkey and propagate down to all other keys, as described next.

2.1 Join Skew and Aggregation Skew

In JCC-H we have introduced join skew in all major joins®:

c-n there are 25 nations, evenly divided in 5 regions. We identify for each region
a “large” nation to which 18% of all customers belong, and 4 “small” nations
to which 0.5% of customers belong (5* (18 +4*0.5) = 100). The h(c_custkey)
determines to which, by dividing the hash range in regions proportional to
these percentages, as displayed in the left side of Fig. 1. Further, each large
nation has one customer (the first in the hash range) that is a “populous
customer”: it will have very many orders. These populous customers have
a special country nation code in their c_phone phone numbers (the first two
digits have values 40,50,60,70,80 — normally country codes in TPC-H are
<40), to make them recognizable in Q22.

s-n similar to customer, suppliers are mapped to nations based on h(s_suppkey).
There are also 5 populous suppliers, but they are not marked with a correlated
column (which we did with c_phone).

o-c there are 5 populous orders, namely those with h(o_orderkey) <5; these
orders will have very many lineitems. They are recognizable in that their
o_comment contains the string “Imine2 3gold4”. For the other orders, in 25% of
the cases a populous customer key is chosen (the decision is made determined
by h(o-orderkey), in the other cases a normal customer is chosen). In all
cases, the customer is chosen in such a way that h(o_orderkey) determines
in which region the customer is located. Thus, by knowing o_orderkey, the
data generator knows from which region the customer stems. We choose the
customers from only 100K * SF out of the total 150K * SF customers, because
in default TPC-H, one third of customers also does not have any orders.

3 In this paper, we abbreviate the foreign key joins of TPC-H (and JCC-H) using the
first letters of the table name (ps for partsupp to distinguish it from p for part). For
example, with I-o we mean the join between linetem and orders.
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ps-p according to our targets, 25% of partsupp should refer (via ps_partkey)
to only 5 distinct parts. This mean every such part must have many
distinct suppliers. But even if we take all suppliers, this would give
5* 10K *SF =50K *SF different partsupps. Since (ps_partkey,ps_suppkey)
must be unique, we use 20 populous parts, which link with all suppliers:
20 x 10K * SF = 200K * SF, i.e. 25% of partsupp (whose size is 800K * SF).

ps-s For all non-populous parts, we generate three partsupps, i.e. choose three
suppliers. This is done using a dependency of ps_suppkey on h(ps_partkey).
We create an affinity between h(ps_partkey) and the supplier region. The
three combinations are generated with three different formulas (called class-
A, class-B and class-C suppliers), which guarantee that for a given partkey,
class-A, B, C suppliers are distinct. To be exact, class A selects a populous
supplier (which is always from a large nation) from the affinity region. Class-B
selects a supplier from a small nation from the affinity region. Class C selects
a supplier from a large nation from a distinct region. These three suppliers
are evidently from different nations and therefore distinct.

l-o according to our target, 25% of the lineitem tuples have just 5 distinct
1 orderkey values. For this, the 5 populous orders must consist of a lot
of items (300K *SF).* To generate these, we use the 15 higher populous
parts, and generate all suppliers from a large nation in a different region.
As this amounts to (15 parts) * (0.8 * 5 regions) * (0.8 * 0.2 * 10K * SF suppli-
ers) = 96K * SF, we fall short of the desired 300K * SF lineitems. Therefore, we
repeat this sequence 3.2 times to get there. The skewed lineitems that we gen-
erate like this, have a few extra characteristics: 1_quantity = 51 (just above
the normal maximum value), 1_shipmode = “REG AIR”, 1_shipinstruct =
“DELIVER IN PERSON” and 1_returnflag = R.

I-ps Given that 25% (i.e. 0.25 * 6000K * SF = 1500K * SF) of the lineitems belong
to populous orders, the other 1500K * SF-5 orders must consist of 3 lineitems
(3*1500K * SF = 4500K * SF). For each of the 3 lineitems in an order, we must
generate a partsupp reference. The two latter partsupps are so-called class-B
partsupps, generated from a random partkey. The first partsupp in each non-
populous order is the populous supplier matching the customer region, paired
with one of the 5 populous parts (the one with matching region affinity). As
such, all these first lineitems form just 5 different partsupp combinations,
which is what we want for l-ps join skew.

Please note that when generating a table, we often choose a foreign key
based on certain dependencies or conditions. These dependencies are computed
in the hashed space of the parent key, and lead to choosing a hashed child key.
For instance, as described above (o-c) in the generation of orders, we choose a
customer such that from the orderkey we know the customer region (e.g. #region
= h(o_custkey) mod 5). In order to actually generate a key (e.g. o_custkey) we
use the inverse hash function h=!(). This exploits the property in TPC-H that

4 A huge order indeed, and realism is not our primary target. However, if one orders
all parts of an entire airplane, or aircraft carrier, it might still be realistic ;-).
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the key space is dense, so given any number H in [0..N) then h=!(H) must be a
valid, existing key. The only exception to this rule are in fact orderkeys: there are
holes in the space of orderkeys that TPC-H uses to generate inserts and deletes.
However, JCC-H never needs to compute an orderkey as it is the root of the key
hierarchy, therefore this is not an issue.

Finally, we introduce some correlated columns in the part table, for popu-
lous parts (p(p_partkey) < 20). These have p_brand = “Brand#55”, p_size = 1,
p_container = “LG BOX”, p_type = “SHINY MINED GOLD” and p_name =
“shiny mined gold”. Just doing this would introduce rather infrequent values for
the latter two columns, as they would occur only 20 times. This would be easily
picked up by the query optimizer in those TPC-H queries that have equality
predicates on p_type and p_name. In order to hide these values in the statistics,
we also give some non-populous parts these values, such that all individual col-
umn frequency distributions remain uniform. However, we guarantee that no
non-populous parts have multiple of these values. Thus, only when selecting on
a conjunction of these, the 20 populous parts will come out. This hiding of infre-
quent combinations is an example of a “simple” anti-correlated columns inside
the same table. The fact that only 20 results come out, might be found by a
multi-column histogram or using sampling (though likely the sample would be
too small to contain a populous part). Still, even if query optimizers could detect
this, this would only be stage one, as the second stage is to recognize the very
different join-fan-out in the ps-p join that these populous parts have.

2.2 Filter Skew

In TPC-H the date dimension has a uniform value distribution. There is in fact
a correlation between o_orderdate and the lineitem dates (the latter dates are
within four months of the former). But, during the years, orders and lineitems
are generated at the same pace.

JCC-H introduces a so-called Black Friday, which is one day in the year
where there are many more orders. We actually chose to have this on Memorial
Day, which is a fixed day (May 29), and on this day, 50% of all orders are
placed. Please recall that absolute realism is a non-goal of JCC-H. But, we do
want to test the effects of strong time skew in table generation. After generating
o_orderdate we use the normal TPC-H mechanism to generate all lineitem dates
based on it, so they follow after it within four months.

All 5 populous orders (25% of lineitem) are generated on Black Friday. Hence,
even more than 50% of lineitems get ordered on Black Friday, because also 50% of
the non-populous orders are from that date. This is done by moving a fraction of
non-populous orders from their original random date to the Black Friday of that
year. However, we do not do this in 2 out 7 the years, namely 1995 and 1996 (so
25%+5/7*50% of 75% =52% of lineitems was ordered on Black Friday). The
reason is that 1995 and 1996 should be sanctuaries from join skew. These two
years appear as constants (non-parameters) in default TPC-H Q7 and Q8. Recall
that we want to generate two sets of parameter bindings: skewed bindings and
normal bindings. By omitting generation of skew (i.e. class-A) in the lower 75%
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of lineitem (the area labeled “small orders from same-region suppliers” in Fig. 1)
during 1995-1996, we make it possible to avoid the o-c, l-c, and l-ps join skew
by choosing date ranges from 1995 and 1996.

2.3 Query Parameter Generation

We now discuss how the JCC-H version of qgen substitutes parameter values
into the 22 TPC-H query templates. We generate for each template parameters
for two query variants [6]: one normal set of parameters where JCC-H tries to
behave as close as possible to default TPC-H (no correlations, uniform distribu-
tions) and a skewed set of parameters, where all forms of correlation and skew
come into play. Skewed variant generation is triggered using the -k flag of qgen.

Q1 because the query has no joins and is well-known for its full-scan behavior
(it selects more than 95% of lineitem) and has few group-by values in the aggre-
gation, there is no real opportunity for join-, aggregation- or filter-skew, so Q1
was left unmodified. Both normal and skewed queries use default parameters.

Q2 is a p-ps-s join with a p_type LIKE predicate. For the “skewed” query variant
we set the parameter to suffixes of “SHINY MINED GOLD” (of at least 6 char-
acters, e.g. “%INED GOLD”. The “normal” parameters use default bindings.
The effect of this is that skewed queries will select populous parts, and normal
parameters non-populous parts.

Q3 has a date range that is lower-bounded on o_orderdate and upper-bounded
on 1l shipdate. Please recall that 1_shipdate is always within four months of
o_orderdate. Certain existing database systems that take join-crossing statistics
into account and store the tables clustered or partitioned on date, will be able
to unify these bounds on both lineitem and orders into bounded ranges in both
tables (e.g. using MinMax indexes and noting which MinMax ranges of rows in
orders and lineitem join with each other). This is the case already in TPC-H.
For the “skewed” query variants, we always choose a date range in 1993 around
Black Friday. This will include the populous order from 1993°, and thus join skew
in l-o. For the “normal” variants, the date range lies in 1995. For orders from
this date, there is no join skew in 1-o and o-c. Please be aware that if a system
uses table partitioning for lineitem, then the 5 partitions (or less) in which the
populous orderkeys happen to fall will be larger than the rest. Therefore, the
“normal” query variant will also experience scan-skew just for that reason, even
if the tuples turn out to be not selected by the query. If additional measures are
taken, such as clustering within the partition on a date, or sub-partitioning on
date, then all other table areas than those corresponding to 1995 will be skipped,
e.g. using partition pruning or by exploiting MinMax indexes. In that case, the
“normal” variants of Q3 can avoid all skew.

5 Because there are seven years (1992-1998) and 5 populous orders, there are two
years without populous order and these are 1995 and 1996.
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Q4 contains a 3-month range restriction on o_orderdate. For the “skewed” query
variant, this range is picked from the years 1993 and 1994. For the “normal”
variant from 1995 and 1996, which avoids the 1-o join skew.

Q5 identical to Q4, except that the range is one year long.
Q6 identical to Q5, except that 1_shipdate is involved.

Q7 in default TPC-H, there is a hard-coded (non-parametrized) two-year range
restriction on 1_shipdate. In JCC-H, the range boundaries become parameters,
but for the “normal” query variant retain their old value (1995-1996). In the
“skewed” variant the range is 1993-1994. The existing parameters are two nation
names (between which trade is measured). In the “skewed” variant we pick two
different large nations (from different regions, because there is only one large
nation per region in JCC-H). For the “normal” variant, we pick two small nations
from the same region. As has been described previously under 1-ps join skew (and
depicted in Fig. 1), the class-B partsupps match up suppliers from small nations
with customers from the same region (10% of which are from a small nation,
2% out of 20%). Hence the two variants both produce results, but their joins
traverse disjunct joined tuples, where the “skewed” variant will hit strong o-c,
l-o, l-ps join skew, but the “normal” variant not.

Q8 similar to Q7, the hard-coded date restriction on 1995-1996 (on o_orderdate)
was turned into a parameter that for the “normal” query variant remains 1995—
1996 and for the “skewed” variant is 1993-1994. In that case, the p_type equi-
restriction becomes “SHINY MINED GOLD”. This will select populous parts,
hence focus on join-skew. This skew is absent in 1995-1996.

Q9 contains all joins, and only has a pname LIKE restriction. Similar to Q2, it
is set to a suffix of “shiny mined gold”, for the “skewed” query variant.

Q10 the “normal” variant selects a 3-month o_orderdate interval starting on a
day in the first two months of 1995 (this means it misses Black Friday, which in
JCC-H is on May 29), and there is no join skew. The “skewed” query variant
uses other years than 1995-1996 (so there is join skew) and uses a week enclosing
Black Friday.

Q11 the “normal” variant uses a small nation whereas the “skewed” variant uses
a large nation.

Q12 the “normal” variant uses a l-year 1.receiptdate restriction of 1995 or
1996, whereas the “skewed” variant uses 1993-1994 and includes “REG AIR” in
the 1_shipmode restriction.

Q13 the “normal” variant in the o_comment NOT LIKE restriction uses a varia-
tion of “%1mine2%3gold4%” where any of the digits can be omitted. This will
eliminate all populous orders. The “skewed” query variant uses the normal para-
meter bindings.

Q14 and Q15 the “normal” query variant uses a 3-month 1_shipdate restriction
in 1995 or 1996 that excludes the months May-August, whereas the “skewed”
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variant uses 1992, 1993, 1994, 1997 or 1998 where the range includes these four
months (hence it experiences both Black Friday filter skew and join skew).

Q16 the “skewed” query variant makes sure that the p_size IN range includes
1, whereas the “normal” variant ensures it never includes it. In both cases,
asking for p_brand in-equality on “Brand#55” is avoided. The result is that the
“skewed” variant homes in on the populous parts, whereas the “normal” query
variant only select non-populous parts.

Q17 the skewed variant ask for p_brand = “Brand#055” and p_container = “LG
BOX” with an identical effect as in Q16.

Q18 this query cannot be easily parametrized, so a WHERE 1_quantity < :2
parametrized restriction in the inner subquery was added, that in the normal
case limits until 50 (which in default TPC-H is always the case) and in the
skewed case until 100, so it will include the lineitems with join-skew (which have
value 51 there).

Q19 the “skewed” variant restricts p_brand in the last disjunction to “Brand#55”
and 1 _quantity to a range that includes 51. The effect is similar to Q16.

Q20 the “normal” variant uses a 1-year 1_shipdate restriction of 1995 or 1996,
whereas the “skewed” variant uses 1993-1994 and includes prefix of “shiny mined
gold” in the 1_name LIKE restriction.

Q21 the “normal” variant uses a small nation whereas the “skewed” variant uses
a large nation.

Q22 the “skewed” variant include the c_phone area codes 30, 40, 50, 60, 70, 80
in the IN restriction, which selects populous customers. The “normal” variant
uses the default parameter values which never will select such a customer.

Single-server MPP

default

skewed
o
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cum time OUt e
time  s—

cum_time time — ot —

Fig. 2. Query 9: l-ps join load balance comparing JCC-H “skewed” with TPC-H
“default” behavior on single-server and MPP systems (X-axis is workload per core).



114 P. Boncz et al.

3 Experiments

We ran experiments on Actian Vector (VectorWise) on a single-server machine
and also using its MPP version VectorH (Vector on Hadoop) on a small cluster
with relatively slow network. We also ran experiments on a faster cluster with
Hive. The single-server machine is a dual-socket Intel Xeon E5-2650 v2 @ 2.60
GHz with in total 32 vCores (16 real), 256 GB RAM and four disks in RAIDO.
The disk configuration is not very relevant as all our results are with the data
cached in-memory. The slow cluster consists of 16 nodes, each having a single-
socket small machine i5-4590S CPU @ 3.00 GHz (4 vCores each), a single 1 TB
magnetic disk and 16 GB of memory and 1 Gb ethernet. Actian Vector was ver-
sion 5.1 and VectorH version 4.2. We used Hive 1.2.2 (Tez 0.8.5) and the fast
cluster it ran on consisted of 8 nodes of each dual Intel Xeon X5660CPUs, 48 GB
RAM, and 10 Gb ethernet. In all cases, the OS is Linux and both clusters ran
Hadoop 2.7.3.

The Vector and VectorH results are listed in Table 2. Figure 3 summarizes
the single-server numbers by normalizing query runtimes towards the default
TPC-H query runtimes of the specific parallelism level (i.e. single-threaded or
using 16 cores). We can observe at first that the green and blue bars, expressing
runtimes of the ‘normal” query variants, are always near 1, which means they
behave very similar to the default TPC-H queries they are normalized to. This
is an important requirement to fulfill goal 5.

Furthermore we can observe, comparing the “normal” queries with the
“skewed” ones, that skewed query variants take significantly more effort to run
than normal ones. One reason for this absolute difference is that indeed the
skewed variant selects more data (goal 7: “whale” queries).

The disparity between normal and skewed gets worse when using all 16 cores.
We have looked into detailed query profiles to establish the reasons for this. In
certain cases, like Q2, Q17 and Q20, the reason is wrong optimizer choices in the
“skewed” query variant. This is caused by cardinality estimates which are very
much off due to the optimizer missing the join-crossing predicate correlations.
When looking at the profile of the skewed variant of query 17 in detail, we can
notice these estimation failures. The selection on part returns 20 tuples, which is
about 0.1% of the estimated cardinality, but as we know, these are the “whale”
tuples of the part relation. As a consequence, joining lineitem with these heavy
hitters produces 1000 times more tuples than estimated. Aggregating on this
join result produces again just 0.03% of estimated tuples, which is also a result
of the wrong initial estimation on the part selection. So the used query plan does
not seem to be the optimal one. Alternatively, in Q2 and Q20, the decision of
query parallelization seem wrong. The system we test with determines the paral-
lelism strategy during query optimization, and when it estimates (wrongly) that
intermediate results will be very small it (mistakenly) chooses not to parallelize
certain query subtrees anymore, because for small data volumes, the overheads
of parallel execution tend not to pay off.

The second reason why the difference between skewed and normal gets bigger
with more parallelism is indeed skew. The query profiles we examined had very
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strong scan skew, filter skew, aggregation skew and join skew. As an example,
we have a more detailed look at query 9 in Fig.2. These plots show various
characteristics (time and output size) of the execution of the most expensive
join operator (the l-ps join), per active core. On the single-server system as
well as on the MPP system, the join in default TPC-H produces a balanced
join fan-out, shown by the red lines. In contrast to that, the join of the skewed
variant exhibits five peaks. While 5 threads return about 58 million tuples, the
remaining 11 threads return only about 27 million results. The same can be
observed in the MPP system: five nodes produce about 11 million tuples with

T T

]
]

Normal 1 core
Q1 Skewed 1 core
Q2
Q3
Q4
Q5
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Q7
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Q9
Q10
Q11
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Q13
Q14
Q16
Q17
Q18
Q19
Q20
Q21
Q22

Normal 16 cores
™ Skewed 16 cores

| | | | | | | |

1 2 3 4 5 6 7 8

runtime normalized towards default

Fig. 3. Single-server Vector (Wise) experiments with JCC-H: runtime normalized
towards default TPC-H with the same amount of cores (Color figure online)
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each of their four threads, while the remaining 11 nodes return about 2 million
results per thread. So, in the skewed query variants, the overall runtime of the
join operator is dominated by the threads/nodes that process the parts with the
peak cardinalities, causing the whole operator to run slower than in the default
query variant. Overall, we observe in Fig. 3, that the impact of the skewed query
variants on the parallel experiments (purple bar) is much higher than on the
single-threaded runs (red bar).

g
(62]
1

=
(62]
1

o
(03]
!

M default
M normal

m skewed

Fig. 4. Hive: scalability achieved when hardware is scaled x4 (2 to 8 nodes) for 100
GB TPC-H (default) and JCC-H (resp. normal and skewed query sets).

Table 1. Experiments on the faster cluster with Hive: query runtime in seconds

(SF =100)
TPC-H 2 | JCC-H 2 | JCC-H 2 | TPC-H 4 | JCC-H 4 | JCC-H 4 | TPC-H 8 | JCC-H 8 | JCC-H 8
nodes nodes nodes nodes nodes nodes nodes nodes nodes

normal skewed normal skewed normal skewed
Q1 817.93 985.09 966.68 | 531.55 696.46 700.11 | 272.89 502.67 514.47
Q3 306.69 311.02 415.10 | 177.00 287.87 344.12 | 105.49 247.68 278.32
Q4 82.62 83.86 92.39 52.47 57.69 81.99 36.30 54.66 56.45
Q5 183.27 159.29 291.59 | 114.55 111.35 226.38 69.17 84.87 216.59
Q6 60.53 53.63 75.89 46.6 34.63 54.84 30.39 25.12 58.02
Q7 822.66 690.25 | 1237.07 | 530.13 410.23 | 1014.77 | 271.98 278.45 952.37
Q8 | 1306.56 1568.00 | 2402.17 | 882.11 1150.03 | 1667.44 | 624.6 776.87 1254.27
Q9 449.14 406.67 | 1945.30 | 371.25 278.72 | 1789.56 | 188.48 225.3 1540.54
Q10 | 243.05 232.23 448.57 | 191.21 168.56 414.79 97.40 130.04 413.74
Q11 41.27 29.52 68.58 31.92 24.05 49.37 26.47 17.34 45.08
Q12 37.48 34.49 42.33 84.04 25.35 24.53 21.35 19.07 19.67
Q13| 139.15 137.98 142.43 95.27 74.26 97.69 42.57 45.58 69.85
Q14 58.73 39.73 82.54 68.38 33.86 58.68 30.85 25.57 63.88
Q16 74.17 73.14 126.20 51.28 44.11 104.99 36.95 37.32 84.34
Q17| 855.21 815.78 909.09 | 438.17 501.61 622.31 | 281.64 384.19 464.98
Q19 | 1263.05 1332.35 | 1484.97 | 751.50 818.59 | 1041.23 | 413.44 632.50 908.99
Q21 | 1076.77 1023.01 1051.54 | 631.46 634.80 645.62 | 446.68 679.46 704.04
Q22 86.34 81.57 84.39 52.93 48.31 56.92 22.55 39.15 49.64
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Table 2. Vector (left) and Vector-on-Hadoop (right) query runtime in seconds
(SF =100). Note: the Vector and VectorH results are not comparable in absolute terms
(and this is not the point of these experiments), since the machines in the Hadoop
cluster used for VectorH are older and slower than the single-server machine used for
Vector. We can see that relatively, the skewed queries on MPP system VectorH bear a
heavier performance and scalability penalty than on the single-server system.

Vector, 16-core 256GB single-server VectorH, 16x(2-core, 4SMT 16GB) cluster
TPC-H|JCC-H|JCC-H| TPC-H| JCC-H| JCC-H TPC-H|JCC-H|JCC-H|TPC-H|JCC-H|JCC-H
1 core| 1 core| 1 core|16 cores|16 cores|16 cores 16x1| 16x1| 16x1s| 16x4| 16x4| 16x4
normal |skewed normal| skewed normal [skewed normal|skewed
Ql| 14.96] 14.40| 14.11 1.12 1.16 1.18 0.95| 1.36] 1.37| 0.30, 0.91] 0.96
Q2 3.23| 2.80| 6.13 0.87 0.75 3.04 0.62| 0.66| 33.45 0.59| 0.46] 29.18
Q3 1.17 0.68| 1.52 0.39 0.35 0.69 1.43] 1.72| 1.21 0.57| 2.36| 2.57
Q4 0.73| 0.34] 0.69 0.23 0.24 0.23 0.06/ 0.10] 0.08 0.06| 0.05| 0.07
Q5 3.53| 3.24] 3.66 0.66 0.65 1.20 1.49/ 1.08] 4.62 1.09| 1.51] 3.91
Q6 0.94] 0.81| 1.13 0.27 0.22 0.27 0.14| 0.10] 0.23 0.07| 0.07] 0.22
Q7 3.54 2.29] 8.90 0.64 0.40 2.78 1.74] 0.69| 4.97 1.02| 0.79| 6.66
Q8 3.94| 3.86] 4.46 0.69 0.58 1.96 0.67| 0.79] 29.43 0.62| 1.45| 48.02
Q9| 18.80| 18.23| 54.32 2.10 2.22|  10.34 6.64| 5.98| 39.68 3.85| 5.67| 39.02
Q10 2.62| 1.31] 7.40 0.55 0.37 1.67 1.43] 3.36| 20.75 4.63| 5.48] 20.47
Q11 1.84| 0.89| 2.89 0.38 0.24 0.58 0.49| 0.12] 0.44 0.10] 0.10] 0.55
Q12 1.88| 1.29| 2.18 0.33 0.24 0.91 0.55 0.21] 0.60 0.10/ 0.10] 2.78
Q13| 19.42| 15.04| 15.17 1.27 1.09 1.24 1.69| 2.18] 3.23 1.93| 3.99| 4.05
Ql4 2.44| 0.96] 4.13 0.45 0.29 0.78 0.70| 0.28] 3.06 0.26| 1.06] 2.44
Q16 6.27| 3.99| 8.41 0.82 0.54 3.25 1.01| 0.74| 7.73 1.02| 2.58] 8.75
Q17| 4.33] 5.04] 219 0.58 0.56 3.39 0.56] 0.54| 19.81 0.72| 1.39] 18.24
Q18 5.43| 289 4.21 0.60 0.49 0.62 0.76| 0.46] 0.73 0.25| 0.40] 0.39
Q19| 11.48| 9.72| 9.73 1.05 0.99 0.95 1.01] 1.00f 0.70 1.06| 0.92] 0.81
Q20| 4.45| 3.39] 8.53 0.60 0.51 4.76 3.88) 191 77.34 4.77)  2.08] 75.72
Q21 16.21| 12.33| 27.85 1.18 1.96 3.65
Q22 4.77)  4.90| 3.67 0.75 0.75 0.60 1.52| 1.81| 1.60 1.85| 3.99| 3.69

The most striking aspect of the VectorH results is that they show that the
skewed queries relatively become much more expensive, with Q2, 8, 9, 10, 17, 20
running into tens of seconds. Also, scalability on these queries is fully gone and
some even run slower on more hardware. We think this shows that when data
movement over the network becomes a factor, the penalties for skew become
higher. Further, MPP systems must do static partitioning of tables, and the fact
that e.g. 5 of the lineitem partitions are much larger due to skew even makes
queries without joins affected: even though Q1 on any database system tends
to scale perfectly, the fact that 5 tasks must now scan a significantly bigger
partition than the other tasks causes imperfect scaling.

The Hive results are in Table 1, where we tested scalability by running the
JCC-H and TPC-H query sets on 2, 4 and 8 nodes. Figure4 shows that while
TPC-H scales reasonably from 2-8 nodes (though less than a factor 4), especially
the JCC-H “skewed” query set scales very badly. The “normal” query set scales
less badly, but still not so good. The fact that table partitioning is affected by
skew, even affects queries with non-skewed query processing behavior, since the
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skewed partitions (read as Parquet files ®) need to be scanned and this is an
important factor in Hive performance.

4 Conclusion

In this paper, we have introduced a new variant of TPC-H, named JCC-H, that
adds correlations and skew to TPC-H.” JCC-H was carefully designed to include
very severe join skew as well as filter skew. Moreover, these skewed effects are
observed by the original 22 TPC-H queries only if special parameters are given
to them. That is, for each of the 22 queries there is a “skewed” query variant
and a “normal” query variant (the normal variant is generated by default by
qgen, and the skewed variant when passing -k). The decision to make JCC-H a
drop-in replacement for TPC-H has a number of advantages, as JCC-H can be
dropped into any existing benchmark testing pipeline, and its queries are well
understood by practitioners.

A disadvantage of focusing on the existing 22 TPC-H queries is that there
may be interesting and relevant query patterns where join-crossing correlations
and related skew have even more significant effects. This belief is informed by
the fact that access path selection for TPC-H is relatively straightforward. As
such, it is also of immediate interest to devise additional query patterns for
JCC-H where join-crossing correlation will affect the join execution order, or the
(non-)use of unclustered indexes.
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