
Approximate Geospatial Joins with
Precision Guarantees

Andreas Kipf∗, Harald Lang∗, Varun Pandey∗, Raul Persa∗, Peter Boncz†, Thomas Neumann∗, Alfons Kemper∗

∗Technical University of Munich
Munich, Germany
{first.last}@in.tum.de

†Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

boncz@cwi.nl

Abstract—Geospatial joins are a core building block of con-
nected mobility applications. An especially challenging problem
are joins between streaming points and static polygons. Since
points are not known beforehand, they cannot be indexed.
Nevertheless, points need to be mapped to polygons with low
latencies to enable real-time feedback.

We present an approximate geospatial join that guarantees
a user-defined precision. Our technique uses a quadtree-based
hierarchical grid to approximate polygons and stores these
approximations in a specialized radix tree. Our approach can
perform up to several orders of magnitude faster than existing
techniques while providing sufficiently precise results for many
applications.

I. INTRODUCTION

Connected mobility companies need to process vast amounts
of location data in near real-time to run their businesses. For
instance, Uber needs to join locations of passenger requests
with a set of predefined polygons to display available products
(e.g., Uber X) and to enable dynamic pricing1. Another
example are traffic use cases where the positions of vehicles
need to be joined with street segments to enable real-time
traffic control. With a future of connected (and possibly self-
driving) cars and drones, high-performance geospatial joins
will become a key feature for increasingly demanding appli-
cations.

Geospatial joins have been studied for decades [1] and
many of these algorithms follow the traditional filter and refine
approach. A common technique is to index minimum bounding
rectangles (MBRs) of polygons in an R-tree. For each point,
the R-tree is probed and candidate polygons are refined using
expensive point-in-polygon (PIP) tests.

True hit filtering partially avoids expensive refinements by
identifying actual join pairs already in the filter phase [2].
This is achieved by approximating the interior of individual
polygons using inner circles or rectangles. When a point falls
into an interior approximation of a polygon, it is known to be
within the polygon.

Building on top of these key ideas we present an improved
algorithm that combines true hit filtering with quadtree-based
hierarchical grids [3], [4]. This is in contrast to existing

1https://eng.uber.com/go-geofence/

implementations of true hit filtering that use inner rectan-
gles [5] or non-hierarchical grids (e.g., Spark Magellan2). In
our approach, arbitrary geometrical shapes are translated into
sets of hierarchical grid cells which are used to approximate
geometries and their interiors. To support efficient queries, we
store these approximations in a specialized in-memory radix
tree (trie) named Adaptive Cell Trie (ACT).

Thereby it improves upon the state-of-the-art as follows:
• ACT improves the ratio of true hits by covering the

majority of the interior area of polygons using interior
cells.

• It achieves a lower false positive rate for candidate hits
by using tight approximations of the boundary areas of
polygons.

• Further, ACT can entirely avoid the expensive refinement
phase by refining cells in the boundary areas until a user-
defined precision of up to a few centimeters is guaranteed
(more than enough for GPS data).

• Finally, it outperforms existing implementations by up to
two orders of magnitude, since index lookups only rely on
(a few) basic integer arithmetics and bitwise operations.

Of course, these improvements come at the cost of higher
memory consumption. However, we argue that with the large
main-memory capacities of modern hardware we can afford to
maintain fine-grained index structures purely in main memory.
Depending on the employed grid, the approximations can be
very accurate. Our reference implementation supports very
high resolutions, up to a few centimeters.

To the best of our knowledge, this work is the first to
completely avoid the refinement phase while providing pre-
cision guarantees. Given the fact that the processing of lat/lng
coordinates is inherently imprecise due to their representation
as floating point numbers and that GPS positions (typically
obtained by smartphones) approximately have a 5 m accuracy
under open sky [6], we argue that trading off precision with
performance is a valid choice for many geospatial applications.

Our approach is also applicable to situations with strict
memory constraints. If ACT cannot guarantee the desired
precision given a certain memory budget, the refinement

2https://github.com/harsha2010/magellan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301647480?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

(a) Coverings (b) Super covering

Fig. 1: A covering and an interior covering of an individual
polygon (a) and a super covering of neighborhoods in NYC’s
Jamaica Bay (b) — blue = covering, green = interior

phase clearly cannot be omitted. Our solution is to adaptively
alter the trie structure based on the distribution of query
points to provide higher precision where it is actually needed.
Thus, the probability for true hits increases, false positives
are reduced, and consequently, expensive refinements can be
avoided. Due to space constraints, in the remainder of this
paper we present the basic functionality of ACT assuming no
memory constraints. We will cover adaptive versions of ACT
in future work.

II. APPROACH

The high level idea is to compute fine-grained approx-
imations of sets of polygons and store them in ACT, a
specialized in-memory radix tree. Our index is parameterized
with an application-dependent precision bound3 that must be
guaranteed.

We begin by computing approximations of individual poly-
gons. Figure 1a shows a covering and an interior covering of
an individual polygon marked in blue and green, respectively.
A point contained in a covering cell is either within or outside
of the polygon while points that match interior cells are known
to be within the polygon (true hits). The cell marked with 1 is
one of the largest covering cells and only minimally intersects
the polygon. Any point contained in this cell has at most a
distance of

√
2 ∗ a (with a being the side length of the cell)

to the polygon.
To avoid expensive PIP tests, we can treat all points con-

tained in covering cells as (approximate) hits. Thereby we
introduce false positives. However, as described above, the
distance of false positives from the polygon is bounded by the
diagonal of the largest covering cell. Thus, to satisfy a desired
precision, we can refine the largest covering cells until they
are sufficiently small.

In our implementation, we use Google S2 to compute
the individual coverings. Note that our approach does not
depend on S2 and in fact works with any other quadtree-
based hierarchical grid where each (implicit) quadtree node [7]
corresponds to a geographical area (space partitioning). For
our approach to work, each quadtree node needs to be uniquely
identifiable with a bit sequence that represents the path to the
given node starting from the root. Thereby, any (consistent)
enumeration scheme of the four quadrants is valid. To store

3The maximum distance between the partners of a false positive join pair.

 ...7

0 1 255

 ...8

0 1

 ...7

0 1

1

255255

1,2

(a) Adaptive Cell Trie

offset true candidate

0 {5} {3, 1}
1 {7, 2} {8}
...

(b) Lookup table

Fig. 2: Adaptive Cell Trie and the lookup table. Key parts (bit
sequences) are marked in black and values are marked in blue
(single or double payloads) and red (offsets).

these encoded node identifiers in a trie, we require the identi-
fiers of child nodes to share a common prefix with their parent
node.

A key feature of S2 is that it can represent each cm2 on
Earth using a 64 bit unsigned integer (cell id). We refer the
reader to the S2 website4 for more details about the library.

Once the coverings of every polygon have been computed,
we merge these individual coverings into a super covering that
represents all polygons. This step involves removing duplicate
cells and resolving conflicts between overlapping cells. The
latter may require additional refinement steps and potentially
increases the total number of cells.

Figure 1b shows a super covering of neighborhoods in
NYC’s Jamaica Bay. Covering and interior cells are again
marked in blue and green, respectively. Most of the shown
area is either covered by interior cells or by no cells at all.
Only in the unlikely event that a query point hits polygon
boundaries, we may experience false positives.

Each cell in the super covering references a set of polygons.
A reference consists of a polygon identifier and an interior
flag that indicates whether the cell is a covering or an interior
cell of the respective polygon. To allow for efficient lookups,
we store the cells in ACT and their polygon references in
a separate lookup table. Both data structures are designed
for in-memory processing and are optimized to only cause a
minimal number of cache misses. For performance and space
efficiency reasons, not every indexed cell points to an entry
of the lookup table. In most cases, cells reference one or two
polygons. Therefore, we inline the polygon identifiers in the
trie structure to eliminate additional indirections.

Adaptive Cell Trie: During join processing, we only perform
prefix lookups, i.e., we search for the cell ids that share a
common prefix with the cell id of the query point5 to check
whether the query point is contained in one of the indexed
cells. A radix tree thus is the ideal data structure for our needs.
For example, it is more space-efficient than a (sorted) vector,
since it avoids redundantly storing common prefixes (in a trie,
the path to a leaf node implicitly defines the key). Likewise,
lookups are in O(k) with k being the key length as opposed to
the O(log n) runtime complexity of binary search that could

4http://s2geometry.io/
5The query point is translated into a cell on the most fine-grained grid level.

be used on a sorted vector. We refer the reader to the work
of Zäschke at al. for another example of storing cells in a trie
structure [8].

Since we are interested in being highly selective and
therefore need to index many cells, the trie structure usually
exceeds cache size (cf., Section III). Thus, traversing the tree
potentially results in many cache misses.

Let kavg be the average key length and f be the fanout
of the tree. Then the average costs cavg of a lookup can be
estimated as follows:

cavg = dkavg/log2(f)e * costs per node access

The number of node accesses is bounded by the maximum
key length kmax , which is 60 when using 30 quadtree levels
(like in our case/implementation).

ACT uses a default fanout of 256 (= 8 bits). Thus, every
level in the tree represents four grid levels (every level is
encoded with two bits). This has the side effect that we can
only index cells at certain levels.

Let g be the cell level granularity of the tree. Then the
following holds for indexed cells:

levelcell mod g = 0

Thus, we need to denormalize6 cells upon insertion and
replicate their payloads.

While a fanout of 256 results in sparsely occupied trie
nodes and thus in a high space consumption, it allows for
efficient lookups as it reduces the height of the trie to kmax/g.
With f = 256, the maximum number of node accesses is
d60/log2(256)e = 8. In practice, a lower kmax is often
sufficient. For example, kmax = 48 allows for indexing cells
up to level 24 which limits the error of false positives to less
than 1 m (in our implementation) and reduces the number of
maximum node accesses to 6.

Figure 2a illustrates the structure of ACT. Values (payloads
or offsets) can be found in any node at any level of the tree.
Every node consists of a fixed-sized array of 256 entries of 8
byte pointers. These pointers are tagged. By default, all entries
point to a sentinel node indicating a false hit. Such a tagged
entry can be:

• An 8 byte pointer to a child or the sentinel node
• An inlined payload (a 31 bit value)
• Two inlined payloads (two 31 bit values)
• An offset (a 31 bit value) into a lookup table indicating

that there are at least three polygon references
We use the two least significant bits of the 8 byte pointer to
differentiate between these four possibilities. For an inlined
payload, we differentiate between a true hit and a candidate
hit using the least significant bit of the 31 bit payload. Thus,
we can effectively only store 30 bit payloads (i.e., index up
to 230 polygons).

Lookup table: When a cell references more than two poly-
gons, the tree contains an offset into a lookup table. Cells often

6Denormalizing a cell to a given level means replacing the cell with all of
its descendant cells at that level.

reference the same set of polygons. To avoid redundancy, we
therefore only store unique polygon reference sets. Figure 2b
shows an example of a lookup table. The reference sets are
split into two parts, a set with true hits and a set with
candidate hits. Both sets contain polygon identifiers. When
a cell references at most two polygons, we inline its payloads
into the tree (as described above). The lookup table is encoded
as a single 32 bit unsigned integer array. The offsets stored in
the tree are simply offsets into that array. Each encoded entry
contains the number of true hits followed by the true hits, the
number of candidate hits, and the candidate hits.

A lookup in ACT returns at most one cell that maps to a set
of polygon references. In contrast to a search in a binary tree,
a search in a radix tree is comparison-free. This means that
we do not compare the value of the search key to the value(s)
stored in the current node. We only need to extract the relevant
bits of the search key and jump to the corresponding offset.
However, we do comparisons to differentiate between pointers
and inlined payloads.

III. EVALUATION

We evaluate our approach on a server-class machine that
is equipped with two 14-core Intel Xeon E5-2680 v4 CPUs
and 256 GB DDR4 RAM. All experiments are conducted on a
single socket to eliminate NUMA effects. We join 1 B points
from the NYC taxi dataset7 and against NYC’s boroughs (5
polygons), neighborhoods (289 polygons), and census blocks
(39,184 polygons) and count the number of points per poly-
gon. While there are only five boroughs, their polygons are
significantly more complex. We use GCC version 5.4.0 with
O3 and march=core-avx2 flags in all experiments.

As a baseline of comparison, we index the MBRs of the
polygons in the boost R-tree (1.60.0) and measure its lookup
performance without refining candidates. For each returned
candidate, we simply increase the counter of the respective
polygon. We use the splitting strategy rstar with a maximum
of 8 elements per node which performs best in all workloads.
The R-tree consumes 376 bytes, 27.9 kB, and 3.49 MB for the
boroughs, neighborhoods, and census blocks dataset, respec-
tively. Note that this approach does not guarantee any precision
and only serves as a baseline for lookup performance of in-
memory spatial indexes.

The performance of our approach is dominated by the costs
for the ACT node accesses and the aggregation (counting
the number of points per polygon). To better understand the
results, we therefore first analyze the space consumption of
our index.

Table I shows different metrics of our index for the three
polygon datasets with 60 m, 15 m, and 4 m precision. While
the two 60 m indexes of the boroughs and the neighborhoods
dataset fit into the cache, all other indexes significantly exceed
cache size. For the census blocks dataset, ACT with 4 m
precision consumes 1.21 GB of memory. Note that even when
the number of indexed cells increases, the size of ACT does

7http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

TABLE I: Metrics of our index

boroughs neighborhoods census
precision [m] 60 15 4 60 15 4 60 15 4
indexed cells [M] 0.09 1.33 21.1 0.16 0.98 14.1 8.51 8.97 39.8
ACT [MB] 1.42 170 170 25.7 140 140 1162 1206 1206
lookup table [MB] 0.00 0.00 0.00 0.01 0.01 0.01 1.33 1.33 1.41
build individual coverings [s] 1.43 18.3 303 0.37 1.22 14.7 6.28 8.90 47.7
build super covering [s] 0.31 1.81 17.9 0.62 1.82 14.2 40.7 40.2 88.2

181181184

66.264
71.2

23.729.830.1

0

50

100

150

200

boroughs neighborhoods census

th
ro

ug
hp

ut
 in

 M
 p

oi
nt

s/
s

ACT−60m ACT−15m ACT−4m

Fig. 3: Single-threaded throughput of our approach with vary-
ing precision for the three polygon datasets. The dashed lines
indicate the lookup performance of the boost R-tree.

not necessarily increase. This is an artefact of the high fanout
of our radix tree. Since we are addressing the case of static
polygons, we only minimally optimized the build phase in
our implementation. While the computation of the individual
coverings is parallelized over the number of polygons, the
construction of the super covering runs serially.

Figure 3 shows the single-threaded throughput of our
approach with varying precision compared to the baseline
(dashed lines). ACT-60m achieves a throughput of 184 M
points/s for the boroughs dataset. With a higher number
of polygons in the neighborhoods and census datasets, the
throughput of ACT-60m decreases. The more precise indexes
ACT-15m and ACT-4m show similar performance numbers.
For the boroughs dataset, ACT-4m achieves almost the same
performance as ACT-60m. The reason for this is that boroughs
have large interior areas and thus points are very likely to
hit (coarse-grained) interior cells which are indexed in upper
(cached) ACT nodes (due to their short cell ids). Compared
to the baseline, ACT-4m achieves a 3.54x, 5.86x, and 10.3x
higher performance for the boroughs, neighborhoods, and
census blocks dataset, respectively. The fact that this factor
increases for the larger datasets shows that our approach scales
better with the number of polygons.

Finally, we evaluate the scalability of our technique. We
use ACT-4m for this experiment since it significantly exceeds
the cache size of our evaluation machine for all datasets.
Figure 4 shows the results. Our approach scales well for all
three datasets with the number of physical cores and even with
the number of hyperthreads. The fact that an oversubscription
of cores has a positive performance impact shows that our

●

●

●

●

●

●

64

256

1024

4096

1 2 4 8 16 32

number of threads (log scale)th
ro

ug
hp

ut
 in

 M
 p

oi
nt

s/
s

(lo
g

sc
al

e) ● boroughs neighborhoods census

Fig. 4: Scalability of our approach with 4 m precision with a
peak throughput of 4.30 B points/s for boroughs

technique is bound by memory access latencies and having
more threads than physical cores can hide these latencies.

IV. CONCLUSIONS

We have presented an approximate geospatial join that guar-
antees a user-defined precision. Our technique uses a quadtree-
based hierarchical grid to approximate polygons represented
by a specialized radix tree. We have shown that it is possible
to refine the index up to a user-defined precision and identify
all join partners in the filter phase.

ACKNOWLEDGMENTS
This work has been sponsored by the German Federal Ministry of Educa-

tion and Research (BMBF) grant FASTDATA 01IS12057. This work is further
part of the TUM Living Lab Connected Mobility (TUM LLCM) project and
has been funded by the Bavarian Ministry of Economic Affairs and Media,
Energy and Technology (StMWi) through the Center Digitisation.Bavaria, an
initiative of the Bavarian State Government.

REFERENCES

[1] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Trans.
Database Syst., vol. 32, no. 1, p. 7, 2007.

[2] T. Brinkhoff, H. Kriegel, R. Schneider, and B. Seeger, “Multi-step
processing of spatial joins,” in Proc. of SIGMOD, 1994, pp. 197–208.

[3] A. Klinger, “Patterns and search statistics,” in Optimizing methods in
statistics. Elsevier, 1971, pp. 303–337.

[4] G. M. Hunter and K. Steiglitz, “Operations on images using quad trees,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 1, no. 2, pp. 145–153, 1979.

[5] K. V. R. Kanth and S. Ravada, “Efficient processing of large spatial
queries using interior approximations,” in Proc. of SSTD, 2001, pp. 404–
424.

[6] F. van Diggelen and P. Enge, “The worlds first gps mooc and worldwide
laboratory using smartphones,” in Proc. of ION GNSS+ 2015, 2015, pp.
361–369.

[7] I. Gargantini, “An effective way to represent quadtrees,” Commun. ACM,
vol. 25, no. 12, pp. 905–910, 1982.

[8] T. Zäschke, C. Zimmerli, and M. C. Norrie, “The ph-tree: a space-efficient
storage structure and multi-dimensional index,” in Proc. of SIGMOD,
2014, pp. 397–408.

