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Abstract

In this paper, we present a robust and efficient multigrid solver for a transformed version of the system of poroelasticity equations.
The transformation enables us to treat the system in a decoupled fashion. We show that the transformation boils down to a stabilization
term in the iterative scheme, and that the solution of the original problem is identical to the solution of the transformed problem. A
highly efficient multigrid method can be developed, confirmed by numerical experiments.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we would like to add an application and its
efficient numerical treatment to the recently increased inter-
est in saddle point type problems [2]. It is the time-depen-
dent incompressible system of poroelasticity equations [3].
After a semi-discretization in time, the two-dimensional sys-
tem, in its original form, can be written as a block 2 · 2
system,

A G

D �s �B

� �
u

p

� �
¼

0

f

� �
: ð1Þ

Here, u = (u,v) is the deformation (in the x- and y-direc-
tions), p is the pore pressure, A is the 2D linear elasticity
operator, D is the divergence operator, G is the gradient,
and B is a Laplace type operator multiplied by the time
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step s. Source terms f(x, t) are supposed to be in L2(X). It
represents a forced fluid extraction or injection process.

For very small time steps, the size of the lower diagonal
block entry in (1) can become arbitrarily small. So, the sys-
tem may be viewed as a sort of singularly perturbed system
related to

A G

D O

� �
u

p

� �
¼

0

f

� �
: ð2Þ

Poroelasticity theory addresses the time dependent cou-
pling between the deformation of porous material and
the fluid flow inside. The porous matrix is supposed to be
saturated by the fluid phase. The state of this continuous
medium is characterized by the knowledge of elastic dis-
placements and fluid pressure at each point. A phenomeno-
logical model was first proposed and analyzed by Biot [3],
studying the consolidation of soils. Poroelastic models are
used to study problems in geomechanics, hydrogeology,
petrol engineering and biomechanics [8,5].

In this paper, we present an efficient multigrid method
for a transformed version of the system of poroelasticity
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equations. We show by means of block matrix manipula-
tions that system (1) can be brought in a form which is
favorable for (almost) decoupled iterative solution. At the
same time, we analyze the transformed system and prove
that the solution of this system is identical to the solution
of the original system. We show in 1D that by the transfor-
mation, after discretization, a numerical stabilization term
of lower order has been brought in the discrete version of
the lower diagonal block of (1), which does not influence
the order of numerical convergence negatively. By a one-
dimensional poroelasticity analysis and by corresponding
numerical experiments we show the stabilizing effect of
the term. Numerical 2D experiments confirm the stability,
accuracy and the efficient multigrid treatment of the result-
ing system.

The paper is organized as follows, the poroelastic sys-
tem, its transformation plus a corresponding solution algo-
rithm are presented in Section 2. Furthermore, in Section
2.2 a previously used stable discretization on a staggered
grid is explained, which is used for comparison with the
current approach. In Section 3 the one-dimensional case
is considered. The discrete problem is stabilized and the
convergence of the corresponding scheme is proven. In a
diagram the relation between the original system and the
transformed system with respect to stability, both in the
continuous case and in the discrete case is also presented.
Section 4 then details the solution algorithm with only mul-
tigrid methods for scalar equations. Finally, Section 5 pre-
sents numerical poroelastic experiments indicating the
efficiency of the solution algorithm.
2. Mathematical model and discretization

2.1. Continuous system

The quasi-static Biot model for soil consolidation can be
formulated as a system of partial differential equations
for displacements and the pressure of the fluid. One
assumes the material’s solid structure to be linearly elastic,
initially homogeneous and isotropic, the strains imposed
within the material are small. We denote by u ¼ ðu; v; pÞT
the solution vector, consisting of the displacement vector
u = (u,v)T and pore pressure of the fluid p. The governing
equations read

� l~Du� ðkþ lÞgraddivuþ agradp ¼ 0; x 2 X; ð3Þ

a
o

ot
ðdivuÞ � j

g
Dp ¼ f ðx; tÞ; 0 < t 6 T ; ð4Þ

where k and l are the Lamé coefficients; j is the permeabil-
ity of the porous medium, g the viscosity of the fluid, a is
the Biot–Willis constant (which we will take equal one)
and ~D represents the vectorial Laplace operator. The quan-
tity divu(x, t) is the dilatation, i.e. the volume increase rate
of the system, a measure of the change in porosity of the
soil. The source term f(x, t) represents a forced fluid extrac-
tion or injection process, respectively, see [3].
For simplicity, we assume here that oX is rigid (zero dis-
placements) and permeable (free drainage), so that we have
homogeneous Dirichlet boundary conditions,

uðx; tÞ ¼ 0; pðx; tÞ ¼ 0; x 2 oX: ð5Þ
Before fluid starts to flow and due to the incompressibility
of the solid and fluid phases, the initial state satisfies

divuðx; 0Þ ¼ 0; x 2 X: ð6Þ
In the numerical experiments in Section 5 more compli-
cated boundary conditions are chosen. The incompressible,
two-dimensional variant of Biot’s consolidation model
reads

� ðkþ 2lÞuxx � luyy � ðkþ lÞvxy þ px ¼ 0;

� ðkþ lÞuxy � lvxx � ðkþ 2lÞvyy þ py ¼ 0;

ðux þ vyÞt � aðpxx þ pyyÞ ¼ f

ð7Þ

(plus initial and boundary conditions) with a = j/g > 0.
Problem (7) is a limit of the compressible case. The com-
pressible system is, however, easier to solve due to an extra
contribution to the main diagonal of the matrix related to
this system. We concentrate on a solver for the two-dimen-
sional incompressible case, and consider a model operator

L, which reads

L ¼
�ðkþ 2lÞoxx � loyy �ðkþ lÞoxy ox

�ðkþ lÞoxy �loxx � ðkþ 2lÞoyy oy

ox oy �~aðoxx þ oyyÞ

0
B@

1
CA:
ð8Þ

L can be interpreted as a ‘‘stationary variant’’ of (7), i.e.,
the operator after an implicit (semi-) discretization in time.
For example, in case of Crank–Nicholson time discretiza-
tion we have ~a ¼ 0:5as. From (8) one may calculate the
corresponding determinant:

detðLÞ ¼ �lDð~aðkþ 2lÞD2 � DÞ
with Laplace operator D and biharmonic operator D2. The
principal part of det (L) is Dm with m depending on the
choice of k, l, and ~a. From physical reasoning, we always
have l, ~a, k + 2l > 0, yielding m = 3. The number of
boundary conditions that must accompany L is m [4,12].

2.2. Previous approach: staggered grid

Physically, when a load is applied in a poroelasticity
problem, the pressure suddenly increases and a boundary
layer appears in the early stages of the time-dependent pro-
cess. In the case of an unstable discretization, unphysical
oscillations can occur in the first time steps of the solution.
After this phase, the solution shows a much smoother
behavior. The time-dependent operator (8) suffers from sta-
bility difficulties. The coefficient in the L3,3-block in (8) is
typically, depending on the time step, extremely small. In
order to avoid oscillating solutions, the discretization has
to be designed with care.

Previously, we adopted a staggered grid discretization in
[6] for system (7), using nearest neighbor central finite dif-



F.J. Gaspar et al. / Comput. Methods Appl. Mech. Engrg. 196 (2007) 1447–1457 1449
ferences. Pressure points in the staggered grid were located
at the physical boundary, and the displacement points are
defined at the cell faces, as often pressure is prescribed at
the boundary. The divergence operator is naturally approx-
imated by a central discretization of the displacements in a
cell, see Fig. 1.

The discretization of each equation, centered around the
equation’s primary unknown, reads in this case

Lh�uh ¼
�ðkþ lÞðoxxÞh � lDh �ðkþ lÞðoxyÞh ðoxÞh
�ðkþ lÞðoxyÞh �lDh � ðkþ lÞðoyyÞh ðoyÞh

ðoxÞh ðoyÞh �~aDh

0
B@

1
CA

uh

vh

ph

0
B@

1
CA ¼ fh;

ð9Þ
with fh = (0,0, fh)T, and the subscripts denote central dis-
crete operators on the staggered grid. An efficient multigrid
solver for the system of poroelasticity equations discretized
on the staggered grid has been developed in [7,13].

The multigrid scheme developed solves the system in a
coupled fashion, with a distributive smoother: In order to
relax Lh�uh ¼ fh, a new variable wh by �uh ¼ Chwh was intro-
duced and system LhChwh = fh has been considered in
smoothing. The resulting system is suited for decoupled

smoothing, i.e., each equation can be treated separately.
The so-called distributor reads [13]

Ch ¼
Ih 0 �ðoxÞh
0 Ih �ðoyÞh

ðkþ lÞðoxÞh ðkþ lÞðoyÞh �ðkþ 2lÞDh

0
B@

1
CA ð10Þ

with identity Ih. Then, the system reads

LhCh ¼
�lDh 0 0

0 �lDh 0

LC3;1
h LC3;2

h ~aðkþ 2lÞD2
h � Dh

0
B@

1
CA ð11Þ

with

LC3;1
h ¼ ðoxÞh � ~aðkþ lÞððoxxxÞh þ ðoxyyÞhÞ; ð12Þ

LC3;2
h ¼ ðoyÞh � ~aðkþ lÞððoxxyÞh þ ðoyyyÞhÞ: ð13Þ

Equation-wise smoothing for (11) is now an option, start-
ing with the first equation in the system, etc. All multigrid
components related to the coarse grid correction are natu-
rally dictated by the staggered grid arrangement. The mul-
tigrid scheme works very well, with convergence factors less
than 0.2 [7,13].
Fig. 1. Staggered location of unknowns for poroelasticity.
However, the choice for a staggered grid is a rigorous
one. Staggered grid discretizations may not be easily gener-
alized to curved domains, or to unstructured grids. The
staggered grid choice has only been made, because in the
initial phase of a time-dependent problem a boundary layer
may occur that is prone to unphysical oscillations on a col-
located grid, without additional stabilization. Therefore,
we perform here a system transformation and (implicitly,
by doing so) a stabilization so that we can discretize on a
collocated grid, without any unphysical oscillations.

2.3. Transformed system

Let us rewrite problem (3)–(6) as

A
ou

ot
þ grad

op
ot
¼ 0; in X; ð14Þ

div
ou

ot
� j

g
Dp ¼ f ; in X; ð15Þ

u ¼ 0; p ¼ 0; on oX; ð16Þ
divuðx; 0Þ ¼ 0; x 2 X; ð17Þ

where A ¼ �l~D� ðkþ lÞgrad div.
We transform problem (14)–(17) to an equivalent prob-

lem. Firstly, applying the divergence operator to (14) and
the operator (k + 2l)D to (15), adding the resulting equa-
tions and taking into account the equality

�ðkþ 2lÞDdiv ¼ divA;

we obtain

�D
op
ot
þ ðkþ 2lÞ j

g
D2p ¼ �ðkþ 2lÞDf : ð18Þ

Secondly, by applying operator (k + l) grad to (15) and by
adding the resulting equation to (14) we get

�l~D
ou

ot
þ grad

op
ot
� ðkþ lÞ j

g
gradDp ¼ ðkþ lÞgradf :

With the new variables q = �Dp and v ¼ ou
ot, we deal with

the system:

� l~Dvþ grad
op
ot
þ ðkþ lÞ j

g
gradq ¼ ðkþ lÞgradf ; ð19Þ

qþ Dp ¼ 0; ð20Þ
oq
ot
� ðkþ 2lÞ j

g
Dq ¼ �ðkþ 2lÞDf ; ð21Þ

v ¼ 0; p ¼ 0; divvþ j
g

q ¼ f ; on oX ð22Þ

plus initial conditions. We have proven the following result:

Proposition 1. If (u, p) is a solution of problem (14)–(17),
then (v, p,q) is the solution of problem (19)–(22).

In the following proposition we prove that both prob-
lems really are equivalent.

Proposition 2. If (v, p,q) is solution of problem (19)–(22),
then (u, p) is solution of problem (14)–(17).
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Proof. By applying the divergence operator to (19) and the
use of equality div ~D ¼ Ddiv, we find

�lDdivv� oq
ot
þ ðkþ lÞ j

g
Dq ¼ ðkþ lÞDf : ð23Þ

Adding (23) and (21), we obtain

lD divvþ j
g

q� f
� �

¼ 0; in X:

By using boundary conditions (22) we deduce Eq. (15). Eq.
(14) is obtained by applying the operator (k + l)grad to
(15) and using (19). h

Note that problem (19)–(22) is coupled over the bound-
ary of the domain.

A generalization of the transformation to three dimen-
sions is straightforward. One additional unknown, the
time-dependent displacement in the z-direction, is then also
resolved.

Let us consider a semi-discretization in time with time
step s = T/M with M a positive integer. For 1 6 m 6

M � 1 and assuming that vm, pm and qm are known, the
following iterative scheme is proposed.
Fig. 2. Relation between stable and unstable, continuous and discrete
problem formulations.

Algorithm I

(1) Solve:

qmþ1 � qm

s

� �
� ðkþ 2lÞ j

g
Dqmþ1

¼ �ðkþ 2lÞDf mþ1; in X;

divvm þ j
g

qmþ1 ¼ f mþ1 on oX:

8>>>><
>>>>:

(2) Solve

�Dpmþ1 ¼ qmþ1 in X;

pmþ1 ¼ 0; on oX:

�

(3) Solve

�l~Dvmþ1 þ grad
pmþ1 � pm

s

þðkþ lÞ j
g

gradqmþ1

¼ ðkþ lÞgradf mþ1; in X;

vmþ1 ¼ 0; on oX:

8>>>>>>><
>>>>>>>:
Notice that the boundary condition in step (1) is lagging
behind one time step. Without additional iteration the
scheme presented here will therefore be of OðsÞ.

Two important issues regarding Algorithm I are dis-
cussed in Sections 3.1 and 4.

First of all, the operators to be inverted in the algorithm
above are only scalar Laplace type operators, for which
standard multigrid for scalar equations works extremely
well (Section 4). Therefore, a highly efficient iterative solu-
tion process can be defined for the transformed system.
Secondly, when working with the transformed system
stable numerical solutions are obtained on a standard
collocated grid (Section 3.1). So far, we can prove this sta-
bility issue only for the 1D poroelasticity model situation.

3. One-dimensional poroelasticity

3.1. 1D Transformation

In 1D, the governing equations simplify and read

ðPÞ: � ðkþ 2lÞ o
2u

ox2
þ op

ox
¼ 0; ð24Þ

o2u
oxot
� j

g
o2p
ox2
¼ f ; x 2 ð0; 1Þ; 0 < t 6 T ; ð25Þ

We denote the original problem (24) and (25) by (P) for ref-
erence in Fig. 2. For simplicity, we again assume that oX is
rigid (zero displacements) and permeable (free drainage),
so that we have homogeneous Dirichlet boundary condi-
tions, u(0, t) = u(1, t) = 0, p(0, t) = p(1, t) = 0, and the initial
state satisfies

ou
ox
ðx; 0Þ ¼ 0: ð26Þ

The equivalent transformed 1D problem, denoted by (Ptr), is

ðPtrÞ: � ðkþ 2lÞ o
2u

ox2
þ op

ox
¼ 0; ð27Þ

qþ o2p
ox2
¼ 0; ð28Þ

oq
ot
� ðkþ 2lÞ j

g
o2q
ox2
¼ �ðkþ 2lÞ o

2f
ox2

; ð29Þ

u ¼ 0; p ¼ 0;
o

2u
ox ot

þ j
g

q ¼ f ; on oX: ð30Þ

The 1D transformation is easier than the 2D/3D cases, as it
is not necessary to cancel out the term graddivu from the
first equation.

3.2. Discrete case

We consider a uniform grid on the interval [0,1], with
step size h:

�x ¼ fxijxi ¼ ih; i ¼ 0; 1 . . . ;Ng;
and denote by x and ox the interior and the boundary
nodes, respectively. We consider the Hilbert space H �x of
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the discrete functions uh = (u0,u1, . . . ,uN) on the grid �x,
with scalar product and norm given by

ðuh; vhÞ�x ¼ h
u0v0 þ uN vN

2
þ
XN�1

i¼1

uivi

 !
; kuhk�x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuh; uhÞ

p
:

In a similar way, let us consider the Hilbert space Hx ¼
fuh 2 H �xju0 ¼ uN ¼ 0g, with scalar product

ðuh; vhÞ ¼ h
XN�1

i¼1

uivi;

and associated norm.
In order to handle the boundary conditions we intro-

duce exterior nodes, called ghost points, constructed by
symmetry with respect to the boundaries of the domain.

We define the self-adjoint and positive definite operator
d on Hx as

ðdwhÞi ¼ �
wiþ1 � 2wi þ wi�1

h2
i ¼ 0; . . . ;N ;

and we consider the operators A = (k + 2l)d and B = d.
We also introduce the difference operators, G ¼ D : Hx !
H �x

ðGphÞi ¼
piþ1 � pi�1

2h
; i ¼ 0; . . . ;N ;

which verify (Gph,uh) = �(ph,Duh), "(uh,ph) 2 Hx · Hx.
Let um

h 2 Hx and pm
h 2 Hx be approximations to u(x, tm)

and p(x, tm), where tm = ms, m = 0,1, . . . ,M, Ms = T.
Then, using an Euler implicit scheme to discretize in time
we get the problem (Ph):

ðPhÞ : Aumþ1
h þ Gpmþ1

h ¼ 0; ð31Þ
Dumþ1

h � Dum
h

s
þ j

g
Bpmþ1

h ¼ f mþ1
h ;

m ¼ 0; . . . ;M � 1 ð32Þ

with initial condition Du0
h ¼ 0. (Ph) represents the discreti-

zation of the original problem on a collocated grid, which
is not stable. If we follow the transformations made in the
continuous case, i.e. apply operator A to the second equa-
tion and operator D to the first equation and take into ac-
count the initial condition Du0

h ¼ 0, we obtain the
transformed discrete problem, denoted by (Ph)tr,

ðPhÞtr : Au1
h þ Gp1

h ¼ 0; ð33Þ
q1

h ¼ Bp1
h; ð34Þ

Cq1
h þ sðkþ 2lÞ j

g
Bq1

h ¼ sðkþ 2lÞBf 1
h; ð35Þ

D
u1

h

s

� �
þ j

g
q1

h ¼ f 1
h ; on o�x; ð36Þ

and

Aumþ1
h þ Gpmþ1

h ¼ 0; ð37Þ

qmþ1
h ¼ Bpmþ1

h ; ð38Þ
C
qmþ1

h � qm
h

s

� �
þ ðkþ 2lÞ j

g
Bqmþ1

h ¼ ðkþ 2lÞBf mþ1
h ; ð39Þ

D
umþ1

h � um
h

s

� �
þ j

g
qmþ1

h ¼ f mþ1
h

on o�x; m ¼ 1; 2; . . . ;M � 1; ð40Þ

where a new difference operator appears, given by
ðCqhÞi ¼ 1

4
ðqiþ1 þ 2qi þ qi�1Þ. One can easily verify that

�D G = CB = BC. In this way we have obtained a problem
that is equivalent to problem (31) and (32).

Remark 1. With this scheme we may obtain oscillations
because the coefficient matrices in systems (35) and (39)
are, in general, no M-matrices. If h2 < 4ðkþ2lÞj

g s we have M-
matrices. However, this restriction on the spatial step is
severe if we use small time steps in the initial stage of the
consolidation process.

In order to stabilize Eqs. (35) and (39) we perturb them
as follows:

Cq1
h þ sðkþ 2lÞ j

g
Bq1

h þ
h2

4
Bq1

h ¼ sðkþ 2lÞBf 1
h;

C
qmþ1

h � qm
h

s

� �
þ ðkþ 2lÞ j

g
Bqmþ1

h þ h2

4
B

qmþ1
h � qm

h

s

� �
¼ ðkþ 2lÞBf mþ1

h :

For convenience, to obtain later a simple equivalent
scheme, we also perturb the equations on the boundary
in the appropriate way.

Taking into account that C þ h2

4
B ¼ I , we encounter

the discrete problem

ðPtrÞh : Au1
h þ Gp1

h ¼ 0; ð41Þ

q1
h ¼ Bp1

h; ð42Þ

q1
h þ sðkþ 2lÞ j

g
Bq1

h ¼ sðkþ 2lÞBf 1
h; ð43Þ

D
u1

h

s

� �
þ j

g
q1

h þ
h2

4ðkþ 2lÞ q
1
h ¼ f 1

h ; on o�x; ð44Þ

and

Aumþ1
h þ Gpmþ1

h ¼ 0; ð45Þ
qmþ1

h ¼ Bpmþ1
h ; ð46Þ

qmþ1
h � qm

h

s

� �
þ ðkþ 2lÞ j

g
Bqmþ1

h ¼ ðkþ 2lÞBf mþ1
h ; ð47Þ

D
umþ1

h � um
h

s

� �
þ j

g
qmþ1

h þ h2

4ðkþ 2lÞ
qmþ1

h � qm
h

s

� �
¼ f mþ1

h ;

on o�x; m ¼ 1; 2; . . . ;M � 1; ð48Þ

which is a new discretization of problem (27)–(30), denoted
by (Ptr)h (i.e., first transform then discretize). Finally, we
observe that this formulation is equivalent to the pre-trans-
formed scheme
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Fig. 3. Unphysical oscillations for original formulation of the incom-
pressible poroelasticity model problem, with central differencing with 32
nodes, t̂ ¼ 10�6, and stable solution from transformed system on a
collocated grid.
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ððPtrÞhÞ
�tr

: Au1
h þ Gp1

h ¼ 0; ð49Þ

Du1
h þ s

j
g

Bp1
h þ

h2

4ðkþ 2lÞBp1
h ¼ sf 1

h ; ð50Þ

and

Aumþ1
h þ Gpmþ1

h ¼ 0; ð51Þ
Dumþ1

h � Dum
h

s
þ j

g
Bpmþ1

h þ h2

4ðkþ 2lÞ
Bpmþ1

h � Bpm
h

s
¼ f mþ1

h ;

m ¼ 1; 2; . . . ;M � 1; ð52Þ

where the initial condition Du0
h has already been applied.

This scheme does not give oscillations. A diagram in
Fig. 2 summarizes the relation between the different prob-
lems considered. In the figure disc stands for ‘‘discretized’’,
stab means ‘‘stabilized’’ and � indicates that problems are
equivalent. Summarizing, we have six different problems:

• (P): original continuous problem,
• (Ptr): transformed continuous problem,
• (Ph): discretization of (P) (this scheme shows

oscillations),
• (Ptr)h: discretization of (Ptr) (oscillation-free solutions),
• (Ph)tr: transformation of discrete problem (Ph) identical

to (Ph) (i.e., oscillatory), and
• ((Ptr)h)�tr: formulation where (Ptr)h is transformed to an

identical (stable) scheme based on the original problem.

Fig. 2 indicates that one can obtain ((P tr)h)�tr from (Ph)
by adding a stabilization term. We can also obtain scheme
(Ptr)h from (Ph)tr by adding a stabilization term.

In order to illustrate with a numerical example the effects
of stabilization of term h2Bðpmþ1

h � pm
h Þ= ð4ðkþ 2lÞsÞ as in

(52), we show the numerical results for Terzagui problem
[3], which consists on a column of soil, bounded by a rigid,
impermeable bottom and walls. A unit load is prescribed at
the top wall, which is free to drain.

Fig. 3 shows, for the initial time step, that standard cen-
tral finite differences on a grid with 32 nodes lead to spuri-
ous oscillations in the discrete pressure (x = 0 represents
the top wall). The time discretization is the O(s) accurate
implicit Euler scheme with s = 10�6.

In this problem the boundary layer is approximated in a
stable way by the discrete transformed system in O(h2 + s)-
accuracy on a collocated grid with 32 nodes, see also Fig. 3.
3.3. Convergence of the stabilized scheme

We now prove in 1D that the stabilized discrete problem
gives stable solutions. Firstly, we give an energy estimate.
For simplicity, we suppose that p0

h satisfies the boundary
conditions. In this case, the scheme writes as (51), (52) even
for m = 0. Otherwise, a different estimate must be done for
the first step time.

Proposition 3. The solutions of the scheme (51) and (52) for
m P 0 satisfy the a priori estimates
kumþ1
h k2

A þ
h2

4ðkþ 2lÞ kp
mþ1
h k2

B

6 ku0
hk

2
A þ

h2

4ðkþ 2lÞ kp
0
hk

2
B þ C1s

Xmþ1

j¼1

kf j
hk

2
B�1 ; ð53Þ

kpmþ1
h k2

B 6 2kp0
hk

2
B þ C2 s

Xm

j¼1

f jþ1
h � f j

h

s

�����
�����

2

B�1

þ kf mþ1
h k2

B�1

0
@

1
A;
ð54Þ

where C1 and C2 are constants independent of the discretiza-

tion parameters.

Proof. Multiplying scalarly (51) and (52) by ðumþ1
h � um

h Þ=s
and pmþ1

h respectively, we get for 0 6 m 6M � 1,

Aumþ1
h ;

umþ1
h � um

h

s

� �
þ Gpmþ1

h ;
umþ1

h � um
h

s

� �
¼ 0; ð55Þ

and

D
umþ1

h � um
h

s
; pmþ1

h

� �
þ j

g
ðBpmþ1

h ; pmþ1
h Þ

þ h2

4ðkþ 2lÞ B
pmþ1

h � pm
h

s
; pmþ1

h

� �
¼ ðf mþ1

h ; pmþ1
h Þ: ð56Þ

The addition of (55) and (56) yields

ðAumþ1
h ; umþ1

h � um
h Þ þ s

j
g

Bðpmþ1
h ; pmþ1

h Þ

þ h2

4ðkþ 2lÞ ðBðp
mþ1
h � pm

h Þ; pmþ1
h Þ

¼ sðf mþ1
h ; pmþ1

h Þ: ð57Þ

Applying the generalized Cauchy–Schwarz inequality in
the right-hand side we get
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1

2
ðkumþ1

h k2
A � kum

h k
2
AÞ þ

h2

8ðkþ 2lÞ ðkp
mþ1
h k2

B � kpm
h k

2
BÞ

6
sg
4j
kf mþ1

h k2
B�1 ;

and therefore, (53) is obtained, i.e., the solution uh is stable
with respect to the initial data and right-hand side.

To obtain an a priori estimate for the pressure, a
splitting of the solution will be used. Let be pmþ1

h ¼
�pmþ1

h þ ��pmþ1
h ; where the first part �pmþ1

h , is the solution of the
problem

j
g

B�pmþ1
h ¼ f mþ1

h ; m ¼ 0; . . . ;M � 1; ð58Þ

and the second ��pmþ1
h is solution of

Aumþ1
h þ G��pmþ1

h ¼ �G�pmþ1
h ; ð59Þ

Dumþ1
h � Dum

h

s
þ j

g
B��pmþ1

h þ h2

4ðkþ 2lÞB
��pmþ1

h � ��pm
h

s

¼ � h2

4ðkþ 2lÞB
�pmþ1

h � �pm
h

s
: ð60Þ

We get from (59) and (60)

s
umþ1

h � um
h

s

����
����

2

A

þ Gð��pmþ1
h � ��pm

h Þ;
umþ1

h � um
h

s

� �

¼ � Gð�pmþ1
h � �pm

h Þ;
umþ1

h � um
h

s

� �

and

D
umþ1

h � um
h

s
; ��pmþ1

h � ��pm
h

� �
þ j

g
B��pmþ1

h ; ��pmþ1
h � ��pm

h

	 


þ h2

4ðkþ 2lÞ B
��pmþ1

h � ��pm
h

s
; ��pmþ1

h � ��pm
h

� �

¼ � h2

4ðkþ 2lÞ B
�pmþ1

h � �pm
h

s
; ��pmþ1

h � ��pm
h

� �
:

Adding the previous equations and after simple transfor-
mations we obtain the inequality

j
2g
k��pmþ1

h k2
B � k��pm

h k
2
B

� �
6

s
2

G
�pmþ1

h � �pm
h

s

� �����
����

2

A�1

þ sh2

8ðkþ 2lÞ
�pmþ1

h � �pm
h

s

� �����
����

2

:

obtaining the estimate (54). h

Convergence results are straightforward using estimates
(53) and (54) and considering the approximation errors of
the scheme.

4. Multigrid solution of transformed system

For the multigrid solution of the Poisson-type operators
appearing in Algorithm I in Section 2.3, we can simply
choose four times a highly efficient scalar multigrid algo-
rithm that works well for discrete Laplace type operators.
All four scalar operators appearing are isotropic Laplace
type operators. A multigrid method with highest efficiency,
based on a red-black point-wise Gauss–Seidel smoother,
GS-RB, and well-known choices for the remaining multi-
grid components [12] can be used for all choices of k, l,
and ~a. These include the direct coarse grid discretization
of the PDE, full weighting and bilinear interpolation, as
the restriction and prolongation operators, respectively.

Remark 2. Here, we give a different view on the algorithm
described in Section 2.3. This may be beneficial for analysis
purposes. The iterative solution procedure for the trans-
formed system of equations can be interpreted as a ‘‘left
distributor’’ for

ChLh�uh ¼ Chfh;

with:

Ch ¼
Ih 0 ðkþ lÞðoxÞh
0 Ih ðkþ lÞðoyÞh

�ðoxÞh �ðoyÞh �ðkþ 2lÞDh

0
B@

1
CA: ð61Þ

In that case, we obtain

ChLh ¼
�lDh 0 LC1;3

h

0 �lDh LC2;3
h

0 0 ~aðkþ 2lÞD2
h � Dh

0
B@

1
CA;

with LC1;3
h ¼ LC3;1

h and LC2;3
h ¼ LC3;2

h , as in (12), (13), and

Chfh ¼
ðkþ lÞoxfh

ðkþ lÞoyfh

ðkþ 2lÞDfh

0
B@

1
CA

The main difference with Algorithm I is that here a semi-
discretization in time has already taken place (as in model
operator (8)). Discrete operator Lh represents the discreti-
zation on a collocated grid.

We end up with an upper triangular system. In a first
step then, the last equation should be updated after which
the other two equations may be treated. For the resem-
blance and simplification, operator ~aðkþ 2lÞD2

h � Dh is
split into

ð�~aðkþ 2lÞDh þ 1Þqh ¼ ~f h; �Dhph ¼ qh:

Notice that, compared to the work explained in Section
2.2, we solve the transformed system that is almost (i.e., ex-
cept for the boundary coupling) decoupled. So, we do not
use the transformed system only in multigrid smoothing.

Remark 3. A similar transformation can be defined
and analyzed for incompressible Stokes equation from
fluid mechanics. In that case, for the discrete Stokes
operator

Lh;st ¼
�Dh 0 ðoxÞh

0 �Dh ðoyÞh
ðoxÞh ðoyÞh 0

0
B@

1
CA
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a corresponding distributor is given by

Ch;st ¼
Ih 0 0

0 Ih 0

�ðoxÞh �ðoyÞh �Dh

0
B@

1
CA:

The system then reads

Ch;stLh;st ¼
�Dh 0 ðoxÞh

0 �Dh ðoyÞh
0 0 �Dh

0
B@

1
CA:

Also here, it is not necessary to discretize on a staggered
grid for a stable discretization. A generalization of this
transformation for the system of incompressible Navier–
Stokes equations can be found in [12] (Section 8.8.3).

Assume that X is a bounded domain in R2 and that
velocities u, v and pressure p are sufficiently smooth. Then
the two systems

� Duþ Reðuux þ vuyÞ þ px ¼ 0 ðXÞ
� Dvþ Reðuvx þ vvyÞ þ py ¼ 0 ðXÞ
ux þ vy ¼ 0 ðX ¼ X [ oXÞ

and

� Duþ Reðvuy � uvyÞ þ px ¼ 0 ðXÞ
� Dvþ Reðuvx � vuxÞ þ py ¼ 0 ðXÞ
Dp þ 2Reðvxuy � uxvyÞ ¼ 0 ðXÞ
ux þ vy ¼ 0 ðoXÞ

are equivalent. The result originates from [10]. This trans-
formed Navier–Stokes system has recently been used in
[11]. Notice that the original primary unknowns are used
after the transformation. The generalization to 3D is
trivial.
5. Numerical experiments

In this section three numerical experiments are evalu-
ated. The experiments range from a model problem with
0

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Fig. 4. Numerical solution for displacements and press
academic parameter setting to more realistic problems
and parameters. We report on the accuracy of the numer-
ical solution from the transformed system and, in particu-
lar, on the multigrid convergence. A comparison in terms
of CPU time between the staggered multigrid approach
and multigrid for the collocated discretization of the trans-
formed system is made.

For the coupled, staggered approach, the measure of
convergence is related to the absolute value of the residual
after the mth iteration in the maximum norm over the three
equations in the system,

jrm
h j1 :¼ jrm

1;hj1 þ jrm
2;hj1 þ jrm

3;hj1 < TOL; ð62Þ

with TOL = 10�6. In the decoupled approach, the stopping
criterion is based on the residual in each equation sepa-
rately. Convergence is achieved in each equation’s residual
is less than 10�6.
5.1. Multigrid convergence for first model problem

Some analytical reference solutions are known in the lit-
erature [1] for (7) in dimensionless form, where scaling has
taken place with respect to a characteristic length of the
medium ‘, Lamé constants k + 2l, time scale t0 and a (7).

By choosing a unit squared domain, a source term
f ¼ 2 � d0:25;0:25 � sin t̂ (dx,y is the Kronecker delta function,
t̂ ¼ ðkþ 2lÞat), the following boundary and initial
conditions,

at : y ¼ f0; 1g : u ¼ 0; ov=oy ¼ 0

at : x ¼ f0; 1g : v ¼ 0; ou=ox ¼ 0;

and pressure p = 0 at the boundaries, we can mimic the
dimensionless situation. In this case, the solution can be
written as an infinite series [1], see also [7]. An interesting
feature is that this solution is independent of the Lamé
coefficients. The parameters in the reference experiment
read l = 1/2, k = 0, ~a ¼ 5� 10�3 (8). Fig. 4 shows for this
setting the computed displacement and pressure solution at
time t̂ ¼ p=2. The solution resembles the exact solution in
0.2
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0.6
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1 0
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ure for 2D poroelasticity model problem, 322-grid.



Table 1
CPU times comparison of multigrid methods for the original system on a
staggered grid, and the transformed system on a collocated grid

32 · 32 64 · 64 128 · 128 256 · 256

Collocated decoupled 0.0600 0.2400 100 400

Staggered coupled 100 300 1400 5500

Table 2
Material parameters for the second poroelastic problem

Property Value Unit

Young’s modulus 3 · 104 N/m2

Poisson’s ratio 0.2 –
Permeability 10�7 m2

Fluid viscosity 10�3 Pa s

Fig. 5. Numerical solution for pressure for second problem, 322-grid.
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[1] very well, without any unphysical oscillations. O(h2 + s)
accuracy is observed for the displacements, and, asymptot-
ically, for the pressure too (despite the occurrence of the
delta function which usually influences the numerical accu-
racy negatively) [7].

This reference problem is solved with state-of-the-art
multigrid methods developed for the staggered grid (Sec-
tion 2.2) and the collocated grid discretization (Section
4). Table 1 compares the CPU times, to satisfy the toler-
ance 10�6, of the transformed system on the collocated grid
and the original system discretized on the staggered grid.
Note that this tolerance is considered accurate w.r.t. engi-
neering practice.

The transformed system needs, on average, for the four
equations six scalar multigrid iterations per equation. The
CPU time in Table 1 for this system on a Pentium IV,
2.6 GHz is 1 s per time step on a 1282-grid, and 4 s per time
step on a 2562-grid. These results are more than 10 times
faster than the CPU time results in our previous work with
multigrid for the staggered system. The F(1,1)-cycle [12]
(meaning one pre- and one post-smoothing iteration) is
used for this problem; it is fast and shows an h-independent
behavior. The average multigrid convergence factor
observed on the collocated grid is �0.06, which is in corre-
spondence with the multigrid theory for Laplace operators.
These results not sensitive to variations in the Lamé
coefficients.

Also the multigrid convergence factor on the staggered
grid is excellent, qh � 0.06. We use the distributive
smoother (11) in a multigrid F(1,1)-cycle [12] here. In the
distributive smoother three operators need to be smoothed

separately. For this purpose, a red-black point-wise Gauss–
Seidel smoother is used for the Laplace operators in the
first two equations and a line-wise Gauss–Seidel relaxation
method for the third equation. This multigrid method for
the staggered case was the most efficient method in a com-
parison among various cycles and smoothers in [7]. The
extra costs compared to the collocated version are due to
the fact that we treat a coupled system on the staggered
grid.

In both solution approaches a matrix-free version of
multigrid is used; the CPU times include the time for com-
puting the operator elements.
Table 3
CPU time comparison between the collocated decoupled and the staggered
coupled multigrid schemes

32 · 32 64 · 64 128 · 128 256 · 256

Collocated decoupled 0.0500 0.2200 100 500

Staggered coupled 0.500(5) 200(5) 1000(6) 4000(6)
5.2. Poroelasticity problem with realistic parameters

In the following experiment, the domain considered is
X = (�50,50) · (0,100). As the boundary conditions zero
displacements are chosen and for the pressure,
p ¼
1 on C1 : jxj 6 20; y ¼ 100;

0 on C n C1:

�

The material properties of the porous medium are given in
Table 2.

In Fig. 5 the solution of the pressure is presented.
In Table 3 we compare the CPU times of the two

approaches: Solving the system in a coupled fashion on a
staggered grid, and the solution of the decoupled trans-
formed system on a collocated grid. The multigrid methods
for both discretization approaches are identical to the ones
employed in the previous experiment. The multigrid
convergence factor for the transformed system is again
excellent, 0.06 for each equation, as is its staggered
counterpart qh � 0.08 for the coupled system. The CPU
time used, however, differs again substantially, as presented
in Table 3.

The results with the transformed system, comparing to
the results in Table 1, confirm the independence of the mul-
tigrid convergence and CPU time with respect to the poro-
elastic problem parameters. This is a strong robustness
result for the new solver developed.



Fig. 7. Numerical solution for displacements and pressure for 2D
poroelasticity reference problem, 322-grid.
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5.3. Poroelastic footing experiment

The third example is a true 2d footing problem (see also
[9]). The simulation domain is a 100 by 100 meters block of
porous soil, as in Fig. 6.

At the base of this domain the soil is assumed to be fixed
while at some upper part of the domain a uniform load of
intensity r0 is applied in a strip of length 40 m. The whole
domain is assumed free to drain. Therefore, the boundary
data are given as follows:

p ¼ 0; on oX;

rxy ¼ 0; ryy ¼ �r0;

on C1 ¼ fðx; yÞ 2 oX; =jxj 6 20; y ¼ 100g;

rxy ¼ 0; ryy ¼ 0;

on C2 ¼ fðx; yÞ 2 oX; =jxj > 20; y ¼ 100g;

u ¼ 0; on oX n ðC1 [ C2Þ:

ð63Þ

The material properties of the porous medium are the same
as in the previous problem, see Table 2 and the uniform
load is taken as r0 = 1 · 104 N/m2.

Notice that the boundary condition for the footing
problem involves the prescription of stress conditions.
These conditions are applied in the discretization of the
equations of the stabilized system ((Ptr)h)�tr. Then they
are transformed to problem (Ptr)h in a similar way as it
explained in Section 3.2.

In Fig. 7 the solution of the pressure is presented. The
unphysical oscillations for small t that were present in the
numerical results in [9], do not occur here with both formu-
lations: not with staggered grids and not with collocated
grids adding the stabilization term.

Finally, the multigrid convergence factor for the decou-
pled system is found to be 0.06 for the equations for p and
q, while for the other two equations, with the stress bound-
ary conditions, it is found to be 0.12. The corresponding
CPU times are 100 on a 1282-grid and 400 on a 2562-grid.
The convergence factor for the coupled system on the stag-
Fig. 6. Computational domain for the footing problem
gered grid reads qh = 0.2. The CPU times are then 2900 on a
1282-grid and 11300 on the 2562-grid. The improvement in
CPU time with the transformed system is here more
impressive. This example shows that the transformation
can easily be applied to more realistic boundary conditions,
resulting in a similar performance of the solver.

6. Conclusion

In this paper we provide a fast and accurate discrete
solution for the incompressible variant of the poroelasticity
equations. The system is transformed so that a stable dis-
cretization can be obtained on a collocated grid. This is
done by means of an (implicit, via the transformation)
addition of an O(h2 + s) stabilization term in the discretiza-
tion of the transformed system.

A robust and very efficient multigrid iteration has been
defined based on the decoupled version of the poroelastic-
ity system after the transformation. It is sufficient to choose
a highly efficient multigrid method for a scalar Poisson type
equation for the overall solution of this poroelasticity sys-
tem. With standard geometric transfer operators, a direct
coarse grid discretization and a point-wise red-black
Gauss–Seidel smoother, an efficient multigrid method is
developed for all relevant choices of the problem parame-
ters. According to classical multigrid theory, we observe
multigrid convergence factors that are less than 0.1 for a
variety of poroelastic problems. In the literature this is
often called ‘‘textbook multigrid efficiency’’. Very satisfac-
tory solution times have been produced, that are about 10
times faster than the iterative solution of the coupled sys-
tem, discretized on a staggered grid.

The present discretization and iterative solution method
can be seen as a basis for the generalization to more com-
plicated problems that are also both porous and elastic.
Here we think of double porosity problems, or coupled
problems in which poroelasticity is coupled to Stokes flow
and to thermodynamical models.

The present saddle point type problem has been handled
well by a transformation, that is now well understood, at
least in 1D. The future problems offer next challenges in
the treatment of coupled saddle point type problems.
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