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We give a class of graphs with the property that for each even set T of nodes in 
G the minimum length of a T-join is equal to the maximum number of pairwise 
edge disjoint T-cuts. Our class contains the bipartite and the series-parallel graphs 
for which this property was derived earlier by Seymour. © 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let G be an undirected connected graph. For each v E V( G), the node set 
of G, and each F£ E(G), the edge set of G, we define dF(v) to be the num
ber of edges in F incident with v. If T£ V(G), then we call a set F£ E(G) 
a T-join if T= {ve V(G)ldF(v) is odd}. Throughout this paper we shall 
always assume IT I to be even. We denote the minimum cardinality of a 
T-join in G by rr(G). For U£ V(G) we define o(U):= {uveE(G)lueU, 
v~ U}. Such a set is called a coboundary. If u e V(G) then o(u) := ()( {u} ). 
If I Un TI is odd we call b( U) a T-cut. The maximum number of pairwise 
edge disjoint T-cuts is denoted by vr( G). Since, obviously, each T-join has 
at least one edge in common with each T-cut, the following, well-known, 
inequality holds: 

( 1.1) 

In this paper we consider sufficient conditions for equality in ( 1.1 ). In 
particular, we give a class of graphs for which ( 1.1) holds with equality for 
each even cardinality subset T of V(G). For convenience we baptize such 
a graph a Seymour graph. Seymour proved the following two results: 

A connected bipartite graph is a Seymour graph [ 18]; ( 1.2) 

A connected series-parallel graph is a Seymour graph [ 17]. ( 1.3) 

*This paper was written while the author was at Tilburg University, Tilburg, 
The Netherlands, and at the University of Waterloo, Waterloo, Ontario, Canada. 
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(A graph G is called series-parallel if no subgaph of G is homeomorph with 
K4 , the complete graph with four nodes.) It should be noted that ( 1.3) is 
a very special, simple, case of Seymour's deep result on binary clutters with 
the max-f1ow min-cut property [ 17]. The two sufficient conditions for 
graphs to be Seymour graphs contained in ( 1.2) and ( 1.3) are of quite 
different natures: bipartiteness is a parity condition (all circuits are even), 
whereas series-parallelism is a topological condition (no homeomorph of 
K4 as a subgraph). The result of this paper is the following theorem, which 
unifies these two conditions by one weaker condition. 

THEOREM 1.1. Let G he an undirected connected graph. If G contains 
neither an odd-K4 nor an odd-prism, then G is a Seymour graph. 

(We prove this result later, in Section 3.) 
Here an odd-K4 and an odd-prism are graphs as depicted in Fig. 1. 

Wriggled lines stand for pairwise openly disjoint paths, while odd, even 
indicate that the corresponding faces are bounded by odd circuits, even 
circuits, respectively. 

It is straightforward to see that neither bipartite graphs nor series
parallel graphs contain an odd-K4 or an odd-prism. So Theorem 1.1 implies 
( 1.1) as well as ( 1.3 ). But in addition Theorem 1.1 gives Seymour graphs 
which are not series-parallel and not bipartite (e.g., the graph shown in 
Fig. 2a). The two forbidden configurations odd-K4 and odd-prism are 
motivated by the fact that v 1·1c; 1 ( G) # -r viGi ( G) if G = K4 or G is the 
triangular prism (Fig. 2b ). 

The organization of this paper is as follows. In Section 2 we give some 
preliminary results useful in proving Theorem 1.1. In particular we give a 
decomposition result for graphs with no odd-K4 and no odd-prism. The 
proof of Theorem 1.1 is given in Section 3. We conclude Section 1 with a 
few remarks. 

odd 

even even 

odd 

odd-prism 

FIGURE I 
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(a) (b) 

FIGURE 2 

Remarks. (i) The condition in Theorem 1.1 is not a necessary condi
tions since the graph shown in Fig. 3a is an odd-K 4 as well as a Seymour 
graph. However, from Theorem 1.1 one can derive: 

Let G be a connected graph. Then the following are equivalent: 

( *) G contains no odd-K4 and no odd-prism; 

( **) For each weight function we Z~(Gl with the property 
that Lee t:(C) we is even if and only if C is an even circuit 
in G, we have: 
for each even Tr;;. V(G) the minimum weight of a T-join 
with respect to w is equal to the maximum size of a 
w-packing of T-cuts. ( 1.4) 

(Aw-packing of T-cuts is a family B1 , ... , B, of T-cuts (repetition allowed) 
such that each eeE(G) is in at most w, members of that family. The size 
of a family Bi. ... , B, is t. 

Note that the class of graphs for which the min-max relation in 
( 1.4 )( ** ) holds for each T and for each weight function w (not necessarily 
satisfying the parity condition in ( 1.4 )( **)) is the class of series-parallel 
graphs. 

The graph shown in Fig. 3b is a Seymour graph. But the graph obtained 
by deleting the edge marked e is not a Seymour graph. This example, due 

(a) (b) 

FIGURE 3 
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to one of the referees, shows that a characterization of Seymour graphs in 
terms of forbidden subgraphs (like ( 1.4)) does not exist. 

(ii) Middendorf and Pfeiffer [ 11] have shown that it is .Y~J>-complete 
to decide whether a given graph G with a given subset T of nodes satisfies 
( 1.1) with equality. As far as I know the complexity of the class of Seymour 
graphs is open. I do not even know whether it is in .Ai'& v co-Al",o/. 

(iii) From (1.1) one easily derives a min max relation for r 7 (G) in 
arbitrary graphs and for arbitrary T. This min--max relation, derived by 
Lovasz [8 ], is: 

Let G be a connected graph, and let T be an even subset of 
V( G ). Then 2r r( G) is equal to the maximum cardinality of a 
2-packing of T-cuts. ( 1.5) 

The min--max relation rr(G)=vr(G) is particularly relevant for multi
commodity flows in planar graphs ( cf. [ 18] ). Besides the already 
mentioned references on T-joins and T-cuts, there are quite a few 
others: Edmonds [ 1 ], Edmonds and Johnson [2, 3 ], Frank, Sebo, and 
Tardos [4], Korach [6], Korach and Penn [7], Mei Gu Guan [10], 
SebO [12-16]. 

2. PRELIMINARIES 

Signed Graphs 

The proof of Theorem 1.1 given in Section 3 makes use of a "decomposi
tion" result for graphs with no odd-K4 and no odd-prism (Theorem 2.2). It 
is convenient to state and prove this result in terms of "signed" graphs. A 
signed graph is a pair ( G, .E), where .E c;;. E( G) of G. The edges in .E are 
called odd, the other edges even. A circuit C in G is called odd (even, respec
tively) if I.En E( C) I is odd (even, respectively). We call a signed graph 
bipartite if .E = 6( U) for some Uc;;. V( G ). For example, ( G, 0) is bipartite. 
Moreover, ( G, E( G)) is bipartite if and only if G is a bipartite graph in the 
usual sense. It is easy to see that a signed graph is bipartite if and only if 
it contains no odd circuits. Let ( G, .E) be a signed graph, and let U <;;. V( G ). 
Obviously (G,.E) and (G,L16(U))) have the same collection of odd 
circuits (LI denotes the set-theoretic symmetric difference). We call the 
operation I-+ L'Llb( U) resigning (on U). We say that ( G, .E) reduces to 
( G ', I') if ( G ', I') can be obtained from ( G, I) by a series of the following 
operations: 
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- deleting an edge from G (and from E); 

- contracting an even edge in G; 

- resigning; 

- deleting a vertex from G. 

The notions odd-K4 and odd-prism can be extended easily to signed 
graphs. We do this by saying that the word odd (even, respectively) in 
Fig. 1 indicates that the corresponding face is bounded by an odd circuit 
(even circuit, respectively) in (G, E).The signed graph (K4 , E(K4 )) will be 
denoted by K4 . 

The following is easy to prove. 

Let (G, E) be a signed graph. Then (G, E) contains an odd-K4 

as a subgraph if and only if (G, E) reduces to K4 • (2.1) 

Let C== (V(C), E(C)) be a circuit in G. Then we say that e, 
feE(G)\E(C) are equivalent if there exists a path u0 , u 1 , ••• , u,, u,+ 1 in G 
with u1 , ••• , u,~ V(C) and u0 u1 ==e, u1u1+ 1 ==!The equivalence classes of 
this equivalence relation are called the bridges of C. (In particular, a chord 
uv of C (i.e., u, v E V( C), uv e E( G)\E( C) ), forms a bridge of C.) We call C 
non-separating if C has at most one bridge. 

We first show a technical lemma, which will be used in the proof of the 
decomposition theorem, Theorem 2.2 (cf. Lemma in [5]). 

LEMMA 2.1. Let ( G, E) be a signed graph with no odd-K4 as a subgraph, 
and with no one-node cutset. Let C be a non-separating odd circuit in G with 
C =f. G. If C satisfies: 

(i) V( C) n V( C') #- 0 for each odd circuit C' in ( G, E); 

(ii) C contains at least three nodes with degree at least three, 

then C has a unique sub graph I c such that: 

(i') leis a path, V(/c)#-0; 

(ii') any odd circuit C' in ( G, £) contains I c as a subgraph; 

(iii') there exists an odd circuit C' in ( G, £)such that V( C) n V( C') = 
V(l c) and E( C) n E( C') = E(I c). 

Proof Clearly V(G)\V(C)#-0. (If V(G)=V(C), then Chas exactly 
one chord, uv say, as C #- G and C is non-separating. This violates (ii).) Let 
B be a tree spanning V( G)\ V( C) (which exists, as C is non-separating). 
Now delete all the edges with both endpoints in V( G)\ V( C) which are not 
in B. Resign such that£ n E(B) = 0, and then contract the edges in B. As 
the edges contained in V( G)\ V( C) form a bipartite graph (by condition 
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(i) ), each odd circuit in the original signed graph contains an odd circuit 
in the reduced signed graph. Conversely each odd circuit in the contracted 
signed graph is contained in an odd circuit of the original signed graph. By 
(2. l) the contracted graph contains no odd-K4 • Hence we may assume that 
( G, L') is the contracted graph, i.e., V( G) = V( C) u { w} for some node w. 

Let C' be an odd circuit in G which has a minimum number of edges 
in common with C. Define I e by V(I e) = V( C) n V( C') and E(J e) = 
E( C) n E( C' ). Obviously I e satisfies (i') and (iii'). Suppose (ii') is not 
satisfied by le. Let C" be an odd circuit not containing le. By the mini
mality of IE(C')nE(C)I, we have that E(C')nE(C)nE(C")=0. Now 
there are five possibilities, indicated in Fig. 4. In each of them, ( G, L') 
contains an odd-K4 . The existence of edge wv in the rightmost figure 
follows from (ii). This proves the existence of I c· The uniqueness of I e is 
obvious. I 

Remark. Note that in Lemma 2.1 it might be the case that I V(J c )I = 1 
and E(Je)= 0. 

Decomposition 

A k-split of G is a pair G 1, G2 of subgraphs of G, such that 
V(G,) u V(G2) = V(G), I V(Gi) n V(G2)1:::;; k; E(Gi) u E(G2) = E(G), 
E(G 1 )nE(G2 )=0, and \E(Gi)\, IE(G2 )l~k. If both E(G1) and E(G2) 
contain an odd circuit in ( G, L') we call the k-split strong. 

We call a signed graph ( G, L') almost-bipartite if there exists a node 
u E V(G) which is on each odd circuit in (G, L'). 

The following theorem shows that signed graphs containing no odd-K4 

and no odd-prism are essentially almost bipartite. 

THEOREM 2.2. Let ( G, L') be a signed graph with no odd-K4 and no odd
prism. If G is simple (i.e., has no loops and parallel edges), then one of the 
following holds: 

(i) (G, l') has a I-split; 

(ii) (G, l') has a strong 2-split; 

(iii) (G, l') is almost bipartite. 

iJ>:\ r,r;:;\ r/Q 1,Q rJ~~~ 
0 V!?Y \G G V 

FIGURE 4 
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Proof Let ( G, E) satisfy the conditions of the theorem, without 
satisfying (i) or (ii). We prove that G is almost bipartite. 

CLAfM 1. There are no two node disjoint odd circuits. 

Proof of Claim 1. Suppose to the contrary that C 1 and C 2 are odd 
circuits with V( C 1 ) n V( C 2 ) = 0. Obviously I V( C; )I ~ 3 for i = I, 2 (as G 
is simple). Since (i) and (ii) are not satisfied, Menger's theorem [9] yields 
the existence of three paths P 1 , P2 , and P3 from C1 to C2 such that 
V(P;) n V(P;) = 0 (i,j = 1, 2, 3, i -:!-)}. It is easy to see that C1, C2 , P 1 , P 2 , 

and P 3 together form an odd-prism or contain an odd-K4 • This is a 
contradiction. End of proof of Claim I 

For each odd circuit C in ( G, E) and each bridge B s; E( G) of C there 
exists a unique path I c (B) on C with the following properties: 

- there exists an odd circuit C' such that E( C') £ E( C) u B; 
V(C)n V(C')= V(Ic(B)) and E(C)nE(C')=E(/c(B)); 

- each odd circuit C' with E( C') s; E( C) u B satisfies V( C) n 
V(C')2 V(Ic(B)) and E(C)nE(C')2E(lc(B)). 

Indeed if C contains at least three nodes with degree at least three, this 
follows from Claim 1 and Lemma 2.1. If C contains at most two nodes of 
degree at least three, this follows from the fact that ( G, E) has no 1-split 
and no strong 2-split. 

Now choose an odd circuit C and a bridge B of C, such that Il'(B) has 
a minimal number of edges, among all lc(B) (over all odd circuits C, and 
bridges B of C). Let ii be an endpoint of /C'(B). 

Claim 2. ii E V(I l' ( B)) for each bridge B of C. 

Proof of Claim 2. Suppose to the contrary that ii~ V(Ic(B)) for some 
bridge B of C. Since h(B) is minimal, V(IC'(B))\V(I('(B))-:l-0. Let 
ue V(Ic(B))\ V(h(B)). 

Let C be an odd circuit, with E( C) £ E( C) u B, V( C) n V( C) = 
V(l c-(B) ), and E( C) n E( C) = E(I c(B) ). Similarly, let C be an odd circuit, 
with E(C)s;E(C)uB, V(C)n V(C)= V(h(B)), and E(C)nE(C)= 
E(lc(B)). Obviously u~ V(C). Let B be the bridge of C containing u. Then 
E(C) is contained in Bu E(C). So V(fc(B))s; V(C)n V(C)s; V(lc(B))\ {ii}, 
contradicting the minimality of IC'(B). End of proof of Claim 2 

It is an easy exercise to derive from Claim 2 that each odd circuit in 
( G, E) contains ii. So ( G, E) is almost bipartite. I 
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3. PROOF OF THEOREM 1.1 

In proving Theorem 1.1 we apply the results in Section 2 to the signed 
graph ( G, E( G) ). (If the signing E is not explicitly given we all ways assume 
E=E(G).) 

Let G be a connected graph. Then we have vr(G) = vr(G) for every even 
subset T of V( G) if and only if 

for each wE{-1,l}E(Gl such that LeeEinw,~0 for each 
circuit C in G there exists a collection of edge disjoint 
coboundaries 6( U,, ), e E { e E £( G) I w_ = - 1} ( =: F 11.), such that 
eEb(Ue) for each eEF11 • (3.1) 

(The proof of this equivalence is easy and is left to the reader (cf. [15, 16]). 
Let G be a graph such that ( G, E( G)) contains no odd-K4 and no odd
prism, and such that Theorem 1.1 is correct for all graphs with fewer edges 
than G. We prove that (3.1) holds for G. So let w E { - 1, 1 } t:Wl such that 

L w,~O for each circuit C in G. (3.2) 
e E E(C) 

We consider the three cases of Theorem 2.2. 

Case I. G has a one node cutset, { u} say. It is not hard to see that now 
a packing with coboundaries, as meant in (3.1 ), is obtained by taking the 
union of such packings in each of the sides of the cutset { u }. 

Case II. G is two-connected, and has a strong 2-split. So G has two 
non-bipartite subgraphs G1 and G2 such that V(G 1 )u V(G 2 )= V(G), 
I V(Gi) n V(G2 )1=2 ( V(Gi) n V(G 2 ) = {u, v} say), E(G 1 ) u E(G 2 ) = E(G), 
and E(G 1 )nE(G2 )=0. For i=l,2, let rx.; be the length, with respect to 
w, of the shortest uv-path in G;. By (3.2), rx. 1 +rx. 2 ~0. Hence we may 
assume rx. 2 ~ 0. 

Construct G1 from G 1 by adding to G1 a uv-path, P say, such that 
I E(P)I = rx. 2 • (If rx. 2 = 0, identify u and v and call the new node u again.) 
Define ll' 1 E{-1, l}E(Gil by w!=l if eEE(P) and w!=w, if eEE(Gi). 
Now (G 1 , E(Gi)) contains neither an odd-K4 , nor an odd-prism. (Indeed, 
there exists a uv-path Qin G2 with IE(Q)l=rx. 2 =IE(P)I (modulo2).) 
Moreover G 1 contains no negatively weighted circuits with respect to 
w 1• So, there exists a collection {6(V,)leET11.} of coboundaries in G1, 

satisfying (3.1) with respect to w1• We may assume u rj; U, for each e E F"'i. 
Define Z := {eEF111 l6(U,)nE(P)#0}, and p := IZI. 

Next we construct G2 from G2 by adding a uv-path Q to G2 with 
I E(Q)I = p. (If p = 0, identify u and v, and call the new node u again.) 
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CLAIM I. (G 2 , £(G 2 )) contains neither an odd-K4 nor an odd-prism. 

Proof of Claim 1. As G 1 is non-bipartite, and G is two-connected there 
exists in G 1 an even uv-path, as well as an odd uv-path. 

End of proof of Claim I 

Define w2 E { -1. 1 }E1G2l by w; = -1 if e E E(Q), and w; = 11'e if 

e EE( G 2 ). There are no negative weighted circuits with respect to w2 in G2 . 

(Note that p~rx 2 , and hence -p+rx 2 ?0.) So as G2 has fewer edges than 
G, there exists a collection { J( Ve) I e E F,,.2} of co boundaries in G2 in the 
sense of (3.1) with respect to w2. We may assume u rf 6( Ve) for each e E F,,.2. 

If p # 0 let rr be some bijection from Z to E(Q). Now it is easy to see that 

(or if p = 0: { b( u .. ) I e E F"'} u { b( v .. ) I e E F .. z}) is a collection of coboun
daries in G, satisfying ( 3.1) with respect to w. 

Case III. G is almost bipartite. Let uE V(G) such that Gl(V(G)\u) is 
bipartite, with bipartition U1' U2 , say. Define a bipartite graph G as 
follows: 

V(G) = (V(G)\{u}) u {u 1, u2 }; 

E( G) = (£( G)\b(u)) u {vu; Iv E U;, vu E £( G), i = I, 2} u { u1 u2 }, 

and ff·eE { -1, I } 61 Gl by 

{

w,, 

it'£' = it' l'U 

-1 

if eEE(G)\b(u); 

if e=vu;;vEV(G)\{u};i=I,2; 

if e = U1 U2. 

CLAIM 2. Le E El n ff·"? 0 for all circuits C in G. 

Proof of Claim 2. Suppose to the contrary that Le E 6·1 CJ ff·"< 0 for a 
circuit C in G. Obviously the edges in £( C)\ { u 1 u2 } give a circuit C in G, 
hence u 1 u2 E £( C). But this means that C is odd in G, and so 

LeE E(C) i\:·,. = - 1 + LeE EiC') we? - l + I = 0. Contradiction. 
End of proof of Claim 2 

Since G is bipartite, ( 1.2) yields the existence of a collection 
{ 6( U,) I e E F.,.} of co boundaries as meant in (3.1) with respect to ff· in G. 

We may assume u 1 rf U,.(eEF1,.}. But now {b(Ue)leEF ... } is a desired 
collection of coboundaries with respect to w in G. I 

Remark. Case III in the proof above was derived independently by 
D. Wagner. 
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