-

P
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by CW!I's Institutional Repository

Space-Economical Partial Gram Indices for Exact
Substring Matching

Peter Boncz
CWI, Amsterdam
The Netherlands
boncz@cwi.nl

Nan Tang
CWI, Amsterdam
The Netherlands

Lefteris Sidirourgos
CWI, Amsterdam
The Netherlands

Isidir@cwi.nl

tang@cwi.nl

ABSTRACT

Exact substring matching queries on large data collections
can be answered using g¢-gram indices, that store for each
occurring g-byte pattern an (ordered) posting list with the
positions of all occurrences. Such gram indices are known
to provide fast query response time and to allow the in-
dex to be created quickly even on huge disk-based datasets.
Their main drawback is relatively large storage space, that
is a constant multiple (typically > 2) of the original data
size, even when compression is used. In this work, we study
methods to conserve the scalable creation time and efficient
exact substring query properties of gram indices, while re-
ducing storage space. To this end, we first propose a partial
gram index based on a reduction from the problem of omit-
ting indexed ¢-grams to the set cover problem. While this
method is successful in reducing the size of the index, it
generates false positives at query time, reducing efficiency.
We then increase the accuracy of partial grams by splitting
posting lists of frequent grams in a frequency-tuned set of
stgnatures that take the bytes surrounding the grams into
account. The resulting gs-gram scheme is tested on huge
collections (up to 426GB) and is shown to achieve an al-
most 1:1 data:index size, and query performance even faster
than normal gram methods, thanks to the reduced size and
access cost.

Categoriesand Subject Descriptors

H.3 [Information Storage and Retrieval]: Miscellaneous

General Terms

Algorithms, Design, Performance

1. INTRODUCTION

Finding all instances of an ordered sequence of bytes (i.e.,
a string) in a large file is a fundamental pattern matching
problem. Efficient solutions with real-time performance are
attractive to many applications, e.g., online string search,

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CIKM’ 09, November 2—6, 2009, Hong Kong, China.

Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

suffix| full |partial] qgs

array|qgram| gram |[gram
creation: time —— 4+ . +
space - - - ++ +
querying: short (< 5) + + — _
medium + + - +

long (>10) ++ + + | ++
result-use: merge - — =+ —+ +

Table 1: Exact Substring Index Comparison

word processing software, computational biology and digital
forensic pattern search. Both the database and IR communi-
ties have investigated many string search topics, for instance
approximate (e.g., edit distance based) string selection and
top-K joins [1,10,12,20], full text search [2,13], and digi-
tal forensic search [18]. In this work we stick to the basic
problem of exact substring matching [14,16], but note that
techniques for solving this are typically the building blocks
to address elaborate approximate string matching problems.
We focus on the following efficiency aspects of the exact

substring search indexing problem:

e index creation time,

e index space, and

e (uery response time.
These aspects are influenced by the following dimensions:

e data size (scalability),

e data distribution, in particular the frequency distribu-

tion of co-located letters,

e the length of the queries.
Ideally, one would like to achieve an index that takes similar
space (or less) as the input data, can be created in time
close to a sequential 1/O pass over that data, and provides
query response time close to a sequential I/O pass over the
query result volume; with any data and query distribution.
These objectives are very hard to achieve all together, and
get even harder when considering datasets with a uniform
rather than a skewed distribution.

Suffix Techniques. In the algorithms community, the suf-
fix tree [8,16] and suffix array [9,14] are being studied as
indices to allow fast substring searching. Due to the large
amount of information carried in each node and edge of a
suffix tree, the storage overhead is 10-20x the input data in
good implementations, which renders suffix trees impracti-
cal in most applications. The suffix array is a more space
efficient variant which simply constructs an array of posi-
tions, where the positions point to the suffixes in the string
in lexicographical order. For both suffix trees as well as

1'We assume a distribution of co-located query letters similar
to the data distribution.

https://core.ac.uk/display/301647459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 2 3 4 5 67 8910111213 14151617 18 19 20 21 22 23 24 2526 272829 30 3132 33 34 353637 3839 40

one_world._one_dream._one_night_in_beijing

one —1, 11, 21
ne_ —» 2, 12, 22
e.w—»3
WO —» 4

Figure 1: A String and Its Posting Lists

suffix arrays, algorithms are known whose space and time
complexity are O(|o|), where |o| is the length of input data
string 0. The excellent property of suffix arrays is that re-
gardless the query (long or short, frequent or rare), lookup
is simply a binary search of fixed cost. Sometimes this bi-
nary search, which leads to log|o| (on string o) I/Os, is held
against suffix arrays in favour of potentially O(1) hash-based
solutions. However, this disadvantage can be mitigated by
creating a sparse RAM resident B-tree index on top of the
array. Regrettably, however, all known suffix array construc-
tion algorithms do not truly scale to large datasets. Once the
data size exceeds main memory, index creation performance
strongly deteriorates due to the need for close to |o| random
disk writes. As a result, the best scaling reported “linear”
suffix array construction algorithm (using special Linux ker-
nel patches to improve random I/O) has been demonstrated
on only 5GB of data [9]. Even on this effectively small — po-
tentially RAM resident — data size, suffix array construction
takes many hours. Our work focuses on truly scalable tech-
niques that can be used to manage huge disk-based datasets,
where the input data set can — in the case of forensic data
search — be a set of full hard drive images (terabyte scale
and beyond). As the scalability aspect of suffix methods is
several orders of magnitude off target for our objectives, we
focus on alternative methods.

Gram Techniques. The basic idea of g-grams is to con-
struct an index on all occurring patterns of ¢ co-located
letters (we stick to bytes, in this work — depending on the
alphabet a byte can either contain more or less than one let-
ter). Figure 1 shows a string for a slogan of the Beijing 2008
Olympic games. Generally speaking, the whole string is in-
dexed using g-grams, with each ¢-gram associated with a list
of postings e.g. 3-gram postings as shown in Figure 1. Post-
ings can be stored using IR engines specialising in inverted
list processing, but it has been shown that a DBMS can
also be used to store and query such data efficiently [10]. A
given query p (for exact match) is also decomposed to sev-
eral g-grams G. By performing merge join on the posting
lists associated with each g-gram in G, we can identify all
occurrences of g. For example, to find a phrase with the
first word ‘one’ and the second word starting with ‘w’, we
can submit a 5-byte query ‘one_w’. By doing merge join
of the three posting lists of ‘one’ (1,11,21), ‘ne_’ (2,12,22)
and ‘e_w’ (3), we could identify one match at posting 1. IR
systems routinely optimize posting list processing by choos-
ing a merge join that puts the shortest lists first. Also, it is
not strictly required to join the posting lists of all occurring
grams; posting lists may be pruned (omitted from the plan)
as long as all letters in the query remain covered by at least
one non-pruned gram. A typical approach in gram query
processing is thus to order the shortest posting lists first in
the plan and prune the longest lists as long as the query
remains covered.

Comparison. The creation of a gram-based (inverted) in-

[[[3-gram | 4-gram | 5-gram [6-gram |

wikipedia 2.1GB 2.6x10° | 2.0x10° [8.2x10° | 2.2x107
INEX 4.5GB 4.4%10° | 3.7x10°% | 1.5x107 | 4.1x107
aquaint 3.0GB 1.8x10° | 1.4x10° | 7.0x10° [2.2x107
XMark 7.4GB 4.9%x10% | 4.0x10° | 1.8x10° | 5.9x10°
movie.avi 699MB 4.2%x10°% | 7.9x107 | 8.9x107 | 9.0x10"
movie.rmvb 1.2GB || 4.2x10° | 1.3x10 1.5x10° | 1.5x10

Table 2: g-gram statistics for various datasets

dex boils down to using a fast scalable sort method, meeting
our scalability objectives. As for the querying aspect, the
query processing complexity is linear in the volume of all
accessed (non-pruned) posting lists. While this can be sub-
stantially more than the final result volume, the positive
point is that the access pattern is sequential, thus efficient.
In text datasets, there is skew in the g-gram distribution,
which results in long posting lists being pruned from query
plans, strongly improving query time. The main disadvan-
tage of g-gram based indices is storage space: (i) generally
speaking, each byte is stored ¢ times in index entries, ex-
cluding the first/last (¢ — 2) bytes in the head/tail of the
string, e.g., the byte ‘e’ is stored three times at ‘one’; ‘ne_’
and ‘e_w’; (ii) each byte is stored as a posting, and in case of
terabyte datasets one needs 6 bytes for each. Posting lists
consist of monotonic increasing numbers, hence these are
routinely stored as differences (gaps) and compressed [3,11].
Skewed data distributions compress well, giving a >2x space
reduction. Even with compression, gram indices have size
of 2-3x the input in case of skewed data. In more uniform
data such as hard disk dumps with many binary video files,
there are orders of magnitude more different g-grams (see
Table 2), and most posting lists are short and thus cannot
be compressed, such that the storage space deteriorates to
6x (additionally, the gain of pruning lists during query pro-
cessing is much less). Note that suffix arrays, which consist
of a fully permuted array of postings, are by definition not
compressible, hence also take 6x space. Another drawback
of suffix arrays is that when the result of a query is used
in complex query processing, e.g., in case of regexp string
matching, or when in XML databases keyword constraints
are combined with structural constraints, multiple results
need to be merged. Given the order in gram indices, merg-
ing is cheap, whereas suffix arrays need to re-sort the result.

Table 1 summarises the strengths and benefits of the dis-
cussed approaches, and also introduces the gs-gram method
proposed in this paper. The primary purpose of the gs-
grams is to reduce the size of the index further, close to
a 1:1 relationship with the input size, while conserving the
other good properties of gram indices.

Contributions and Roadmap. The problem of gram in-
dices for substring matching is formalised in Section 2. In
Section 3 we investigate the possibility of omitting certain
grams from the index (“partial grams”), mapping the gram
selection problem to a weighted set covering problem. For ex-
ample, in Figure 1, in the partial gram approach, we might
index ‘one’; ‘e_w’, --- (omitting ‘ne_’). A consequence of
the partial gram storage is that we now get false positives
of string occurrences that may not fully match the begin-
ning and ending letters of the query, affecting performance.
To reduce false positives, we then introduce the gs-gram
structure, that adaptively augments the partial grams with
signatures covering adjacent bytes. Section 4 describes im-
plementation details. The performance is studied in Sec-
tion 5, covering both text and binary data, with sizes up to

426GB (the largest experiment reported in literature so far)
showing that the gs-gram approach combines good query
performance with strongly reduced index space. After dis-
cussing related work in Section 6, we conclude in Section 7.

2. PRELIMINARIES

A string o is defined to be an ordered sequence of bytes,
and its length to be |o| = n. We denote o[i,j],1 <i<j<mn
the substring of o of length j — i + 1 starting at position i.
If i = j then we write of[i].

A g-gram is a string of length ¢q. A g-gram g appears
at position ¢ of the string o, if ¢ = o[i,i + ¢ — 1]. The
set of all g-grams that appear in a string o is denoted by
G ={91,...,9x}. Each ¢g-gram g; € G is associated with
a list of postings P(g:;) = {p1,...,p}, where each posting
pi €{1l,....,n—q+ 1}, € {1,...,1} refers to a position in
the string o where g; appears. Evidently, a ¢g-gram g; can
appear more than once in a string o.

A g-gram g covers the bytes o[i],...,o[i + ¢ — 1] if there
is a posting p € P(g) such that p = i. A set G of g-grams
covers the entire string o, if every byte oli] of the string o
is covered by at least one g-gram.

Finally, a string matching query is defined to be the query
which given the string o of length |g|, requests all positions
i of the string o such that o = o[i,i + |o| — 1].

Q-Gram based indices utilise the set of ¢g-grams G to ef-
ficiently answer queries on approximate and exact substring
match, text auto-completion, and for error-correction. The
general approach, which will be referred to in the sequel as
the full g-gram index (FG), covers each byte of the string
o exactly ¢ times. This is achieved by including in the set
G all possible g-grams of the string o, thus each byte o[i]
will be covered by those g-grams that have postings equal
toi—q+1,...,i. The most common choice for ¢ is 3. The
total number of postings in a full g-gram index is |o| — ¢+ 1.

In this work, we argue that for space-economical g-gram
based indices it is better to use partial g-gram indices (PG)
instead of full. However, for providing complete answers
to substring matching queries, we have to ensure that each
byte in the string o is covered at least once. The problem
at hand is formally defined as follows: Given a string o and
its set G of g-grams, find a minimal subset G' C G, such that
G’ covers the entire string o. The coverage requirement is
necessary to ensure that no matching substrings are missed,
thus resulting in false negatives. However, a partial g-gram
index will return exact matches plus a small list of candidate
substrings because only a subset of G is indexed. In Section 5
we experimentally compare the number of candidates and
the actual matches for the partial ¢g-gram indices.

Another important difference between a full g-gram index
and a partial one is that the former can match any substring
that is no shorter than ¢, while the latter loses some expres-
sive power: it can find matching candidates for a substring
that is no shorter than 2 — 1.

LEMMA 1. If G’ is a partial set of q-grams for string o
and o is a query on o that can be evaluated correctly, then
the length |o| of o is no shorter than 2q — 1.

PROOF. There are 3 cases. First, if |g] < ¢ then it is im-
possible to match any g-gram with the query string o since
the length of o is smaller than the length of the indexed

g-grams®. The second case is when ¢ < |g| < 2¢ — 2. Let

?We discount the non-practical approach of merging all su-

query o match on string o at positions o[i, i + 2g — 3. Also,
let assume that these bytes of o are covered by the two g¢-
grams g1, g2 with postings P(g1) = ofi — 1,4+ ¢ — 1] and
P(g2) = oli + q,i + 2qg — 2]. In this case, no g-gram that
can be extracted from query o will match any g-gram used
to cover the bytes of string o from position i to i + 2q — 3,
and thus false negatives will appear. Finally, the third case
is when |g| > 2¢ — 1, then there should always be a g-gram
that appears on both the query o and the string o. If no
such g-gram exists, then the query result is empty. O

Positional Merge Join. Consider two g-grams g1, g2 and
their respective postings P(g1) = {p1,...,pi} and P(g2) =
{p1,...,pPh} over string o. Also, consider a query o where
the g-gram g; appears in position i of g, and ¢g-gram g2 in
position i+ k of g, where i +k < |o| — ¢+ 1. In order to find
which postings of g1 and g2 are valid candidates for matching
query o to string o, we have to join P(g1) with P(g2). This
join must take into consideration also the distance k between
g1 and g2 in g because the same distance must be preserved
in o, too. The positional merge join is the join operation of
two posting lists and an offset k.

For the two posting lists P(g1), P(g2) and an offset k, the
operation PosMergeJoin(P(g1), P(g2), k) is defined as:

SELECT P(g1).posting
FROM P(g1).posting, P(g2).posting
WHERE P(g1).posting = P(gz).posting — k

Example 2.1: Let assume that there is a partial 3-gram
index for the string in Figure 1. This partial index includes
the 3-gram ‘one’ with postings list P(‘one’) = {1,11,21} and
the 3-gram ‘e_w’ with postings list P(‘e_w’) = {3}. Let the
query o =’one_w’. Query o is decomposed to three 3-grams
‘one’, ‘ne_’, and ‘e_w’. Since only 3-gram ‘one’ and ‘e_w’
exist in the partial index, we apply the positional merge join
operator on the postings lists of these two 3-grams with an
offset 2. The result is posting {1}, which is the position that
o matches the string in Figure 1.

The positional merge join will return a candidate list of
positions in the string o for the query g to be verified. This
happens when there is no ¢g-gram in the index that covers the
first and last ¢—1 bytes of the query 9. However, all bytes in
between should be matched with some g-grams in the partial
index. If this is not the case, then it is safe to conclude
that there is no occurrences of query g in o. This provides
opportunity during query evaluation, to reject mismatches
early, and to only verify candidates in the raw data (i.e.,
the string o) at the very end, only for those queries whose
borders were not fully covered.

3. PARTIAL Q-GRAM INDICES

This section presents techniques for choosing the appro-
priate set of g-grams to be included in a partial ¢g-gram in-
dex. To this end, we employ existing techniques from the
set-theory field and extend them to meet practical require-
ments in terms of indexing and querying time. In addition,
we introduce signature and hash based g-grams and then
propose the novel gs-gram approach.

Partial Q-Gram Selection. The selection of the ¢g-grams
to be included in the partial index should satisfy the follow-
ing two objectives: i) each g-gram must have a sorted list of

perset grams {P;|z € G’ : & C ¢} into a list of candidates.

input : o = the input string, ¢ = the length of the grams
output: a set of g-grams G’ whose postings cover o

1 G 0
2 scan o and derive all posting lists P(g;), g: € G;
3 calculate F(g;) = |P(g:)| for all g; € G;
4 sort all F(g;) in descending order;
5 cnt[i] < 0 fori e {1,...,|o|};
6 for each g; in descending order of F(g;) do
7 selected «+— false;
8 if g; is the first or the last q-gram in o then
9 ‘ ¢ =G Ulgk
10 selected «+— true;
11 else
12 for each posting p in P(g;) and selected is false do
13 for k from 0 to ¢ — 1 do
14 if cnt[p+ k] = ¢ — 1 then
15 selected «— true;
16 ¢ — ¢ Uigks
17 break;
18
19 for each posting p in P(g;) do
20 for k from 0 to ¢ — 1 do
21 if selected then
22 | entlp+ k] — g
23 else if cni[p + k] < ¢ — 1 then
24 | cntlp+ k] — cntlp+ k] + 15
25

26 return G’;
Algorithm 1. CHOOSEPARTIALGRAMS(0, q)

postings in order to minimise I/O during posting fetching,
and %) the final candidate list must be small enough to re-
duce the cost of verification against the raw data, i.e., the
input string o. These two requirements converge to index
only highly selective ¢g-grams, i.e., the ones with a small num-
ber of postings. More formally, we minimise the function
> _g.eq F(gi), where F(g;) denotes the frequency of g-gram
gi, 1.e., the number of postings in the list P(g;). This prob-
lem can be reduced to the weighted set covering problem. In
terms of the set covering problem, the universe to be covered
is all positions of the string o, i.e., all p; € S = {1,--- ,n},
where n is the length of o. The collection of all posting lists
P(g:) of the g-grams g; appearing in o are used to cover the
universe S = {1,--- ,n}. The weight of each P(g;) is the
number of elements in the list, i.e., F(g;).

The weighted set covering problem is a well studied prob-
lem and the optimal solution can be approximated by the
following greedy algorithm, within an approximation factor
of Hp(<Inn+1). Let v(g:) = F(g:)/|P(g:) NS| be a weight
function, which considers both the g-gram frequency F(g;)
and the number of postings |P(g:;) NS| to be covered next.
At each step, the g-gram g; with the minimum value of the
weighted function ~(g;) is picked and added to the partial
index. Next, all postings that the posting list P(g;) could
cover are removed from the set S. Set S contains all the
uncovered positions up until this point. Finally, the func-
tion 7 is re-computed for all remaining unused g-grams. The
process is repeated by choosing the next smallest weighted
g-gram, until all positions are covered, i.e., until S = ().

The greedy algorithm produces a good approximation of
the optimal solution in polynomial — to the size of o and
number of posting lists — time. However, the complexity
remains quadratic, thus when both n and G are large, the
classical greedy algorithm fails: it already takes hours to
select 3-grams from a 64MB document.

3.1 A Scalable Set-Cover Algorithm

The complexity of the previous greedy algorithm origi-

one —»1, 11, 21 3-Gram Posting List
ne. —» 2, 12, 22

_on —» 10, 20 qg=3 o0=40

f;vvg ::i cnt[p] < 0 for p from 1 to 40

|

[oofoToTo[olololo[o]ololo[oo[oloTo[o]ololo[olololo[o]o[olo[o[o[ol0[0[o]ol0lo[0]

‘one’ is selected
[3[3[3[0[0[0l0[0[0[0[3[3[3[00[0]0[0[0]0[3[3][3[0[0[0[0[0[0[0[0[0]0[0[0]0[0[0[0]0]

‘ne.’ is not selected
[3[3[3[1]0]olofofo[o[3[3[3[1[o[olofofo[o[3[3]3[1]o[0[olofo[o[0]olofo0]0[0[0[0]0]0]

‘_on’ is not selected
[3[3[3[1[o]ofofofo[1[3[3[3[1[o[olofofo[1[3[3]3[1]o[0[olofo[o[0lolofo[o[0[0l0]o][0]

‘e_w’ is not selected
[3[3[3[2[1]o[o[o[o[1[3[3[3[1]o[ololo[o[1[3[3[3[1]o[0[0l0[0[0[0[0[0[0[0[0To[0[0[0]

‘{_wo’ is selected
[3[3[3[33]3[0]o]0[1]3[3[3[1]0[o[0[o[0[1[3]3]3[1]0]0[o0[0[0[0[o[0[a[0[0]0f0l0[0]

Figure 2: Algorithm Sample

nates from the requirement that in each step the new global
minimum value of v(g;) is selected. The basic idea of Algo-
rithm 1 is to scan all g-grams in descending frequency order
and greedily choose which grams to keep without recom-
puting the global weights in each step. More specifically, a
g-gram g; is not included in the partial index if it has a large
frequency F(g;), and only if all positions can be still covered
by the remaining g-grams.

Example 3.1: Going back to the example in Figure 1, the
string o = ‘one_world_one_dream_one_night_in_beijing’ has
40 positions to be covered and 33 distinct 3-grams. A single
pass over string o (line 2) will extract all g-grams and their
posting lists. The q-grams are then sorted in descending or-
der of their frequencies (line 4). Next, a counter cntli] for
each position in the string o is initialized to 0 (line 5).

Figure 2 depicts the first few steps of the CHOOSEPAR-
TIALGRAMS algorithm for the string o of Figure 1. The most
frequent q-gram is ‘one’, but it has to be selected because it
covers the first position of string o. Thus, G' = {‘one’}
(lines 8-10). Next, the count cnt of each position in string
o covered by ‘one’ is set to 3. The second row of Figure 2
depicts the values of the count array cnt for each position in
the string o after 3-gram ‘one’ has been selected.

The second most frequent 3-gram is ‘ne_’. The positions
that 3-gram ‘ne_’ covers are either already covered (e.g., po-
sition 2) or the count value cnt is less than g-1. Therefore,
3-gram ‘ne_’ can safely be disregarded since it is too frequent
and other 3-grams do exist for covering the uncovered posi-
tions. However, before disregarding 3-gram ‘ne_’, each of
the positions {4,14,24} is incremented by 1 to signify that
there are still g-1 q-grams left that can potentially cover these
positions. The third row of Figure 2 depicts the new state of
the count array.

The next two 3-grams are ‘ne_’ and ‘e_w’. Both of them
can be disregarded, because they are high in the frequency list
and none of the positions that they cover on string o have a
count cnt equal to q-1. However, ‘_ wo’ has to be selected to
ensure that position 4 of string o is covered.

CHOOSEPARTIALGRAMS terminates with thirteen 3-grams
selected for the partial 3-gram index: G' = {one, _wo, 7ld,
d_o, _dr, eam, m_o, _ni, ght, _in, _be, iji, ing}.

The complexity of algorithm CHOOSEPARTIALGRAMS is
O(lo| + |G|in|G]). First, a linear scan is performed on o to

3-gram posting list

signature

Figure 3: Signature-based Posting List

derive all g-grams, their postings lists, and the frequencies
F(gi) (lines 2-3). The cost of sorting all g-grams (line 4) is
O(|G|in|G|). The big loop (lines 6-26) is a linear in the size
of o, since each position of o will be visited at most ¢ times.

3.2 Signature-based Gram Indices

There are two main limitations regarding partial ¢-gram
indices: i) some very frequent g-grams are unavoidably se-
lected to ensure that each byte of the string o is covered; i)
during query evaluation, the indexed partial g-grams might
not be sufficient to fully answer a query p, thus resulting in
a candidate list. In order to prune the false positives from
the candidate list, the string ¢ has to be examined, causing
time consuming I/O access.

To alleviate the aforementioned limitations, we propose
the use of signatures. A signature s of a g-gram g is defined
to be the concatenation of the two bytes guarding g in string
o. More specifically, let a g-gram be g; and its posting list
be P(gi) = {p}. Then, the signature s of g; in position p is
s=ol[p—1lo[p+4q]. A g-gram may have as many signatures
as the number of postings in its posting list P. The collection
of all the signatures of a g-gram g, together with its posting
list will be referred to as an s-gram. The g-gram g is also
called the infiz of its s-gram. Finally, we will refer to the
first byte of a signature s as s[1] and the second as s[2]. If
s[1] or s[2] do not correspond to a byte (i.e., they point to
the positions before the start or after the end of the string
o) then the symbol $ is used.

Example 3.2: Figure 8 shows the signatures s of the first
two q-grams of the string o of Figure 1. The 3-gram ‘one’

has the posting list {1,11,21} and the list of signatures {$_,.__}.

Consequently, the postings list of 3-gram ‘one’ can be split
to two smaller ones, namely {1} and {11,21}, each one re-
ferring to a different signature of ‘one’.

Signatures are used to split long posting lists, in order to
reduce both the number of postings fetched and the num-
ber of candidates produced during query processing. This is
true because s-grams are more discriminative than g-grams.
However, signatures may have a considerable storage over-
head. In theory, the number of signatures for each g-gram
is at most 2'° (for 2 bytes), but in practice the number of
signatures for most g-grams is far below this upper bound.

The frequency distribution of g-grams in the text data sets
we used loosely follows Zipf’s law. This indicates that many
g-grams will have short posting lists. For these g¢-grams,
the overhead of maintaining their signatures is higher than
retrieving the whole posting list during query evaluation.
Moreover, some long posting lists may be split to very fine
grained pieces, as a result of a large number of different
signatures. For these cases, it is preferable to combine the
fine grained lists into groups and thus save storage overhead.
The next section presents techniques on how to dynamically
make the decision on which posting lists to keep unmodified,
which ones to split with the use of signatures and which ones

> H S > q
Q Q
=1 =
5} 5]
= =
o o
53 4]
= t & ¢
g-gram + sig g-gram
ash based
s-gram , h(sig) T g-gram
q}+91g1 —» qr q1—
q2+au/2 — q2—t
., h(sig)
HR : 9z :
)+ 5ign— . Gy
frequency >t frequency <t

expected frequency <t

Figure 4: An Overview of QS-Gram

to be combined into groups.

QS-Grams. We propose a novel approach to marry the
merits of ¢g-gram and s-gram, named gs-gram, with the fol-
lowing objectives: maintain less grams on the index entries,
split long posting lists for improved query performance, and
merge short postings to further save index space.

Figure 4 gives an overview of gs-gram. Two histograms
are required, Hs and Hy, for s-grams and g-grams, respec-
tively. Assume that ¢ = 3, the number of distinct g-grams
is up to 2?* and for s-grams 2%°. The histogram H, might
be too large to fit in memory. A lossy technique will be
discussed in Section 4 on how these histograms can be effi-
ciently built in the secondary memory.

As depicted in Figure 4, there are less g-grams than s-
grams, and in average, the frequency of a ¢g-gram is higher
than that of an s-gram. Suppose that a threshold ¢ is used
to determine whether a gram is frequent or not, the grams
are classified as follows:

1. Frequent s-grams (frequency > t) will end up with a
private posting list. Referring to the left part of H, in
Figure 4, they reside in an s-gram dictionary.

2. Infrequent g-grams (frequency < t) will not be split
at all. These g-grams are maintained in a g-gram dic-
tionary, as shown in Figure 4, the right part of H,.

3. For the grams in between, i.e., g-grams with frequen-
cies no less than ¢t and s-grams having frequencies less
than ¢, a hash-based approach is utilised.

If a g-gram g has a long posting list, but has many s-grams
with short posting lists, the hash function h() is used to
combine s-gram lists in a single one. To construct the hash-
based g-gram dictionary, a number of buckets is dynamically
allocated for each ¢g-gram according to the frequencies of g-
grams. For instance, if a g-gram g. with frequency 35 is to
be split and the threshold is ¢ = 10, four buckets will be
allocated for g.. As the hash-function randomly combines
infrequent signatures, the amount of postings falling in each
hash bucket approximates t. The keys in the hash-based
g-gram index are just g-grams stored in order, each leading
to an array of buckets. To look up an infrequent s-gram, its
infix g-gram g is first found, after which the hash function
h() is applied on s to compute the specific bucket, as shown
in Figure 4. The main reason for using a hash function
to combine buckets is that it requires no additional storage
space.

The gs-gram index is designed to merge short posting lists
of s-grams associated with one g-gram, so as to get almost

Global

Histogram
: Y
91— F(q1) i .. Local [T]
gy —» -7:E92 : Histogram F(q})
P9 — F(91)]
Gn— Flgn) i gl — F(g) Data file for C;

Figure 5: Global and local data structures

equally length ¢ posting lists. The certainty that posting
lists have a certain minimum length ensures that even in
skewed gram distributions storage volume is dominated by
postings, and not by the dictionary, and also ensures that
compression is functional on all postings. As twice the list
length t is an upper bound on the average number of false
positives, it should be chosen relatively small.

4. IMPLEMENTATION DETAILS

This section describes the implementation details for build-
ing the g-gram indices. Since the input data is larger than
the available memory, we present chunk based algorithms
for full and partial g-gram indices that efficiently divide the
process to fit in memory. We then present how a query is
evaluated against the proposed g-gram indices.

4.1 Gram Generation

We describe not only effective, but also efficient and scal-
able generation algorithms for full g-gram, partial g-gram
and gs-gram indices. Since, the input data may not fit en-
tirely in main memory, and in order to achieve good scalabil-
ity, a chunk based generation strategy is used. Specifically,
the input data is partitioned into chunks, i.e., a sequence
of bytes with equal length, and each chunk is processed in-
dependently. The algorithm can be executed either sequen-
tially or in parallel over each chunk. After the termination
of the chunk based generation, the local posting lists of each
chunk are merged using a multi-way merge-union operation.
The size of each chunk can be tuned, in order to render the
algorithm cache or memory resident.

To decrease storage overhead, as well as to improve 1/0O
system performance, all posting lists are compressed before
being written to disk. Since each posting list is sorted, delta
coding [3,11] is adopted. Delta coding computes the dif-
ference between consecutive postings, and records only the
value of the first posting and the following differences. Other
compression techniques are orthogonally applicable.

For the chunk-wise processing, the input string o is par-
titioned to [|o|/m] chunks C1, Ca, ..., Cfs|/m7, each of size
m. Each chunk C; also includes ¢—1 bytes from the previous
chunk C;_; to ensure that no g-gram is missed during index
creation. To illustrate this, assume that ¢ = 3 and m = 2,
thus string o is partitioned into 2 chunks, C and Cs:

o=o[l]---olm—2]cm — 1]o[m] |o[m + 1llo[m + 2] - - - [2m]
[—
q—1=2

The first chunk C; is from position 1 until m, while the
second chunk C5, from position m + 1 up to 2m. However,
this way each chunk is processed separately, and the 3-gram
o[m — 1]o[m]o[m + 1] would never be found. To avoid this
miss, Co is redefined to also include ¢ — 1 = 2 bytes from
the previous chunk, thus C5 starts at m — 1 and ends at 2m.

input : C; = current chunk, ¢ = gram length
output: a local histogram H; and a data file D;

k «— 0;
define struct temp = {q-gram, position};
while C;[k] not the end of chunk do
templk] — Cilk, k +q — 1], k;
k+—k+1;
end
radix_sort(temp) on g-gram, position;
H,; «— merge the same grams and compute the frequencies;
populate D; from temp.position;
update global histogram with H;;

QOIS Ut W K-

=
=

return H;, D;;

Algorithm 2. CHUNK-WISE PROCESSING(C;, q)

A global and a local histogram are used to record the fre-
quencies of the ¢g-grams found in string o. The global his-
togram records the total frequency of each ¢g-gram found on
the entire input data. This histogram remains always in
memory, since it is updated by every chunk. The left part
of Figure 5 depicts the structure of the global histogram. It
only consists of the g-grams and their frequencies.

On the other hand, a different local histogram exists for
each chunk, which stores only the frequencies of the ¢-grams
found in a specific chunk. To free up memory, each local
histogram is flushed to disk after we finished processing the
chunk. In addition to the local histogram, each chunk has
its own data file, which contains all posting lists P, i.e., the
positions in the input string where the ¢g-grams are located.
The local histogram is used to navigate in the data file by
computing the offset and the length for the posting list of
each g-gram. The right part of Figure 5 depicts the structure
of the local histogram and the data file for chunk C;.

Algorithm 2 details how the local histogram and the data
file is populated for each chunk. A temporary structure is
used that records each g-gram and its position in the chunk
C; (line 2). First, chunk C; is sequentially scanned and every
g-gram is extracted and stored to temp (lines 3-6). After-
wards, the temp structure is sorted on the value of the g-
grams by using the radix cluster algorithm [15] (a radix sort
on the 8¢ lowest significant bits when viewing the concate-
nated bytes of a gram as a number) in O(gm) time (line 7).
Next, the temp structure is merged to contain all the post-
ings of the same g-gram and the frequencies are computed
(line 8). This is possible, because radix cluster will group
all same g-grams together. Next, the data file D; is popu-
lated by dumping sequentially the merged and sorted temp
structure (line 9). Finally, the global histogram is updated
by merging the current local histogram (line 10).

The above process is repeated for all chunks. Afterwards,
the local data files D; are merged to one single global data
file D. Each posting list of the local data files is written to
the correct offset of the single global data file by consulting
the global histogram. The resulting global data file contains
the entire posting list of each g-gram in the input string o.

An alternative approach is to scan the entire input string
and collect the global histogram without writing data to
disk. In a second scan, data could be written to the final
global data file without merging local posting lists. How-
ever, this alternative approach writes data using random
I/O, which renders the algorithm I/O bound. For the pro-
posed approach, all disk reads/writes entail sequential I/Os,
which is over an order of magnitude faster than random.

Index generation thus produces two global structures: a
histogram H and a data file D. The global histogram con-
tains entries of the form [¢-gram|data_offset], where data_offset

refers to the position in the data file that the g-grams’s post-
ing list can be found. The g-grams are sorted to facilitate
binary search during query evaluation. The data file is the
concatenation of the posting lists of all g-grams.

The generation procedure for partial g-grams is similar
to full g-grams. The only difference is that in each chunk,
instead of indexing all g-grams, partial g-grams are selected
using the algorithm proposed in Section 3.1. The decision is
made locally by consulting only the local histograms.

For generating the gs-gram index, two global histograms
are required, as depicted in Figure 4. One global histogram
is needed for g-grams and one for s-grams. These are used to
assist the gram classification by examining their frequencies.
The two global histograms are produced in the same way as
described until now. However, the s-gram histogram is an
array of [(q+2)-gram, posting_list] entries sorted first on the
s-gram level then on the postings. Recall that the number
of s-grams is up to 2*° when ¢ = 3, which could render the
s-gram histogram to be out of memory. A lossy probabilistic
counting technique is adopted for this case, similar to [17],
where there is a limited histogram buffer. In principle all
s-grams are collected, but when the buffer gets full, s-grams
with a small count are removed to make space. The adaptive
approach works as follows. A lower bound, initially set to 1,
is used to guard whether an s-gram should be removed or
not. If after removing entries with only 1 occurrence, there is
still not enough space, the lower bound is doubled and the
above removal operation is repeated until there is enough
space in the buffer. This leads to an incomplete histogram
on the s-gram level, but generally only s-grams that occur
very infrequently will be missing.

After the first scan of the input string, we determine using
threshold ¢ whether a g-gram should be split with signatures:
1) very frequent s-grams will end up with a private posting
list, recorded in an s-gram dictionary; ii) very infrequent g-
grams will not be split at all, stored in a g-gram dictionary;
#i1) the hash based approach is used in between.

Next, the input string is scanned for the second time. In
this second pass, the local histograms and data files are gen-
erated for each chunk. We point out two differences with
full g-gram generation. First, for hash based g-grams, in-
stead of maintaining for each ¢-gram a global offset, each
bucket records an offset. Secondly, posting lists are sorted
in s-gram level. Therefore, during the construction of the g-
grams and hash based ¢-grams, the posting list is re-sorted.

The final multi-way merge-union on sorted posting lists is
similar to that for ¢g-grams. The only difference is that the
three types of dictionaries must be handled separately.

4.2 Query Processing

Consider a query p of size |g| = k where k > 2¢ — 1.
The query p is decomposed into a set of g-grams G, =
{91, gr—q+1}, where each g; = o] - o[i + ¢ — 1] for
1 <i<k-—qg+ 1. If signatures are used, the signature s;
of each g-gram g; is s; = p[t — 1]p[i + ¢]. The first byte s;
of the first signature and the second byte si_q+1 of the last
signature are unknown. They are set to a wildcard * that
matches any single byte, i.e. s1[l] = sp—q+1[2] = *. With
the above information about g-grams and signatures for the
query g, and the stored histograms, a set of posting lists is
fetched from disk and the positional merge join is applied.

In an early optimization step, negative queries, i.e., queries
that have empty results, can be quickly identified before even

the postings are fetched. In the case of full g-grams, if any
posting list of g; € G, is empty (IP(g:) = 0), o is a negative
query, since a query will have an empty result if at least one
of its substring does not appear. For example, let a string
oe =‘one_world and two queries o1 :‘one_w’, ‘02 :one_v.
For query p1, all its g-grams are indexed by the g-grams of
.. With regards to g2, one of its g-gram. i.e., g3 =‘e_v’, is
not indexed, and thus g2 is a negative query over oe.

In the case of partial g-gram and gs-gram, the criteria are
different since some g-grams are pruned:) if all posting lists
are empty (VP(g;) = 0) where g; € G,, o is a negative query,
and #7) if the i-th byte of the query p is not covered by any
g-gram, and ¢—1 < i < |g|—g+3, then g is a negative query.
Notice that we can not determine if a query is negative if
the bytes that are not covered are the ¢ — 1 bytes located at
the borders of the given query.

The next step, and since it has been established that the
query o might have a non-empty result set, the relevant
posting lists must be fetched. For the full g-gram index,
the posting lists of all g-grams are indexed. However, in or-
der to further optimize the query evaluation, g-grams with
very long posting lists can be omitted during query evalua-
tion. The basic requirement is that each byte of the query
is covered at least by one g-gram. For instance, to cover a
seven-byte query ‘one_wor’, the grams ‘one’ and ‘wor’ can
be used. To cover the remaining byte ‘_’, any of the ¢ possi-
ble grams (i.e., ‘ne_’, ‘e_w and ‘_wo’) are checked, and the
one with the smallest frequency is selected.

In the case of the partial g-gram index, unfortunately the
same optimization techniques can not be applied. The ¢-
grams are selected chunk-wise and based on local decisions
(i.e., the local histogram), thus there is no guarantee that a
specific g-gram will be found across the entire input string.
Therefore, no matter whether a query p is fully covered or
not, all posting lists must be fetched and examined.

The gs-gram index has three histograms. The infrequent
g-gram histogram is processed similarly to the partial ¢g-gram
index. However, the histograms for the s-grams and hash
based g-grams are treated differently, since the stored signa-
tures must be taken into account. First, the signature s; of
each gram g; is extracted. There are three cases:

(1) s; = o[i — 1]o[i + ¢], where ¢ # 1 and i # k — ¢ + 1.
The signatures are ordered, hence a binary search is used to
identify the specific entry for s;.

(2) s; = o[k — q + 1], which refers to the last g-gram of
query p. With the use of binary search all signatures whose
first byte is o[k — ¢ + 1] will be identified.

(3) si = *p[g + 1] i.e., the first g-gram. The second byte of
the signatures is not sorted, therefore a binary search can
not be used and all signatures of g; will be fetched.

If the g-gram is not found in the s-gram histogram, the
hash based g-grams are searched. The hash value of s; is
calculated and used to identify the bucket that the g-gram
should reside in. If it is found, the corresponding posting list
is fetched. Notice that, if the signature contains a wildcard
(for g1 and gr—q+1), the hash value cannot be decided and
thus all posting lists of the current g-gram will be fetched.
Finally, if the g-gram is not located either in the s-gram nor
the hash based histogram, the g-gram histogram is queried.

All fetched relevant posting lists are then fed into a po-
sitional merge join operator in order to identify the valid

occurrences of the query p in string o. For the full g-gram
index, a standard multi-way positional merge join is suf-
ficient. However, for the partial ¢g-gram and g¢s-gram in-
dices, the positional merge join must adaptively determine
in a chunk-wise fashion which ¢-grams are present and which
were (potentially) pruned by the set-cover algorithm:

(1) When processing a chunk Cj, if all posting lists have no
postings indexed in chunk Cj;, or some byte g[k] of a query
o is not covered where ¢ — 1 < k < |g| — ¢+ 3, chunk C; can
be safely skipped,

(2) If some g-grams have postings (are indexed) in the chunk
Ci, and the corresponding g-grams cover all bytes of the
query?®, the standard multi-way positional merge join is used.

(3) Otherwise, that is, if the present g-grams cover the inner
part of a query but not the outer boundaries, a multi-way
positional merge join is still performed, but these results are
marked as candidates, requiring verification afterwards.

Extensions. Possible future optimisations in gs-gram query
processing address the problem that when examining a chunk
and seeing that a certain ¢-gram is not present, we pes-
simistically assumed in the above that the g-gram must have
been pruned, while it could also be that there was simply
no occurrence (in that case, there is no query result in this
chunk, and whatever we emit above is a false positive). To
address this, we could augment our indexing structure with
a bit-string for each g-gram, that records whether a g-gram
was preserved by the set-cover algorithm in a specific chunk
or not. For example, the bit-string 11001 means that a g-
gram g is present in chunks 1,2 and 5. This information
can then be used to emit considerable less false positives,
but raises the future research question as to the space/time
trade-offs of keeping this extra information, especially on
data sets with many g¢-grams. Even if no bit-strings are
kept, a similar optimization can already be made in the gs-
gram approach when merging a signature or hashed list (i.e.
in case of a globally frequent g-gram). If this list turns out
to have no postings in a chunk, we can still analyze the
other hash and signature tables for the same infix g-gram
in this chunk. Because the set-covering pruning decisions
are made on the g-gram level, presence of any other infix
matching information in the indices is proof that the g-gram
was not pruned in C;, and can be used to reduce false posi-
tives. Note, however that searching for this extra proof may
cause additional index I/O at query time. One potential
strategy would be to use only a limited set of (or a single)
long signature list(s) with the same infix to steer this op-
timization. Alternatively, when processing hash lists, with
all hash-bucketed postings list adjacent on disk, we might
simply re-use whatever information is present in the large
disk block I/O unit we read for opportunistic pruning.

5. PERFORMANCE STUDY

We conducted extensive experiments with all discussed g-
gram indices, investigating index creation time, index space
and query performance. The following datasets were used:

e wiki-article: the Wikipedia archive that contains cur-
rent versions of article content (22GB)*.

3Note that if a certain g-gram is stored as an s-gram, we
have information on ¢ + 2 query letters.
*http://download.wikimedia.org/enwiki/20090512

[elapsed time in sec. (write time in parentheses) |

[[FG | PG| QS|
wiki-article 4165 4274 9673
22GB | (1495) (778) (882)
wiki-meta 8665 8901 20042
44GB | (3133) (1646) (2193)
XMark 11122 10964 24057
55GB | (4151) | (2018) (2346)
single PC, two disks

GOV2-Icore 91364 87045 174872
426GB | (32365) | (13475) (5507.9)
GOV2-8core 12539 12068 25129
426GB | (4966) | (2555.4) (1018.37)

-core server, 16 SSDs

Table 3: Index Creation Performance (sec)

e wiki-meta: the complete Wikipedia archive including
discussion and user pages (44GB).

e XMark®, using scale factors from 10 to 500 to generate
XML documents from 1.1GB to 55GB.

e GOV2: the dataset used in the 2006 TREC Terabyte

Track [6] consisting of a crawl of the .gov domain (426GB).

e movie: we also experimented with a number of binary
data files containing movies, and ranging in size from
1GB to 8GB, mainly to show the index creation and
space behavior when there are many more different
grams and the frequency is more uniform (we still lack
application scenarios and queries that could be useful
on such binary data, this is future work).

In the following, we use FG, PG and QS to denote full
g-gram, partial g-gram and gs-gram indices. Most experi-
ments were conducted on a PC with a 2.40GHz Intel Core2
Quad Q6600 CPU, 8GB of RAM and 2 hard disks in RAID-
0. The experiments with the larger 426GB GOV2 dataset
did not fit on the storage system of the PC, and were done in-
stead on a server machine with two quad-core 2.8GHz Xeon
(Nehalem) CPUs, 48GB of memory and a RAID-0 file sys-
tem consisting of 16 SSDs (Intel X25-M). Note that in the
index creation experiment, all I/O is sequential, and per-
formance of SSDs is quite similar to normal hard drives.
On this machine, we also performed a parallel experiment,
where the 426GB dataset was split into eight partitions of
53GB, on which we ran our indexing program in parallel.

Index Creation. Table 3 shows the overall time needed to
create the various indices, where we give below each result
between parenthesis the sub-component time needed for the
multi-way merge union. The chunk size was 128MB for FG,
PG and @S (we used frequency threshold ¢ = 2000), causing
a first phase of index generation for a 128MB chunk of the
input data at-a-time. For the subsequent of merging local
posting lists within chunk into a global index, the buffer size
was again set to 128MB, causing our external merge sort to
read each time 128MB of postings from all chunks, writing
this out as a global postings lists. All algorithms run CPU-
bound. For FG and PG, we achieve an indexing speed of
18GB per hour on the PC, and on the server machine in the
8-way parallel experiment, the 426GB of GOV2 data was
indexed in less than 3.5 hours, achieving good speedup.
For @S, the performance is around 8 GB per hour on the
PC. SG and PG require additional time for running the set
covering algorithm, but in case of PG this extra cost is offset
by the fact that it writes less postings (this can be seen
by comparing the write times between parentheses). QS
takes much more time, since (1) the radix-sort runs on g+ 2

®http://monetdb.cwi.nl/xml/

bytes instead of ¢ bytes, (2) to save space without writing
intermediate data, the raw string is scanned twice. The first
scan is to collect two global dictionaries for s-gram and g¢-
gram. The second scan processes chunk-wise data.

Index Space. Table 4 shows the sizes of generated indices,
including the space for the dictionaries. The dictionary sizes
depend on the amount of different grams (see Table 2). As
the amount of different grams in the index is small in tex-
tual data, the dictionary sizes do not play any role in the
results on the textual data sets in Table 4. Table 4 shows in
the additional “dict:” row that for QS (the scheme with the
largest dictionaries), this overhead is still limited. The over-
all conclusion for textual data is that FG with compression
typically achieves a 2x storage space, and PG and SG im-
prove that to roughly 1x. In case of binary data, index space
deteriorates to 4x in F'G. Both partial approaches perform
similar, and reduce storage by almost a factor 2.

wiki | wiki | XMark [GOV2 binary data (movie)
22GB | 44GB | 55GB | 426GB || 1GB | 2GB | 4GB | 8GB
FG [43 89 111 606.7 3.9 [7.6 |16 31
PG 23 47 58 425.3 2.4 4.7 9.5 19
QS [23.7 [50.7 [69.7 490.3 26 [49 |97 [198
dict: || O 0 0 0 2 2 .2 3

Table 4: Index Storage Space (GB)

Figure 6 shows the scalability on XMark using sizes 1.1GB,
up to 36GB. Figure 6 (a) confirms linear scalability in cre-
ation time and Figure 6 (b) confirms linear scalability in
index sizes.

F
10000

1000

Index Size (GB)

Generation Time (sec)

L #
11GB 22GB 4.4GB 8.8GB 18GB 36GB

(b) Index Size
Figure 6: XMark data with factors 10, 20 to 320

100
11GB 22GB 4.4GB 8.8GB 18GB 36GB

(a) Generation Time

Query Evaluation For each data set, queries with variable
lengths were tested, from 5 to 15. For queries with the
same length, 100 positive queries were randomly drawn from
the dataset, but we excluded queries with excessively long
results (> 1M). In the figures, the results are ordered on
F@G score to help comparison. Due to space limitations, we
concentrate here on the 44GB wiki-meta data.

Figures 7 (a)-(d) shows that for short queries (e.g., 5),
FG is generally faster than PG and @S. However, when the
length of queries increases to 9, the difference between FG
and PG, QS get smaller, and QS processes many queries
faster than F'G. For queries with lengths 11 and 15, @S out-
performs FG for most queries (PG being slowest always).

To understand these results better, we first explain the
other two groups of experiments. The first group is shown
in Figures 7 (e)-(h), showing the number of postings loaded
for different approaches. The number reported here was the
posting under compression i.e. the data read from disk, but
not the number of postings resulting from the positional
merge join. The other group of experiments is the number
of postings verified, which applies only to PG and @S, since
they may generate false positives. These numbers are shown
in Figures 7 (i)-(1).

Figures 7 (e)-(h) tell that FG and PG load many more
postings than QS. The reason that FG sometimes loaded
less data than PG is that F'G was optimized to omit long
posting lists from query plans. PG, however, cannot prune
long posting lists, since that will potentially introduce many
false positives. @S, however, always fetches less postings,
since the posting lists of gs-grams are typically short.

The query evaluation for FG is CPU-bound, dominated
by the number of postings in the positional merge join. The
execution time of PG and @S is composed of two parts: (1)
positional merge join, which is dominated by the number of
postings loaded; (2) false positive checks, which will domi-
nate the overall time if the number of candidates is large.
Observe from Figures 7 (i)-(1) that QS always checks less
candidates than PG. The value below 1 means that there
is no candidates, i.e., all chunks are fully covered. When
only few (or none) candidates are required to be checked,
@S outperforms FG and PG. PG is normally slower than
F@G, since PG could load more postings and candidates are
to be verified. Note that PG has the smallest storage space,
roughly half of used by FG. @S needs slightly more space,
but outperforms PG in query processing.

6. RELATED WORK

For answering exact substring matching, suffix tree [8,16]
and suffix array [9, 14] have been extensively studied, but
this has not yet produced algorithms that could work on
huge sizes such as the 426GB GOV2 dataset we indexed.

Q-gram based indices were first used to model sequences,
using the statistical properties of g-grams. ¢-grams have
been widely studied for efficient approximate string match-
ing, also using DBMS as the storage and execution com-
ponent [10]. In order to improve the performance of ap-
proximate queries, [12,20] proposed variable-length grams,
and [1,5] worked on reducing the sizes of indices — note that
our work concerns not approximate but with exact query
processing. Many other work study the problem of approxi-
mate string joins using various similarity functions [4,7,19].
The above g-gram based approaches focus mainly on improv-
ing approximate string matching, and not robust enough to
efficiently handle the problem of exact substring matching.

7. CONCLUSIONSAND FUTURE WORK

We presented different gram-based indices for exact sub-
string matching on huge data sets. Motivated by the fact
that the full g-gram index has considerable storage overhead,
impacting particularly the ease of manipulating such huge
data sets, we aimed at space economical ¢g-gram indices. The
proposed partial g-gram indices have a very compact size
(around 1x), but produce a relative large number of false
positives that must be checked against the raw data. To al-
leviate this problem in partial g-grams, we proposed a novel
approach called gs-gram index. The gs-gram index is de-
signed to exploit the gram distribution, by splitting long
posting lists and merge short posting lists with a frequency-
adaptive signature approach, to ensure good data compres-
sion and query performance. The trade-off compared to par-
tial g-grams is that gs-grams consume slightly larger space.
We demonstrated excellent scalability on large data sets (up
to 426GB), and showed query performance of gs-grams ri-
vals or even improves that of traditional full ¢g-grams.

As to future work, to reduce the number of postings to

Elapsed Time (sec)

Postings Loaded

Posting Verified

1000

x
100 ¥
5
0f
1
&
o
01 -
10 20 30 40 50 60
(a) Query Length 5
1e+09
1e+08
1e+07
1e+06
100000
10000
(e) Query Length 5
16408 (55
1e+07 QS WW”M
1e+06 thﬁmwf** .
100000 o
G e
10000 % x
1000 [*
100 *
10
1
0.1

10 20 30 40 50

(i) Query Length 5

60

Elapsed Time (sec)

Postings Loaded

Postings Verified

1000

10 20 30 40 50 60 70 80 90

(b) Query Length 9

1e+09
1e+08
1e+07 ¥ T
V
1e+06 [«

100000

10000
10 20 30 40 50 60 70 80 90

(f) Query Length 9

1e+08 PG
1e+07 QS
1e+06
100000
10000
1000
100

10

1

0.1

10 20 30 40 50 60 70 80 90

(j) Query Length 9

Posting Loaded Elapsed Time (sec)

Posting Verified

1000

o
1)
S}

.
1S5

-

10 20 30 40 50 60 70 80 90

(¢) Query Length 11

1e+09

1e+08
1e+07
1406 fe| x|

100000

10000

10 20 30 40 50 60 70 80 90
(g) Query Length 11

1le+08 PG
1e+07 QS
1le+06
100000
10000
1000
100
10

1 L

10 20 30 40 50 60 70 80 90

(k) Query Length 11

Elapsed Time (sec)

Postings Loaded

Postings Verified

1000

.
o
S}

=
1S

-

10 20 30 40 50 60 70 80 90

(d) Query Length 15

1le+09

1e+08
le+07
x|)

1e+06 fx x"*
3

100000

10000

10 20 30 40 50 60 70 80 90

(h) Query Length 15

1le+08 PG
1e+07 |QS
1le+06
100000
10000
1000
100
10

G X
1 fmocomomox xxmoKx x

10 20 30 40 50 60 70 80 90

(1) Query Length 15

Figure 7: wiki-meta (44GB) (a-d) Elapsed Time (e-h) Postings Loaded (i-1) Postings Checked

be verified in query processing, we plan to build to a cost
model to judge when is benefit to load and combine multiple
posting lists intead of verifying the raw data. Also, the dic-
tionary size (and auxiliary bit-strings) for large binary data
is problematic. We will investigate dictionary compression
techniques.

&

8]

[9]

e S

. 0002,19.E§ Whang, J.-G. Lee, and M.-J.
Lee. n-gram/21: A space and time efficient two-level
n-gram inverted index structure. In VLDB, 2005.
S. Amer-Yahia, E. Curtmola, and A. Deutsch. Flexible
and efficient xml search with complex full-text
predicates. In SIGMOD Conference, 2006.
V. N. Anh and A. Moffat. Inverted index compression
using word-aligned binary codes. Information

Retrieval, 8(1), 2005.

A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, 2006.

A. Behm, S. Ji, C. Li, and J. Lu. Space-constrained
gram-based indexing for efficient approximate string

search. In ICDE, 2009.

S. Biittcher, C. L. A. Clarke, and I. Soboroff. The trec
2006 terabyte track. In TREC, 2006.

S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data
cleaning. In SIGMOD Conference, 2003.

C.-F. Cheung, J. X. Yu, and H. Lu. Constructing
suffix tree for gigabyte sequences with megabyte
memory. IEEE Trans. Knowl. Data Eng., 17(1), 2005.
R. Dementiev, J. Kédrkkéinen, J. Mehnert, and

P. Sanders. Better external memory suffix array
construction. J. Ezxp. Algorithmics, 12, 2008.

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish,

N. Koudas, S. Muthukrishnan, L. Pietarinen, and
D. Srivastava. Using g-grams in a dbms for
approximate string processing. IEFE Data Eng. Bull.,

24(4):28-34, 2001.

[11] A. L. Holloway, V. Raman, G. Swart, and D. J.
DeWitt. How to barter bits for chronons: compression
and bandwidth trade offs for database scans. In
SIGMOD Conference, 2007.

[12] C. Li, B. Wang, and X. Yang. Vgram: Improving
performance of approximate queries on string
collections using variable-length grams. In VLDB,

2007.

[13] J. Lu and J. P. Callan. User modeling for full-text
federated search in peer-to-peer networks. In SIGIR,

2006.

[14] U. Manber and G. Myers. Suffix arrays: A new
method for on-line string searches. In SODA, 1990.

[15] S. Manegold, P. A. Boncz, and N. Nes.
Cache-conscious radix-decluster projections. In VLDB,

2004.

[16] E. M. McCreight. A space-economical suffix tree
construction algorithm. J. ACM, 23(2), 1976.

[17] A. Metwally, D. Agrawal, and A. E. Abbadi. An
integrated efficient solution for computing frequent
and top-k elements in data streams. ACM Trans.
Database Syst., 31(3):1095-1133, 2006.

[18] S. Petrovic and S. Bakke. Application of g-gram
distance in digital forensic search. In JTWCF, 2008.

[19] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In SIGMOD Conference, 2004.

[20] X. Yang, B. Wang, and C. Li. Cost-based
variable-length-gram selection for string collections to
support approximate queries efficiently. In SIGMOD

Conference, 2008.

