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Abstract—Geospatial joins are a core building block of con-
nected mobility applications. An especially challenging problem
are joins between streaming points and static polygons. Since
points are not known beforehand, they cannot be indexed.
Nevertheless, points need to be mapped to polygons with low
latencies to enable real-time feedback.

We present an adaptive geospatial join that uses true hit
filtering to avoid expensive geometric computations in most
cases. Our technique uses a quadtree-based hierarchical grid
to approximate polygons and stores these approximations in a
specialized radix tree. We emphasize on an approximate version
of our algorithm that guarantees a user-defined precision. The
exact version of our algorithm can adapt to the expected point
distribution by refining the index. We optimized our implementa-
tion for modern hardware architectures with wide SIMD vector
processing units, including Intel’s brand new Knights Landing.
Overall, our approach can perform up to two orders of magnitude
faster than existing techniques.

I. INTRODUCTION

Connected mobility companies need to process vast amounts
of location data in near real-time to run their businesses. For
instance, Uber needs to join locations of passenger requests
with a set of predefined polygons to display available products
(e.g., Uber X) and to enable dynamic pricing1. Another
example are traffic use cases where the positions of vehicles
need to be joined with street segments to enable real-time
traffic control. With a future of connected (and possibly self-
driving) cars and drones, high-performance geospatial joins
will become a key feature for increasingly demanding appli-
cations.

While geospatial joins have been studied for decades, many
of them optimize for I/O operations, which is an important
performance factor for disk-based systems. With the large
main-memory capacities of modern hardware, however, it
is for the first time possible to maintain fine-grained index
structures purely in main memory.

We propose an adaptive geospatial join that addresses work-
loads with streaming points and static polygons. Our approach
is optimized for modern hardware with large high-bandwidth
memory and our implementation fully utilizes many-core
processors and their Single Instruction Multiple Data (SIMD)
units.

1https://eng.uber.com/go-geofence/
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Fig. 1: We adaptively compute a fine-grained (true hit) filter
that identifies most or even all join partners. We can treat
candidate hits as true hits while guaranteeing a user-defined
precision. The arrow width reflects the amount of data passing
through each of the respective paths.

Figure 1 illustrates our approach. We make use of true
hit filtering proposed by [1]. The authors of this work used
maximum enclosed rectangles and circles as progressive ap-
proximations of single polygons. In contrast, we use an
adaptive grid represented by a specialized radix tree, Adaptive
Cell Trie (ACT), to not only index single polygons but entire
sets of polygons.

There are systems (e.g., Oracle Spatial [2] and Spark
Magellan2) that have used the idea of true hit filtering. We
take this idea one step further and leverage the large main-
memory capacities available in modern hardware to maximize
the likelihood of true hits. We increase this likelihood by
training the index using historical data points.

In summary, we transform the traditionally compute-
intensive problem of geospatial joins into a memory-intensive
one. Our approach results in speedups of up to two orders
of magnitude compared to state-of-the-art standalone libraries
and geospatial database systems.

Our contributions include:

• An adaptive geospatial join that uses hierarchical grids
combined with radix indexing techniques to identify most
join partners in the filter phase.

2https://github.com/harsha2010/magellan

ar
X

iv
:1

80
2.

09
48

8v
1 

 [
cs

.D
B

] 
 2

6 
Fe

b 
20

18
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301647465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eng.uber.com/go-geofence/
https://github.com/harsha2010/magellan


• An approximate version of this approach that guarantees
a user-defined precision.

• An optimization of this technique for Intel’s latest Xeon
Phi, named Knights Landing (KNL).

II. BACKGROUND

Unless stated otherwise, we follow the semantics of the
ST Covers join predicate supported by PostGIS and Oracle
Spatial. ST Covers evaluates whether one geospatial object
(e.g., a polygon) covers another (e.g., a point). Points on the
edges or vertices of a polygon are considered to be within
the polygon. Other predicates, such as ST Intersects, are not
explicitly addressed in this paper but can be implemented with
similar techniques.

Our geospatial join uses several building blocks:

PIP: A point-in-polygon (PIP) test determines whether a point
lies within a polygon. Typically such a test is performed
using complex geometric operations, such as the ray tracing
algorithm which involves drawing a line from the query point
to a point that is known to be outside of the polygon and
counting the number of edges that the line crosses. If the line
crosses an odd number of edges, the query point lies within
the polygon. The runtime complexity of this algorithm is O(n)
with n being the number of edges. While there are many
conceptual optimizations to the PIP test, this operation remains
computationally expensive since it processes real numbers
(e.g., latitude/longitude coordinates) and thus involves floating
point arithmetics. In geospatial joins, this test should thus be
avoided whenever possible.

Space-filling curves: Geographical coordinates can either
be indexed using multi-dimensional data structures, such as
R-trees, or they can be linearized and indexed using one-
dimensional data structures, such as B-trees or tries. Lineariza-
tion methods include the Hilbert space-filling curve and the Z
curve. Our approach relies on discretization and linearization
but does not depend on a concrete space-filling curve. For our
approach to work, the cell enumeration must only fulfill the
property that children cells share a common prefix with their
parent cell.

Google S2: We use the Google S2 library3 that provides
primitives that our approach builds upon. These primitives
include a PIP test algorithm and adaptive grid approximations
of polygons. In general, S2 offers many features for processing
geospatial data in both discrete and non-discrete space. To
transform coordinates from the non-discrete space (the lati-
tude/longitude coordinate system) into the discrete space, S2
maps points on earth onto a surrounding unit cube. Then it
recursively subdivides each of the six faces of the cube in a
quadtree fashion and enumerates the cells using the Hilbert
space-filling curve. The enumerated cells are 64 bit integers,
called cell ids, that uniquely identify a cell. The three most
significant bits represent one of the six faces of the cube. The
following zero to 30 bit pairs identify the quadtree cell. The

3http://code.google.com/archive/p/s2-geometry-library/
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Fig. 2: Cells at three different levels enumerated by the Hilbert
curve and their bit representations
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Fig. 3: A covering and an interior covering of a polygon

next bit is always set and is used to identify the level of a cell.
The remaining bits (if any) are set to zero. The smallest cells
use all 64 bits.

Figure 2 illustrates the hierarchical decomposition of a cube
face and shows how many bits the corresponding cell ids
require depending on their level. The colored bits encode the
levels. The cell ids in the example share a common prefix
with their ancestors up to the colored bit. For example, c0 is
an ancestor of c1 and c2 (i.e., c0 fully contains c1 and c2). A
containment relationship between cells can thus be efficiently
computed using bitwise operations.

As mentioned above, S2 offers methods for approximating
polygons. Figure 3a shows a covering of a polygon. A covering
is a collection of cells (possibly at different levels) fully
covering a polygon. Figure 3b shows an interior covering.
As the name suggests, an interior covering approximates the
interior of a polygon. All cells of an interior covering (interior
cells) are completely contained within the polygon. When a
point lies in an interior cell, we know that it also lies within
the polygon. Both types of coverings can be utilized to speed
up PIP tests.

To allow for an efficient search, S2 stores the cell ids of a
covering in a sorted vector. Besides sorting the cell id vector,
it allows for normalizing the covering. A normalized covering
neither contains conflicting nor duplicate cells. A conflict
between two cells exists, if one cell contains the other. Only
when the covering is normalized, cell containment checks can
be efficiently (O(log n)) implemented using a binary search
on the sorted vector. The normalization of an covering does
not lead to a precision loss.

http://code.google.com/archive/p/s2-geometry-library/


III. GEOSPATIAL JOIN

With our approach, we address geospatial joins between
streaming points and static polygons. An example of such a
workload is mapping Uber or DriveNow cars and passenger
requests to predefined zones for allocation purposes.

A. Overview

Our geospatial join takes a set of simple polygons, builds
an index, and probes points against the index. The high level
idea is to index adaptive grid approximations of the polygons
in a highly-efficient and specialized radix tree. In contrast to
techniques that first reduce the number of polygons using an
index, e.g., an R-tree on the polygons’ minimum bounding
rectangles (MBRs), and then refine candidates using geometric
operations, our approach implements true hit filtering [1] and
identifies most or even all join partners in the filter phase.
Given a memory budget and a precision bound, we adapt
our index to satisfy these constraints while maximizing probe
performance.

Our algorithm consists of five phases:

Build logical index: We compute coverings and interior
coverings of all polygons and merge them to form a logical
index.

Build physical index: Then we build a physical index on the
cells of the logical index.

Training: When our approximate approach cannot guarantee a
user-defined precision without exceeding a specified memory
budget, we use an exact approach and train the index with
historical data points to increase probe performance. Popular
areas that expect more hits are approximated using a finer-
grained grid than less popular areas.

Probe index: In this phase, we probe the points against the
physical index. An index probe can either return a false hit
or a list of hits, where each hit can either be a true hit or a
candidate hit.

Refine candidates: Finally, we perform exact geometric
computations for all candidate hits4.

We use the S2 library to compute coverings and interior
coverings. Note that our technique does not rely on S2. In fact,
any other adaptive grid index would work as well. We then
merge the individual coverings to create a logical index, before
we build a physical index. Note that the first two phases can
be performed in one step, i.e., the individual coverings can be
computed and merged while inserting their cells into the index.
In our approach, the probe (filter) phase is the performance
critical part. We therefore highly parallelize this phase using
thread- and instruction-level parallelism to accelerate lookups
in the physical index. In the refinement phase, we use S2’s
PIP test, which implements the ray tracing algorithm (cf., [3]
for performance numbers).

4Often, this phase can be skipped. In fact, it is only required if exact results
are needed and if there are candidate hits at all.

The overall strategy of our technique is to minimize the
number of (expensive) refinements. We can decrease the
number of refinements by using a more fine-grained index.
Since we make use of true hit filtering, a precise index allows
us to identify most join partners during the filter phase. We can
always omit the refinement phase when approximate results
are sufficient. The error of such an approximate algorithm is
bound by the length of the diagonal of the largest covering
cell, which we choose to be sufficiently small.

Our geospatial join takes two parameters: (i) a memory
budget that must not be exceeded and (ii) an application-
dependent precision5 that must be guaranteed. We first try
using the approximate approach by refining the index until we
can guarantee the user-defined precision bound. This involves
replacing covering cells with their children cells until the
largest covering cell is sufficiently small (i.e., its diagonal is
less than the precision bound). It might occur that we exhaust
the memory budget during this procedure. In that case, we
use the exact approach and train the index until we have
used the entire memory budget. Training the index reduces
the likelihood for expensive geometric operations. We evaluate
these two approaches in Section V.

In summary, we trade memory consumption with preci-
sion (approximate approach) and probe performance (exact
approach). The approximate approach almost involves no
computation (except result aggregation) while the exact ap-
proach reduces expensive computations by training the index.
Thus, both strategies favor modern hardware with large main
memory capacities and high memory bandwidths.

B. Build Logical Index

We compute coverings and interior coverings of all poly-
gons, and combine them into a logical index, which we call
super covering. The precision of the super covering defines
the selectivity of the index. As mentioned earlier, a normalized
covering excludes conflicting and duplicate cells. In contrast
to the lossless normalization of a single covering, we might
experience a precision loss when merging two overlapping
coverings and normalizing the resulting super covering6. In
other words, a normalized super covering may be less selective
than two individual coverings. Figures 4a and 4b show the
coverings of two individual polygons. The red cells have
conflicts with cells of the other covering. Figure 4c shows
the normalized super covering. The conflicting cells were
expanded to larger cells, which lead to a precision loss.

When combining the covering and the interior covering of
a single polygon, the situation is even more severe since there
will be many overlapping cells. To retain the precision of
the individual coverings, we can omit removing conflicting
cells and only remove duplicates. However, there is a trade-off
between the size of a super covering and its precision. We have
experimented with three flavors of a super covering: (i) only
covering cells, (ii) covering and interior cells with precision

5The maximum distance (in meters) between the two partners of a false
positive join pair.

6There is no precision loss if the overlap only consists of duplicate cells.



(a) Covering (b) Covering (c) Super cov.

Fig. 4: A normalized super covering may be less selective
than two individual coverings. The arrows indicate that the
cells will be expanded.

(a) c1 and c2 (b) Difference d (c) d and c2

Fig. 5: Precision preserving conflict resolution. c1 is marked
in blue, c2 in green, and the cells in d in purple. Note that c1
contains c2.

loss, and (iii) covering and interior cells without precision loss.
The first approach only indexes covering cells. This approach
cannot identify true hits during the filter phase. The second
approach additionally indexes interior cells and can thus skip
the refinement phase when hitting an interior cell. The first two
approaches normalize the super covering when combining the
cells leading to a precision loss. The third approach avoids the
normalization. Instead of storing a cell c1 and its descendant
cell c2, we compute their difference d and store c2 and d. This
has the advantage that there will not be any overlap between
the indexed cells and thus an index lookup will at most return a
single cell. The side effect is that the total number of cells will
increase since d consists of at least three cells. This approach
retains the precision and the type (covering or interior) of the
individual cells as well as the mappings of cells to polygons7.
Figure 5 illustrates this precision preserving conflict resolution.
Assume that c1 and c2 are cells of two different coverings.
First, we compute d, which consists of six cells. We then copy
all references of c1 to d and c2 and omit c1. Note that the cell
count is increased by five.

Each cell in the super covering maps to a list of polygon
references. A polygon reference has two attributes:

polygon id: The id of the polygon that this cell references.

interior flag: Whether the cell is an interior or a covering cell
of the polygon.

Listing 1 outlines the algorithm that builds a super covering

7We expect the individual coverings (that serve as inputs to the merge and
index phases) to be normalized. Instead, they could also be normalized “on
the fly”.

Listing 1: Build super covering
input:
a list of coverings coverings // one per polygon
a list of interior coverings interiors // one per polygon

output:
// a list of (cell, polygon references)
the super covering superCovering

begin
for (covering in coverings) {
for (cell in covering) {
if (superCovering already contains cell) {
add references of cell to existing cell
continue
}
if (cell conflicts with existing cell in superCovering) {

// cell is covered by existing cell or vice versa
// resolve conflict
c1 = ascendant cell // may be cell or existing cell
c2 = descendant cell // may be cell or existing cell
d = difference of c1 and c2
add references of c1 to d and c2
remove c1 from superCovering // only required if the
existing cell is the ascendant cell
add c2 and d to superCovering
continue
}
add {cell, {covering.polygonId, interior flag=false}} to

superCovering
}
}
// ... same code for interior coverings (with interior flag=true)

end

of coverings and interior coverings and retains the precision
of the individual coverings. We iterate over all input cells and
try to insert them into the super covering. When a cell already
exists, this means that it is also part of another covering that
has already been processed. When a cell conflicts with another
cell, this means that either the current cell covers the other cell
or vice versa. These two cases may happen when polygons
overlap or are close to each other. Conflicts also occur when
we first insert the cells of a covering of a given polygon and
then the cells of its interior covering. The interior cells always
overlap some (if not all) covering cells. By appropriately
resolving these conflicts, we retain the precision of the index.
As mentioned earlier, this strategy increases the total number
of cells. However, a more precise index reduces the number of
refinements and thus increases the overall performance of our
algorithm. In the remainder of this paper, we use the approach
that retains the precision of the individual coverings.

Figure 6 illustrates a coarse-grained and a fine-grained
super covering of the five NYC boroughs. For computing the
illustrated super coverings, we use up to 50 and up to 200 cells
per individual (interior) covering for the coarse-grained and the
fine-grained super covering, respectively. The key message of
this illustration is that the size of the green area increases with
more precise individual coverings, while the size of the red and
the blue area decreases. Increasing the size of the green area
increases the likelihood that we can skip the refinement phase.
Interior cells are not only more likely to be hit than covering



(a) Coarse-grained (b) Fine-grained

Fig. 6: Super coverings of the five NYC boroughs. Interior
cells are marked in green, covering cells of single polygons
in blue, and covering cells of multiple polygons in red.

cells but they also tend to be larger. Since larger cells use
less bits, this leads to an additional performance improvement
when probing ACT. The reason for this is that large cells are
indexed high up in the tree and are thus found sooner.

C. Build Physical Index

To store the logical index, we use a physical index con-
sisting of two data structures, ACT and a lookup table. Both
data structures are designed as in-memory data structures
and are optimized for modern hardware. In particular, we
utilize large main-memory capacities, avoid unnecessary cache
misses, and have parallelized and vectorized the lookups in
ACT (cf., Section IV). ACT stores the cell ids of the super
covering and the lookup table stores the corresponding lists
of polygon references. When a given cell maps to less than
three polygon references, we inline the references into the tree
nodes avoiding an additional indirection and a possible cache
miss.

Adaptive Cell Trie: In S2, the cells of an individual covering
are stored in a sorted vector that can be efficiently searched
using a binary search (cf., Section II). While this approach has
a runtime complexity of O(log n), it is not very space efficient,
since the cell ids of the cells of a single covering often
share a common prefix that is stored redundantly. For a single
covering, the space consumption can be reduced by storing the
common prefix separately and only storing the varying parts
of the cells (e.g., using delta encoding). Since the cells of a
single covering are spatially dense and thus likely to share a
common prefix, this works well. However, when combining
the coverings and interior coverings of multiple polygons, the
cells are not necessarily dense anymore. Also, we only require
prefix lookups, i.e., we need to search for the cell ids that share
a common prefix with our search key (the cell id of a query
point) to check whether the query point is contained in one of
the indexed cells. A radix tree thus is the ideal data structure
for our needs. It is more space-efficient than a sorted vector,
since it avoids redundantly storing common prefixes (in a trie,
the path to a leaf node implicitly defines the key). Another
advantage of a radix tree is that lookups are in O(k) with
k being the key length. Besides the algorithmic complexity,

lookup performance depends on the number of cache misses.
Since we are generally interested in high selectivity and index
many cells, the tree usually exceeds cache size (cf., Section V).
Thus, traversing the tree results in many cache misses (at least
one per non-cached node).

Let kavg be the average key length and f be the fanout
of the tree. Then the average costs cavg of a lookup can be
estimated as follows:

cavg = dkavg/log2(f)e * costs per node access

Increasing the number of indexed cells does not necessarily
increase kavg . Thus, the costs of a lookup in a non-cached
tree are relatively independent of the number of indexed cells.
The number of node accesses is bounded by the maximum
key length kmax , which is 60 when using S2’s adaptive grid
index8. Our tree uses a default fanout f (f ≥ 2) of 256 (=
8 bits). Thus every level in the tree represents four S2 levels
(recall that every S2 level is encoded with two bits). This has
the side effect that we can only index cells at certain levels.

Let g be the S2 level granularity of the tree. Then the
following holds for indexed cells:

levelcell mod g = 0

Thus, we need to denormalize9 cells upon insertion and
replicate their payloads.

While a fanout of 256 results in sparse nodes and thus in
a large space consumption, it allows for efficient lookups. An
adaptive radix tree (ART) [4] is usually more space-efficient,
however, experiments show that introducing a second node
type with four children (Node4 in ART) would (i) only save
a negligible amount of space in the case of our workload and
(ii) switching between the different node types would have a
significant impact on lookup performance. Also, lookups in
compressed node types would be more expensive due to the
additional indirection for accessing the payloads. Since ACT
is designed as a transient data structure that is built at runtime,
we favor performance over space consumption. With r = 256,
the maximum number of node accesses is d60/log2(256)e =
8. In practice, a lower kmax is often sufficient. For example,
kmax = 48 allows for indexing S2 cells up to level 24 (a
level 24 cell represents at most 2m2 on earth) and limits the
number of node accesses to 6.

Figure 7a illustrates the structure of ACT. Values (payloads
or offsets) can be found in any node at any level of the tree.
Every node consists of a fixed-sized array of 256 entries of 8
byte pointers. These pointers are tagged. By default, all entries
point to a sentinel node indicating a false hit. Such a tagged
entry can be:

• An 8 byte pointer to a child or the sentinel node
• An inlined payload (a 31 bit value)
• Two inlined payloads (two 31 bit values)
• An offset (a 31 bit value) into a lookup table

8The three face bits are indexed in a dedicated face node and the level
encoding bit is not required.

9Denormalizing a cell to a given level means replacing the cell with all of
its descendant cells at that level.
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Fig. 7: Adaptive Cell Trie and the lookup table. Key parts (bit
sequences) are marked in black and values are marked in blue
(single or double payloads) and red (offsets).

We use the two least significant bits of the 8 byte pointer to
differentiate between these four possibilities. For an inlined
payload, we differentiate between a true hit and a candidate
hit using the least significant bit of the 31 bit payload. Thus,
we can effectively only store 30 bit payloads (i.e., index up to
230 polygons). We decided to inline two payloads since it is
very likely that a cell has less than three payloads in the case
of disjoint polygons. We do not inline more than two payloads
since this would mean further reducing the supported number
of polygons.

Since our implementation uses S2, we need to maintain up
to six radix trees, one for each face of the cube (cf., Section II).
We call the node that stores the root nodes of these trees face
node.

Lookup table: When a cell references more than two poly-
gons, the tree contains an offset into a lookup table. Cells often
reference the same set of polygons. To avoid redundancy, we
therefore only store unique polygon reference lists. Figure 7b
shows an example of a lookup table. The reference lists are
split into two parts, a list with true hits and a list with candidate
hits. Both lists contain polygon ids. When a cell references
at most two polygons, we inline its payloads into the tree.
Assuming disjoint polygons and a uniform distribution of
points, a more fine-grained super covering may reduce the
chance that we need to access the lookup table. Let a be the
area that is covered by cells that contain an offset into the
lookup table (i.e., cells that reference more than two polygons).
Increasing the granularity of the index may reduce the size of
a (size1 ≤ size0) and thus reduces the likelihood of having
to access the lookup table. The lookup table is encoded as
a single 32 bit unsigned integer array. The offsets stored in
the tree are simply offsets into that array. Each encoded entry
contains the number of true hits followed by the true hits, the
number of candidate hits, and the candidate hits.

D. Training

When we cannot build an index that satisfies a user-defined
precision without exceeding the memory budget, we use an
approach that may enter the expensive refinement phase. To
minimize the likelihood of refinements, we train the index to
adapt to the expected distribution of query points.

The index can either be trained online or offline. In this
work, we only discuss and evaluate how to train the index in a

Listing 2: Probe Adaptive Cell Trie
input:
face node faceNode
the cell id of the point cellId

output:
tagged entry taggedEntry

begin
rootNode = extract face bits of cellId and look up root node in

faceNode
if (rootNode does not exist)
// no indexed cells on that face
return invalid entry

if (common prefix of rootNode does not match)
return invalid entry

level = 0
currNode = rootNode
bits = getBits(cellId, level++) // extract relevant bits
// traverse the tree until we either hit the sentinel node or

found a payload
while (taggedEntry = currNode.getEntry(bits) is a pointer) {
if (taggedEntry points to the sentinel node)

return false hit
currNode = taggedEntry
bits = getBits(cellId, level++)
}

end

dedicated training phase. The online case introduces additional
concurrency and buffer management issues that we leave for
future work.

Training the index minimizes the area that is covered by
expensive cells. We define expensive cells as cells that map
to polygon reference lists with at least one candidate hit.
When we hit such a cell during the join, we need to enter
the refinement phase. Expensive cells are marked blue and
red in Figure 6.

We start off with an instance of ACT that does not exceed
the memory budget. When a training point hits an expensive
cell, we determine the logical representation of this cell10.
Then we verify for each of its four children cells whether
they intersect, are fully contained in, or do not intersect the
referenced polygons at all, and update ACT accordingly. We
repeat this procedure until we have exhausted the memory
budget. We show the effect of training the index in Section V.

E. Probe Index

A lookup in ACT returns at most one cell that maps to a
list of polygon references. The probe algorithm is shown in
Listing 2. In contrast to a search in a binary tree, a search
in a radix tree is comparison-free. This means that we do not
compare the value of the search key to the value(s) stored in
the current node. We only need to extract the relevant bits of
the search key and jump to the corresponding offset. However,
we do a comparison for checking whether the entry contains
a payload.

10Recall that ACT uses a fanout of 256 thus the physical cell in the tree
might not be the same as the logical cell that was originally inserted into the
tree.



For the tagged entry returned by the tree probe, we need to
differentiate between (i) one payload, (ii) two payloads, and
(iii) an offset. In the first case, we need to check whether the
payload is invalid, which indicates a false hit. Otherwise, we
extract the interior flag (the least significant bit of the 31 bit
payload) and the polygon id and return a polygon reference. In
the second case, we extract and return both references. Only
in the third case, we need to access the lookup table to retrieve
the polygon references.

Listing 3 shows the complete probe algorithm. For a given
point, we retrieve the cell that it is contained in (if such a
cell exists) and go over all references of this cell. We can
skip refinement checks for true hits and immediately output
the join partners.

Listing 3: The probe algorithm
input:

points points // lat/lng coordinates and cell ids
polygons polygons // lat/lng coordinates of vertices
face node faceNode
lookup table lookupTable

output:
list of join pairs pairs // point/polygon pairs

begin
for (point in points) {

taggedEntry = probeAdaptiveCellTrie(faceNode, point.cellId) //
cf., Listing 2

if (taggedEntry is invalid)
continue

references = getPolygonReferences(lookupTable, taggedEntry)
// returns a list of polygon references

for (reference in references) {
polygonId = reference.polygonId
polygon = polygons[polygonId]
if (reference is true hit) {
add {point, polygon} to pairs
} else { // candidate hit

if (polygonCoversPoint(polygon, point)) // exact PIP test
add {point, polygon} to pairs

} } }
end

IV. MODERN HARDWARE

In this section, we present the optimizations of our proposed
join algorithm for modern hardware architectures. The general
hardware trend is having an increasing number of cores with
ever larger vector processing units (VPUs). That applies to
established server-class machines such as Intel’s Xeon and
particularly to high-performance computing platforms such as
Intel’s Xeon Phi. In this work, we focus on Intel’s second-
generation Xeon Phi processor, Knights Landing.

A. Knights Landing Processor

Just like its predecessor, the KNL processor is a many inte-
grated core (MIC) architecture which draws its computational
power from wide VPUs. The corresponding AVX-512 offer
SIMD capabilities on 512-bit registers. In contrast to the first
generation Phi, KNL is available as a co-processor expansion
card and as a self-boot processor (socket on a mainboard)

which is fully backward compatible as it also implements all
legacy instructions. In this work, we focus on the self-boot
processor and not the co-processor expansion card.

Compared to our Xeon processor (cf., Section V), equipped
with 14 fast clocked brawny cores per socket, the KNL
processor consists of 64 wimpy cores moderately clocked at
1.3 GHz. The register width as well as the number of vector
registers has been doubled over AVX2 architectures. Thus, for
a software to run efficiently on KNL, it is essential to exploit
the offered SIMD capabilities.

Especially for data-intensive workloads like ours, KNL
offers three promising features: (i) it is equipped with an on-
chip High Bandwidth Memory (HBM) which is comparable
to the memory on high-end GPUs in speed and size, (ii)
the processor performs a much more aggressive memory
prefetching, and (iii) the 4-way hyper threading can help to
hide memory latencies.

B. Parallelism

KNL is a massively parallel processor in terms of thread-
level parallelism and data parallelism on the instruction level.

1) Multithreading: Thread-level parallelism can be
achieved using well-known techniques. In existing parallel
joins, multiple threads probe an index structure (e.g., a
hash table) in parallel. During the probe phase, the index
structure is in an immutable state. Therefore, an arbitrary
number of threads can perform read operations without the
need for synchronization. As no contention points exist, the
join performance typically scales linearly in the number of
threads.

2) Data Parallelism: Achieving data parallelism on instruc-
tion level is more involved and requires several modifications
over the scalar implementation. The goal is again to perform
multiple index lookups in parallel. We divide a 512 bit SIMD
register into eight 64 bit SIMD lanes and can thus process up
to eight elements simultaneously per vector unit. The major
difference to thread parallelism is, that the same instruction is
executed on all in-flight lookups, which is due to the lockstep
nature of SIMD. Thus, for the SIMD implementation to be
efficient, the in-flight lookups need to make progress with
every issued instruction. This implies that every lookup must
be in the same stage of the algorithm, i.e., it is no longer
possible that one lookup performs a prefix comparison while
simultaneously another issues a memory load. To achieve this,
our probe algorithm from Listing 2 is decomposed into the
following stages:

Determine tree root: As mentioned earlier, our implemen-
tation uses S2 for space partitioning the earth. Thus, a join
index actually consists of up to six radix trees. In this stage,
we extract the three face bits of the query point’s cell id to
determine the radix tree that needs to be traversed. Further, we
check if the query point and the polygons indexed in the radix
tree share the predetermined common prefix. If the prefixes do
not match, then it is guaranteed that there is no join partner.
We want to point out that on the one hand this stage of the



algorithm is S2 specific but on the other hand it is similar to
a scenario where the data is radix partitioned by three bits.

Tree traversal: In this stage, we traverse the tree. In each
iteration, we compute the offset of the entry in the current
tree node according to the search key. If the entry is a pointer
to a child tree node we follow the pointer and continue.

Produce output: In the third and last stage, we interpret the
content of the entries where the search in the previous stage
terminated. We have to distinguish the cases (i) false hit, (ii)
single or double hit, and (iii) multiple hits which are either
true or candidate hits (cf., Section III).

To illustrate the vectorized implementation, we use pseudo
code instead of C++ for better readability. In the pseudo
code, vectors are annotated with an arrow, bitmasks are named
msubscript, and for masked operations we use the following
notation:

#  »
dst = operation

# »src
mask(~a)

The operation is applied to the components in ~a specified
by mask and the results are stored in

#  »
dst. The remaining

components are copied from #  »src to
#  »
dst. Further, we make use

of the vpermd/q instruction (for better readability we refer
to it as permute) that shuffles vector components using the
corresponding index vector, e.g.,

[d,a,d,b]︸ ︷︷ ︸
result vector

= permute( [3,0,3,1]︸ ︷︷ ︸
index vector

, [a,b,c,d]︸ ︷︷ ︸
input vector

).

During index construction we initialize the following vec-
tors:

#       »
roots = [r0, ..., r5, , ] // pointers to the six root nodes
#               »

prefixes = [p0, ..., p5, , ] // common prefixes
#                               »

prefix lengths = [l0, ..., l5, , ] // common prefix lengths

These vectors are used to determine the tree roots in the first
stage (cf., Listing 4). – For performance reasons these vectors
remain in CPU registers to avoid memory loads. – Given a
vector of cell ids, we first extract the face bits of each cell
id. The resulting vector is then used as a permutation index
vector to move the pointer of the corresponding root nodes
to the output vector

#         »
nodes. Similarly, we obtain the prefixes

and the lengths of the prefixes. The actual prefix check, an
equality comparison, results in a bitmask which is used as an
execution mask in the later stage. I.e., if the cell id in SIMD
lane i does not match the common prefix, then the i-th bit in
the bitmask is set to zero.

The tree traversal, shown in Listing 5, is more involved. As
it performs multiple traversals in lockstep, it is required to do
some bookkeeping about the current traversal state. The mask
mtraverse keeps track of the active SIMD lanes and in moutput
the algorithm memorizes the lanes that produced an output.
The output mask therefore represents the execution mask for
the next stage. The output values itself are stored in

#          »
values.

In each iteration of the while loop, the algorithm first
computes the entry offsets from which it subsequently gathers

Listing 4: Stage 1 of the vectorized probe algorithm
input:

cell id vector
#              »

cell ids
output:

tree node pointers
#          »

nodes
active lane mask m

begin
#        »

faces =
#              »

cell ids� 61 // extract the 3 face bits
#          »

nodes = permute(
#        »

faces,
#       »
roots) // get the node pointers

// get common prefix and prefix length for each tree
#»p = permute(

#        »

faces,
#               »

prefixes)
#»

l = permute(
#        »

faces,
#                               »

prefix lengths)
#»p actual =

#              »

cell ids� (61−
#»

l ) // extract the common prefixes
m = (

#»p actual == #»p ) // prefix check (results in a bitmask)
end

Listing 5: Stage 2 of the vectorized probe algorithm
input:

cell id vector
#              »

cell ids
node pointer vector

#          »

nodes
mask m

output:
output mask moutput

output payloads
#           »

values
begin
level = 1 // start tree traversal at level 1
mtraverse = m // active lanes
moutput = 0 // lanes that produced an output
#           »

values = [0, ... , 0] // a place for the produced output
while (mtraverse != 0) {

#            »

offsets = compute bucket offset(
#              »

cell ids, level)
// load bucket contents
#           »

values = gather
#       »

values
mtraverse (

#          »

nodes +
#            »

offsets)
// check for pointer (the two LSBs are zero)
mptr = ((

#           »

values & 112) ==mtraverse 0)
msentinel = (

#           »

values ==mptr sentinel) // check for sentinel
#          »

nodes =mptr

#           »

values // update current node pointers
// identify lanes that produced an output
moutput | = !mptr & mtraverse
// identify trapped lanes and update traversal mask
mdone | = moutput | msentinel
mtraverse ˆ= mdone & mtraverse
level++
}

end

the contents. The gather is a masked operation for two reasons:
(i) to avoid unnecessary memory accesses and (ii) to keep
already existing output values in

#          »
values.

Once the bucket contents are loaded into a vector register,
we have to check whether the values are payloads or pointers.
In case of pointers, the addresses are compared to the address
of the sentinel node. If the comparison evaluates to true, the
search terminates without producing an output, otherwise the
corresponding pointers are moved to

#         »
nodes. Based on the two

masks mptr and msentinel, the traverse mask mtraverse is updated
and the search continues until mtraverse is zero.

In the last stage, we have to distinguish between true and
candidate hits. We have not vectorized this stage since its



performance impact is neglectable. However, for the select
polygon id, count(∗) ... group by polygon id query we use in

the evaluation (cf., Section V), we partially optimized the
aggregation using SIMD. Otherwise, the aggregation would
become a bottleneck due to the wimpy CPU cores of KNL.

Our SIMDfied aggregation is optimized for the most likely
cases, where either one polygon id or two polygon ids are
returned by the ACT lookup. We have implemented a direct
aggregation based on gather and scatter instructions and the
efficient popcount implementation presented in [5]. In the less
likely cases, where the query point matches more than two
polygons (i.e., ACT returns an offset into the lookup table)
or where the match is inconclusive, we materialize the results
into a small L1 resident buffer, which is consumed sequentially
later on.

V. EVALUATION

In this section, we show the performance of our join and the
selectivity of our index for a join between points and polygons
on two different machines. We compare the performance of our
technique to an R-tree based approach that uses the same code
in the refinement phase as ours. To give a point of reference,
we also compare against PostGIS and Magellan. In addition to
the results of the exact algorithm, we show that an approximate
algorithm can significantly speed up the join while providing
sufficiently precise results for many use cases.

Configuration: We evaluate our approach on a server-class
machine (Xeon) and on KNL (cf., Section IV-A). Xeon runs
Ubuntu 16.04 and is equipped with an Intel Xeon E5-2680 v4
CPU (2.40 GHz, 3.30 GHz turbo) and 256 GB DDR4 RAM.
The machine has two NUMA sockets with 14 physical cores
each, resulting in a total of 28 physical cores (56 hyper-
threads). KNL runs CentOS Linux release 7.2.1511 and is
equipped with a single Intel Xeon Phi CPU 7210 (1.30 GHz,
1.50 GHz turbo), 96 GB DDR4 RAM, and 16 GB on-chip
HBM. We use GCC version 5.4.0 with O3 enabled in all
experiments.

We join 1.23 B points from the NYC taxi dataset11 against
NYC’s boroughs (5 polygons), neighborhoods (289 polygons),
and census blocks (39,184 polygons) and count the number of
points per polygon. While there are only five boroughs, their
polygons are significantly more complex.

We compare our technique to an approach that builds an
R-tree on the polygons, probes the points against the index,
and refines candidate hits. In the refinement phase, we use
S2’s PIP test, the same algorithm that our technique uses. In
the filter phase, we use the boost R-tree implementation (1.6.0)
and evaluate different splitting strategies (linear, quadratic, and
rstar) and maximum element counts per node (4, 8, 16, and
32). rstar with a maximum of 8 elements per node performs
best in all workloads. We therefore omit the results for the
other configurations. We have also evaluated the STRtree

implementation in GEOS (3.5.0), however, omit it in the
further evaluation as it cannot compete with rstar for our

11http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

workloads. For example in the neighborhoods join on Xeon,
STRtree achieves a throughput of 27.4 M points/s, while rstar

processes 70.9 M points/s. The performance difference is
caused by the selectivity of the respective index structure.
rstar returns 1.60 candidates on average while STRtree returns
1.94. In addition, we benchmark PostgreSQL 9.6.1 (PostGIS
2.3.1) with a GiST index on the polygons. We configured
PostgreSQL to use as many parallel workers12 as available
hyperthreads. As another competitor, we evaluate a single-
machine deployment of Magellan. Similar to our approach,
Magellan uses true hit filtering. Our default configuration for
computing the individual coverings is as follows: max covering
cells = 128, max covering level = 30, max interior cells = 256,
and max interior level = 20.

Results: Figure 8 shows the throughput of our approach
compared to the boost R-tree using all threads (56 and 256
threads on Xeon and KNL, respectively).
approx always skips the refinement phase and treats all

candidate hits as true hits. The precision of approx is
bounded by the diagonal length of the largest covering cell. We
refined the index to only contain sufficiently small covering
cells to guarantee the denoted precision. approx10m has a
false positive rate of almost 0% for boroughs, 3% for neigh-
borhoods, and 17% for the census blocks dataset. The average
distance of these false positives join partners is 1.31 m for
boroughs, 1.62 m for neighborhoods, and 1.50 m for the census
blocks dataset. This shows that our technique can achieve a
significantly better precision than the user-defined precision
bound (10 m in that case) for real workloads. approx10m
consumes 1.2 GB of memory for the largest of the three
datasets.
exact denotes the full join that refines candidate hits using

S2. We train the index with 1 M historical data points for all
datasets.

Figure 9 shows the throughput increase when training
ACT with an increasing number of points. An untrained
ACT achieves a throughput of 2360 M points/s, whereas ACT
trained with 1 M points achieves 3732 M points/s (+58%).

The Xeon binaries are compiled with AVX2 optimiza-
tions (march=core-avx2) while the KNL implementation
is hand-optimized (cf., Section IV). Compared to an auto-
vectorized version, the performance of our hand-optimized
implementation is between 29% and 70% higher. Auto-
vectorization with AVX-512 (march=knl) instead of AVX2
does not have a performance impact suggesting that hand-
tuning is essential to fully utilize the wide vector processing
units of KNL.

On Xeon (Figure 8a), ACT-exact achieves a throughput
of 3735 M points/s for the boroughs dataset. With a higher
number of polygons in the neighborhoods and census datasets,
the throughput of ACT-exact decreases. The reason for
the slowdown is the lower selectivity and the higher space
consumption of our index for the larger datasets (cf., Table I).
While the index of the boroughs dataset fits into the cache,

12The intra-query parallelism feature was introduced in PostgreSQL 9.6.

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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the index of the neighborhoods and census blocks datasets
exceed the cache size. The R-tree achieves a peak performance
of 61.2 M points/s for the neighborhoods dataset. The reason
for its slow performance for the boroughs dataset is as fol-
lows: S2’s PIP test implements the ray tracing algorithm. As
mentioned earlier, this algorithm has a runtime complexity of
O(n) with n being the number of edges. Since the boroughs
are complex polygons with many edges, the PIP tests in
the refinement phase are very expensive. Here, our algorithm
shines since it can identify most join partners in the filter phase
and only needs to enter the refinement phase for 0.1% of the
points.

As a point of reference, PostgreSQL (PostGIS) with a GiST
index on the polygons only achieves a throughput of 0.39 M
points/s for the boroughs, 1.09 M points/s for the neighbor-
hoods, and 0.69 M points/s for the census blocks dataset. Sim-
ilar to the R-tree based join, PostgreSQL’s performance suffers
from the complex polygons in the boroughs dataset. Even
though PostgreSQL parallelizes this query, its performance is
still orders of magnitude lowers than ours. Magellan performs
better than PostGIS and achieves a throughput of 0.88 M
points/s for boroughs, 4.57 M points/s for neighborhoods, and
2.24 M points/s for census blocks.

With 10 meter precision, ACT achieves a throughput of

TABLE I: Metrics of our index

metric boroughs neighborhoods census

tree nodes 413 13025 590147
false hits 0.07% 0.09% 0.07%
solely true hits 99.9% 87.1% 72.1%
candidates 1.06 1.66 1.72

TABLE II: Effect of training the index

metric boroughs neighborhoods census

tree nodes 456 22484 634005
false hits 0.07% 0.11% 0.07%
solely true hits 99.9% 97.7% 88.6%
candidates 1.15 1.57 1.70

4532 M points/s for the boroughs dataset and still 874 M
points/s for the almost 8000x larger census blocks dataset. The
reason for the similar performance of ACT-approx100m and
ACT-approx10m is that neither of the two performs any
exact checks. Thus, their performance is dominated by the
costs for the ACT node accesses and the final aggregation.
For the census blocks dataset, approx10m is even faster than
approx100m, since the finer-grained index of approx10m
returns less candidates on average leading to less aggregations.

On KNL (Figure 8b), ACT-exact achieves a peak
throughput of 4436 M points/s for the boroughs dataset outper-
forming the Xeon counterpart. For the census blocks dataset,
we can see the same effect as on the Xeon machine with
the more precise approx approach achieving the highest
throughput. These results show that the single-socket KNL can
compete with or even outperform a dual-socket Xeon machine
when the code uses vector instructions.

Table I shows different metrics of our index for the three
polygon datasets. The quality metric solely true hits indicates
the percentage of points that skipped the expensive refinement
phase, which is clearly above 70% throughout all datasets. The
points for which the index probe neither returns a false hit nor
solely true hits and thus need to enter the refinement phase are
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Fig. 10: Scalability for the census blocks dataset on the Xeon and on the KNL machine

compared against less than two candidate polygons on average.
For the boroughs dataset, our index consumes less than one
MB of memory and thus the top levels of the tree fit into the
L2 cache of the Xeon machine. For the larger datasets, we use
a larger number of cells and thus also a larger index structure.
The exact index of the census blocks dataset requires more
than one GB of memory. The high memory consumption is
caused by the high fanout of 256 of our radix tree. An adaptive
radix tree would be more space-efficient, however, switching
between the different node types has a significant impact on
probe performance, especially for cache-resident indices.

Table II shows the effect of training the index with 1 M
training points (cf., Section III-B). This optimization improved
the percentage of solely true hits for all three datasets (espe-
cially for census blocks) while increasing the number of tree
nodes and thus the space consumption of the indices.

Finally, we evaluate the scalability of our technique on
both machines. We choose the census blocks dataset for this
experiment since its index significantly exceeds the cache sizes
of both machines but still fits into the MCDRAM of KNL.
Figure 10 shows the results.

On Xeon, all three approaches scale almost linearly with
the number of physical cores and benefit from hyperthreading.
The fact that an oversubscription of cores has a positive perfor-
mance impact shows that our technique is bound by memory
access latencies and having more threads than physical cores
can hide these latencies.

On KNL, ACT-approx10 has its maximum performance
with 2-way hyperthreading (128 threads) and decreases with 4-
way hyperthreading (256 threads). ACT-exact scales from
13.0 M points/s with one thread to 417 M points/s with 56
threads on Xeon. On KNL, ACT-exact scales from 25.9 M
points/s with eight threads to 260 M points/s with 256 threads.

VI. RELATED WORK

Geospatial joins have been studied for decades and there
is a lot of related work on algorithmic techniques. [6] gives
a summary of spatial join techniques. [1] proposes true hit
filtering in the form of maximum enclosed rectangles and
circles allowing to skip the refinement phase in many cases.

[7] follows up on this approach by using raster approximations
in the form of uniform grids thereby improving the selectivity.
Both approaches optimize not only for selectivity but also
for I/O operations, which is an important performance factor
for disk-based database systems. [2] recursively divides the
MBR of a polygon into four cells until a certain granularity is
reached, identifies interior cells, and indexes them in an R-tree
to skip refinement checks during join processing. [8] presents
an approach that leverages multiple grids with different res-
olutions to index geospatial objects using standard database
indices.

In contrast to existing techniques, our approach proposes
a new way of processing geospatial joins by identifying the
majority or even all of the join partners in the filter phase
using an adaptive grid while leveraging the large main-memory
capacities, high memory bandwidths, multi-cores, and wide
vector processing units of modern hardware. None of these
techniques supports training the index with historical data
points to improve probe performance.

Several database systems and geographical information sys-
tems (GIS) support geospatial joins. [9] present a compre-
hensive survey of state-of-the-art systems and classifies the
approaches that exist in literature to design and implement
such systems. There are two main geospatial processing
libraries used by database systems: GEOS13 and S2 (cf.,
Section II). MongoDB, a document-oriented database, uses
S2 for geospatial processing and indexes the coverings of
geospatial objects in a B-tree14. HyPerSpace [3], a geospatial
extension to the main-memory database system HyPer [10],
also uses S2 for geospatial processing. PostGIS15, a geospa-
tial extension to PostgreSQL16, uses GEOS for geospatial
processing and an R-tree implemented on top of GiST [11]
for indexing geospatial objects. MonetDB, a column-oriented
database, also uses GEOS for geospatial processing17. Magel-

13http://trac.osgeo.org/geos/
14http://blog.mongodb.org/post/50984169045/

new-geo-features-in-mongodb-24
15http://postgis.refractions.net/
16http://postgresql.org/
17http://monetdb.org/Documentation/Extensions/GIS

http://trac.osgeo.org/geos/
http://blog.mongodb.org/post/50984169045/new-geo-features-in-mongodb-24
http://blog.mongodb.org/post/50984169045/new-geo-features-in-mongodb-24
http://postgis.refractions.net/
http://postgresql.org/
http://monetdb.org/Documentation/Extensions/GIS


lan, a library for geospatial analytics that is based on Apache
Spark, indexes geospatial objects using the Z curve. Similar
to our technique, it is capable of identifying join partners in
the filter phase. However, it uses a uniform grid and thus
cannot adapt to the geometrical features of the polygons
and the expected distribution of query points. Two popular
Hadoop-based geospatial information systems are Hadoop-
GIS [12] and SpatialHadoop [13]. Both systems partition the
data and store it in HDFS blocks such that spatial objects
that belong to a particular partition are stored in the same
HDFS block and insert the MBRs of the partitions into a
global index. Since these systems rely on offline partitioning
of the data, they cannot efficiently handle the online case
where points are streamed. GeoSpark [14] does not support
the online case either since it does not allow to perform the
join without an index on points, and Simba [15] does not yet
support polygons. Most work on hardware optimizations for
geospatial joins focuses on GPU offloading [16]–[18] and [19]
propose a vision for a GPU-accelerated end-to-end system for
performing spatial computations which decides whether to use
CPUs or GPUs based on a cost model.

VII. CONCLUSIONS

We have presented an adaptive geospatial join that leverages
true hit filtering using a hierarchical grid represented by a
specialized radix tree. We have transformed a traditionally
compute-intensive problem into a memory-intensive one. Our
approach is enabled by adaptively using the large high-
bandwidth main memory of modern hardware. We have shown
that it is possible to refine the index up to a user-defined
precision and identify all join partners in the filter phase. We
have demonstrated that the exact version of our algorithm can
adapt to the expected point distribution. We have optimized our
implementation for the brand new KNL processor and have
shown that our approach can outperform existing techniques
by up to two orders of magnitude.

In future work, we plan to evaluate our approach on the
next-generation Intel Xeon processor, named Skylake, which
also supports AVX-512, and on GPUs. We also plan to address
offline workloads by leveraging small materialized aggregates
(SMAs) available in Data Blocks [20].
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