
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

MAS
Modelling, Analysis and Simulation

 Modelling, Analysis and Simulation

Diffusion correction to the avalanche-to-streamer 
transition

C. Montijn, U. Ebert

REPORT MAS-E0515 AUGUST 2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301647453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3703



Diffusion correction to the avalanche-to-streamer
transition

ABSTRACT
Space-charge dominated streamer discharges can emerge in free space from single electrons if
the electric field exceeds a threshold value. We show that this threshold field depends not only
on ionization and attachment rates and gap length as suggested by Meek's criterion, but also on
electron diffusion. We present analytical and numerical results and derive explicit criteria for
streamer formation after the emergence of the first free electron.

2000 Mathematics Subject Classification:  82D10
Keywords and Phrases: Electron avalanche; negative streamers ; minimal streamer model; diffusion.
Note: Financial support for C. Montijn is provided by NWO in the Computational Science program.





Diffusion correction to the avalanche–to–streamer transition

Carolynne Montijn1, Ute Ebert1,2

1CWI, P.O.Box 94079, 1090 GB Amsterdam, The Netherlands, and
2Dept. Physics, Eindhoven Univ. Techn., The Netherlands.

(Dated: August 6, 2005)

Space-charge dominated streamer discharges can emerge in free space from single electrons if
the electric field exceeds a threshold value. We show that this threshold field depends not only on
ionization and attachment rates and gap length as suggested by Meek’s criterion, but also on electron
diffusion. We present analytical and numerical results and derive explicit criteria for streamer
formation after the emergence of the first free electron.
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I. PROBLEM SETTING AND REVIEW

We investigate the conditions under which a tiny ion-
ization seed in a homogeneous electric field grows out
into a streamer with self-induced space charge effects and
consecutive rapid growth. Streamers in turn play a role
in creating the paths of sparks and lightning [1, 2], in
high altitude sprite discharges above thunderclouds [3–5].
They are also used for various industrial applications [6],
e.g. corona reactors for water and gas treatment [7–10],
and sources of excimer radiation for material process-
ing [11–13]

In narrow geometries, streamers frequently are grow-
ing from pointed electrodes, that create strong local fields
in their neighborhood. At the electrodes, surface effects
take place, and both positive and negative streamers can
emerge [14]. On the other hand, in many natural dis-
charges and, in particular, for sprites above thunder-
clouds [5], it is appropriate to assume that the electric
field is homogeneous and boundary effects do not play a
role. Of course, dust particles or other nucleation cen-
ters can play an additional role in discharge generation,
but in the present paper we will focus on the effect of a
homogeneous field on a homogeneous gas. This assump-
tion corresponds to the case discussed previously, e.g., in
[15–17] and will be subject of the present paper.

Typically, the avalanche to streamer transition is as-
sumed to depend on the ionization rate α and gap length
d through the dimensionless combination αd. We here
first recall this statement and then reinvestigate the prob-
lem and find, that the transition depends also on electron
diffusion. This dependence is analyzed quantitatively in
full parameter space.

In detail, we consider a continuous discharge model
with attachment and local field-dependent impact ioniza-
tion rate and space charge effects. It is defined through

∂t ne = De∇2
Rne + ∇R · (µe Ene)

+(µe |E|α(|E|) − νa) ne,

∂t n+ = µe Eα(|E|) ne,

∂t n− = νa ne,

∇2
R

Φ =
e

ε0
(ne + n− − n+) , E = −∇RΦ. (1)

Here ne, n+ and n− are the particle densities of elec-
trons, positive and negative ions, and E and Φ are the
electric field and potential, respectively. De and νa are
the electron diffusion coefficient and the electron attach-
ment rate. We assume the impact ionization rate α(E)
to be a function of the electric field, and for our nu-
merical calculations, we use the Townsend approximation
α(|E|) = α0 exp(−E0/|E|), in which α0 and E0 are pa-
rameters for the effective cross section. The positive and
negative ions are considered to be immobile on the time
scales investigated in this paper. The initial ionization
seed is placed in free space, and an electron avalanche
drifts towards the anode.

Eventually, the charged particle density in the
avalanche will grow so large that space charge effects
set in and change the externally applied field, and a
streamer emerges from the avalanche. Essentially two
criteria have been given in the literature for this emer-
gence of a streamer from a tiny ionization seed. The first
one is a necessary lower bound: the electric field has to
be higher than the threshold field Ek where the impact
ionization rate overcomes the attachment rate. Only for
|E| > Ek, the ionization level can grow. Here Ek is de-
fined through

µe Ek α(Ek) = νa. (2)

The second criterion is known as Meek’s criterion. As
derived originally in [15], it states that for a cathode di-
rected (i.e., positive) streamer to emerge from an anode
directed avalanche, the system has to be long enough to
allow for a sufficient multiplication of the drifting elec-
tron package. Then the electric field of the ions is high
enough for secondary emitted electrons at the anode to
drift towards the cathode. Typically, multiplication rates
by 8 [15, 18] to 9 [17] decades are assumed to be sufficient.
This fixes the second criterion as

exp

[(

α(|E|) − νa

µe|E|

)

d

]

≈ 108 to 109, (3)

where d is the avalanche length. In brief as a rule of
thumb the criterion reads

α(|E|) d ≈ 18 to 21 according to Meek. (4)
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Meek’s criterion has been extended to the transition
of the avalanche to an anode directed (i.e., negative)
streamer [16, 17].

In the present paper we argue that for an avalanche
originating from a tiny local seed, this criterion is not
sufficient since it neglects the diffusion of the electron
package. Diffusion decreases the electron density while
impact ionization increases it. In low fields, diffusion
stays dominant for all times which will always suppress
space charge effects and consecutive streamer emergence.

The difference is particularly pronounced in non-
attaching gases like nitrogen. Here Meek’s criterion
would suggest that streamer formation could take place
as long as there is any impact ionization and the sys-
tem is sufficiently long. However, electron diffusion will
suppress streamer formation in low fields.

We will elaborate this argument analytically and nu-
merically, and we will give quantitative corrections to
the above criteria. First the intrinsic scales of the prob-
lem with their explicit density dependence are identified
through dimensional analysis. Then analytical results
for the electron density are recalled and the electron in-
duced field is calculated. This gives a lower bound for the
time and travel distance of avalanche-to-streamer transi-
tion. The ion density distribution cannot be calculated
analytically, however, we found that all spatial moments
of the distribution can be calculated. These moments
provide the basis for an estimate of the avalanche-to-
streamer transition. Fig. 4 summarizes how travel time
and distance at the transition depend on applied field
and diffusion constant.

II. DIMENSIONAL ANALYSIS

Meek’s criterion can be understood as an example of
dimensional analysis: the effective cross-section α(|E|)
has the dimension of inverse length, hence α(|E|)d is a
dimensionless number that characterizes a certain behav-
ior. It is useful to extract the intrinsic scales also from
other quantities. In particular, there is another dimen-
sionless number in the problem, namely the dimension-
less diffusion constant

D =
Deα0

µeE0
, (5)

that plays a distinctive role in the avalanche to streamer
transition as well. Note that this dimensionless diffusion
constant in general depends on temperature as De/µe

seems to be well approximated by the Einstein relation
De/µe = kT/e where k is Boltzmann’s constant and T
the temperature [16].

In general, lengths are measured in units of 1/α0, fields
in units of E0, and velocities in units of µ0E0 as in [19] —
hence diffusion should be measured in units of µeE0/α0

as done in (5). The parameters α0, µe, De and E0 depend

on density, and for N2 they are [16, 20–22]:

α−1
0 = 2.3 µm

1

N/N0
, E0 = 200

kV

cm

N

N0
, (6)

µe = 380
cm2

Vs

1

N/N0
, De = 1800

cm2

s

1

N/N0
,(7)

where N0 is the normal atmospheric particle density. At
room temperature, the dimensionless diffusion coefficient
with these parameters becomes D ≈ 0.1.

Dimensionless parameters and fields are introduced as

r = α0 R, τ = α0µeE0 t,

σ =
e ne

ε0α0E0
, ρ =

e (n+ − n−)

ε0α0E0
,

E =
E

E0
, ν =

νa

α0µeE0
,

which brings the system of equations (1) into the dimen-
sionless form

∂τ σ = D∇2σ + ∇(Eσ) + f(|E |, ν) σ , (8)

∂τ ρ = f(|E |, ν) σ , (9)

∇2φ = −∇ · E = σ − ρ , (10)

where

f(|E |, ν) = |E |e−1/|E| − ν, (11)

and the operator∇ is taken with respect to r. The advan-
tage of using these dimensionless quantities is the scaling
with number density, which makes the translation of the
results to any pressure straightforward.

It is remarkable that the density of positive and nega-
tive ions n± enters the equations only in the form of the
single dimensionless field ρ ∝ n+ − n−. This is clear in
the case of the Poisson equation, but holds also for the
generation term proportional to f(|E |, ν).

We neglect the effect of photoionization as it is an in-
duced effect of impact ionization. Therefore photoion-
ization rates are typically much lower than impact ion-
ization rates and do not contribute significantly to the
build-up of a compact ionization seed that is required for
an avalanche to streamer transition.

An initial ionization seed will under influence of the
background electric field advect towards the anode, dif-
fuse and grow due to ionizing collisions with neutral
atoms. At the beginning of this process the influence
of space charges on the electric field is negligible. We
can therefore analyze the continuity equations Eqs. (8)-
(9) in a homogeneous background field Eb, which makes
the process linear. Eventually space charges do affect
the electric field, and the streamer regime is reached.
Then charged layers emerge, shielding the interior of the
streamer from the outer electric field. We here investi-
gate when this will happen.
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III. ELECTRON DISTRIBUTION AND FIELD

A. Exact result for the electron distribution

We write the single electron that generates the
avalanche as a localized initial density

σ(r, τ = 0) = ρ(r, τ = 0) = σ0δ(r − r0) (12)

and consider its evolution, in a cylindrically symmet-
ric coordinate system, under influence of a uniform field
Eb = −Ebêz, êz being the unit vector along the axial
direction.

To approximate the single electron, one has to take
σ0 = 10−4 at atmospheric pressure. Indeed the integra-
tion over the whole space of the initial electron density
distribution (12) is, obviously, equal to σ0. Using the
dimensional analysis introduced in previous section, this
corresponds to a total number of (σ0n0)/α3

0 electrons,
which is assumed to be unity (n0 being the characteris-
tic particle density, n0 = ε0α0E0/e). A substitution of
the numerical values for the intrinsic scales then leads to
σ0 = 10−4/(N/N0). For this initial condition, the elec-
tron evolution according to Eq. (8) can be given explicitly
as [16]

σ(r, τ) = σ0 efτ e−(r−r0−Ebτ)2/(4Dτ)

(4πDτ)3/2
; (13)

it has the form of a Gaussian package that drifts with
velocity −Eb, widens diffusively with half width propor-
tional to

√
4Dτ , and carries a total number of electrons

efτ . (If the initial ionization seed consists of several elec-
trons in some close neighborhood, the Gaussian shape is
approached nevertheless for large times due to the central
limit theorem.)

It should be noted that while the total number of elec-
trons in the package grows exponentially in time, the
maximum of the electron density

σmax(τ) = max
r

σ(r, τ) =
σ0 efτ

(4πDτ)3/2
(14)

first decreases until τ = 3/(2f) and then increases. At
this moment of evolution, generation overcomes diffusion.

B. Exact result for the electron generated field Eσ

While density and field of the ions can only be calcu-
lated approximately and will be treated in the next sec-
tion, the electric field Eσ generated by the Gaussian elec-
tron package can be calculated exactly. The main point
is that the electron density distribution (13) is spher-
ically symmetric about the point r0 + Ebτ . The elec-
tric field Eσ(s, τ) induced by the electrons at the point
s = r−r0−Ebτ can therefore be written as Eσ = −Eσês,
where ês is the unit vector in the radial s direction. Its
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FIG. 1: Numerical and analytical results at τ = 2000 on
the axis of symmetry z when the externally applied field is
Eb = −0.25 êz, and D = 0.1, ν = 0 and σ0 = 10−4. The
initial condition is located at r0 = 50 êz. The upper figure
shows the electron density; the analytical expression coincides
with the numerical result as it should. The lower figure shows
the axial component (pointing in the same direction as Eb) of
the numerically computed field strength E − Eb due to both
electrons and ions (thick line) and the analytical result for the
field Eσ induced by the electrons only (thin line).

magnitude can be computed with Gauss’ law of electro-
statics:

Eσ(s, τ) = − 1

s2

∫ s

0

σ0e
fτ e−r2/(4Dτ)

(4πDτ)3/2
r2dr

= − σ0e
fτ

16πDτ
F

(

s√
4Dτ

)

, (15)

with

F (x) =
1

x2

4√
π

∫ x

0

y2e−y2

dy =
erf x

x2
− 2√

π

e−x2

x
, (16)

where erf is the error function. The spatial maximum of
the field Eσ is determined by the maximum of F (x); it is
given by

2√
π

(x + x3)e−x2

= erf x. (17)

Solving this equation numerically leads to a position of
the maximum of about x ' 1 and to the value F (1) '
0.4276. The spatial maximum of the electron generated
electric field becomes

Emax
σ (τ) ' σ0e

fτ

16πDτ
F (1), (18)

it is located on the sphere parameterized through

|r − r0 − Ebτ | '
√

4Dτ. (19)
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C. A lower bound for the transition

The electric field generated by the electrons leads to
a first estimate for the avalanche to streamer transition.
Actually, the magnitude of the monopole field Eσ ahead
of the electron cloud is an upper bound for the magni-
tude of the field created by the dipole of electrons on the
one hand and the positive charges left behind by the elec-
tron cloud on the other hand (see lower panel in Fig. 1).
Therefore, substantial fields arise after a shorter travel
time τ0 and distance, so that τ0 is a lower bound for the
time τa→s of the avalanche-to-streamer transition.

The space charge generated field is measured relative
to the externally applied field Eb as |Emax(τ) − Eb| ≤
k|Eb|. We will show in the next section that k = 0.03
is an appropriate estimate for the mid gap avalanche to
streamer transition.

Finally, the lower bound τσ for the transition can be
expressed through Eq. (18) as

fτσ − ln(Ebτσ) ' ln
16πkD

F (1)σ0
. (20)

As travel time and travel distance are related through
the drift velocity Eb and working the way back through
dimensional analysis, f(|E b|, ν)τσ is found to be iden-
tical to (α(|Eb|) − νa/µeEb)dσ , where dσ = µeEbtσ is
the avalanche travel distance. In dimensional quantities,
Eq. (20) takes the form

(

α(|Eb|) −
νa

µeEb

)

dσ − ln(dσα0) =

ln
16πk104

F (1)
+ ln

Deα0

µeE0
− ln

N

N0
.

(21)

For a non-attaching gas (νa = 0) at atmospheric pres-
sure under normal conditions with dimensionless diffu-
sion comparable to nitrogen, inserting the numerical val-
ues for the parameters, we obtain

α(|Eb|)dσ − ln(α0dσ) ≈ 9.43. (22)

f being a growing function of |Eb|, Eq. (37) shows that
the larger the field, the earlier the transition takes place,
which is in accordance with Meek’s criterion. On the
other hand, the second term of in the right hand side of
Eq. (21) is dependent on the diffusion coefficient in such
a way that diffusion delays the transition to streamer, as
expected.

The solution α(|Eb|)dσ for N2 at atmospheric pres-
sure is shown in the dash-dotted line of Fig. 3, where it
is compared to a numerical evaluation of the transition
time (symbols). The latter have been obtained through
a full simulation of the continuity equations (8)-(9) to-
gether with the Poisson equation (10) [23, 24]. Though
the qualitative features of the transition time are well re-
produced, this figure shows that the underestimation of
the transition time is significant, and that it is necessary
to include the field of the ion trail left behind by the
electrons.

IV. ION DISTRIBUTION AND FIELD

A. Exact results on the spatial moments of the

distributions

To get a more accurate estimate for the avalanche-to-
streamer transition, the field generated by the positive
and negative ions has to be included. In the case of
the ion distribution, closed analytical results cannot be
found, in contrast to the electron distribution (13). How-
ever, arbitrary spatial moments of the distribution

〈O〉ρ =

∫

O ρ d3
r

∫

ρ d3r
, where O = zn or rn, (23)

can be derived analytically. Here z is the direction of the
homogeneous field Eb and r is the radial direction. First,
the evolution equation (9) for the ion density is integrated
in time and the analytical form (13) for σ(r, τ) is inserted.
As f = f(|Eb|, ν) is constant in space and time one finds

ρ(r, τ) − ρ(r, 0) = (24)

fσ0

∫ τ

0

dτ ′ efτ ′ e−(z−z0−Ebτ ′)2/(4Dτ ′)

√
4πDτ ′

e−r2/(4Dτ ′)

4πDτ ′
.

Here the initial perturbation is located at z0 on the axis
r = 0. The moments (23) can now be derived from (24)
by exchanging the order of spatial and temporal integra-
tion. In particular, one finds

∫

ρ d3
r = σ0 efτ , (25)

∫

z ρ d3
r = σ0 efτ

(

z0 + Ebτ − 1 − e−fτ

f/Eb

)

,

and higher moments can be calculated in the same way.
For the moments of ρ, this gives

〈z〉ρ = z0 + Eb

(

τ − 1

f

)

+ O
(

e−fτ
)

, (26)

〈z2〉ρ − 〈z〉2ρ =

(Eb

f

)2

+ 2D

(

τ − 1

f

)

+ O
(

e−fτ
)

.

The second moment of ρ in the radial direction is

〈r2〉ρ = 2D

(

τ − 1

f

)

+ O
(

e−fτ
)

. (27)

For comparison, the moments of the Gaussian electron
distribution (13) are easily found to be

〈z〉σ = z0 + Ebτ, (28)

〈z2〉σ − 〈z〉2σ = 2Dτ, (29)

〈r2〉σ = 2Dτ. (30)
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B. Discussion of the moments

These moments mean that the center of mass of the
electron package is located at z = z0 +Ebτ , and the pack-
age has a diffusive width

√
2Dτ around it, both in the

forward z direction and in the radial r direction. The
second moment in the z direction is calculated relative
to the center of mass

〈z2〉cx :=
〈

(

z − 〈z〉x
)2
〉

x
= 〈z2〉x − 〈z〉2x, x = σ, ρ.(31)

The ion cloud shows a more complex behavior; it is
evaluated close to the avalanche-to-streamer transition
where fτ = αd = O(10), therefore the terms of order
e−fτ are neglected.

First it is remarkable that the center of mass of the
ion cloud shifts with precisely the same velocity as the
electron cloud though the ion motion is neglected while
the electrons drift, and that the ion center of mass is
at an approximately constant distance Eb/f behind the
electron center of mass. This distance

`α =
Eb

f(Eb)
=

α0

α(Eb)
(32)

in dimensionless units corresponds to ionization length
1/α(Eb).

The square of the radial width of the ion cloud 2D(τ −
1/f) is 2D/f smaller than the one of the electron cloud.
This is clear since the electron cloud also was more nar-
row when it left the ions behind. The ion cloud is more
extended in the z direction. More precisely, its length is
`α larger than its width. This comes from the ions be-
ing immobile, therefore a trace of ions is left behind by
the electron cloud. Moreover, it can be remarked that
the difference between the width and the length of the
ion cloud is the same as the distance between the centers
of mass of the ion and the electron cloud, namely the
ionization length `α.

C. An estimate for the transition

One can assume as in [17] that the ions have a distri-
bution similar to the electrons, thus a Gaussian with the
same width as the electron cloud, but centered around
(r = 0, z = 〈z〉ρ):

ρ1(r, z, τ) = σ0 efτ e−
[

(z−〈z〉ρ)2+r2

]

/(4Dτ)

(4πDτ)3/2
. (33)

In this approximation, the total electric field becomes:

E1(r, z, τ) = Eb (34)

− σ0e
ft

16π Dτ

[

F

( |sσ |√
4Dτ

)

sσ

|sσ |
+ F

( |sρ|√
4Dτ

)

sρ

|sρ|

]

,

where

sx = r− 〈z〉x êz for x = ρ, σ (35)

are the distances to the electron and ion centers of mass.
The maximum of the field E1 can not be computed

analytically. However, in Fig. 1 it can be seen that the
positions of the maximum of the total field and that of
the electron field nearly coincide. Therefore we evaluate
the field E1 at the maximum of Eσ as defined in Eq. (18).
Moreover, it is easily seen that the maximum of the field
is situated on the axis, ahead of the electron cloud. The
maximum of the electric field can thus be approximated
as:

Emax
1 (τ) ' E1(r = 0, z = z0 + Ebτ +

√
4Dτ, τ)

= Eb +
σ0e

fτ

16πDτ

[

F (1) − F

(

1 +

√

`2
α

4Dτ

)]

.(36)

Then Emax
1 − Eb = kEb implies for the transition time

τ1:

fτ1 − ln(Ebτ1) − ln
F (1)

F (1) − F

(

1 +
√

`2α
4Dτ1

)

= ln
16πkD

F (1)σ0
(37)

The argument of the logarithm in the third term on the
right hand side being larger than 1, this criterion gives a
later time for the transition than that based on the field
of the electrons only. This is what we expect considering
that the ions tend to reduce the field of the electrons,
thus the effect of space charge. The correction given by
the ion field is a function of the ratio of the ionization
length `α and the diffusion length

√
2Dτ . At early times,

this ratio goes to infinity, and the correction given by
the ion cloud is negligible. However, at later times, the
correction becomes more significant.

Fig. 2 shows the influence of the correction on the field
of the electrons, as well as the numerical results for the
field of the ion and electron cloud together. It shows
that, indeed, the correction only becomes important for
larger times.

Moreover, the approximation for the maximal field
ahead has now become much better than the previous
approximation based on only the electron cloud. Indeed,
for e.g the case of Eb = 0.5 (corresponding to the middle
thick lines), the numerically computed field (solid line)
reaches the transition value ((Enum − Eb) = 0.03Eb at
fτ ≈ 14. When only the field of the electrons is taken
into account, this value would already be reached at
fτ ≈ 12.6, while the correction based on the approx-
imation of the ion cloud leads to a transition time of
fτ ≈ 13.9. The correction becomes especially important
at lower fields. In high fields, the approximation of the
ions shows somewhat larger deviations. The figure also
shows that the choice of k = 0.03 in Emax −Eb = kEb is
appropriate for the definition of the transition, since the
maximal electron density then drops below the analytical
solution with vanishing space charges.

In Fig. 3 we compare the transition times given by
Eqs. (20) and (37) with numerically evaluated transition
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FIG. 2: Evolution of the maximal electron density (upper
panel) and electric field (lower panel) as a function of fτ .
Different values of Eb have been chosen: thin line: Eb = 1,
1 line Eb = 0.5 and thick line Eb = 0.25. Upper panel: Nu-
merical results (solid lines) for the maximal electron density
compared with Eq. 14 (dash-dotted lines). Lower panel: nu-
merical results (solid lines) are compared to maximum electric
field induced by the electrons (dash-dotted lines) on the one
hand and the maximal field given by Eq. (36) on the other
hand (dashed lines).

times. It shows that the approximation of similar elec-
tron and ion distributions leads to a very good approxi-
mation of the transition time. From this figure it is also
clear that the transition time fτ depends strongly on
the electric field, and grows larger towards smaller fields.
Moreover, looking at the transition time for higher dif-
fusion coefficients, it is seen that diffusion tends to delay
the transition to the streamer regime. This can be ex-
pected, since diffusion will tend to broaden the electron
cloud, thereby suppressing space charge effects.

For completeness, a 3-dimensional plot of the tran-
sition time approximated by Eq. (37) as a function of
both background electric field and diffusion coefficients
is shown in Fig. 4. From this figure, we see that Meek’s
transition criterion, that stated that fτ is approximately
constant, corresponds to the case of relatively high dif-
fusion and background field. However, realistic values of
D are in the range of 0.1 to 0.3 at room temperature,
and a background electric field higher than 2 also leads
to unrealistic values. So in the parameter range of real
experiments, the correction given by Eq.(3) on Meek’s
criterion can not be neglected.

D. A more accurate approximation for the ion

density distribution

The previous approximation ρ1 of the ion distribution
leads to a relatively good approximation for the transi-

FIG. 3: The transition time fτ (equivalent to the travel dis-
tance αd) as a function of the background electric field for
σ0 = 10−4, ν = 0 and different values of D. Solid line:
computed with Eq. (37) for D = 0.1 (thin line), 0.3 (middle
thin line) and 1 (thickest line); dash-dotted line: computed
with Eq. (20) for D = 0.1; symbols: numerical evaluation for
D = 0.1.

tion time in the case of a mid-gap transition. However,
the real ion distribution is more narrow in the r-direction,
and can be wider and asymmetrical in the z-direction. As
discussed in [15], it is the field of the ion cloud that should
be high to suppress the background field, so that, when
the electron cloud has drifted into the anode, new elec-
trons emitted by e.g. photoionization are drawn towards
the cathode, creating a positive streamer. In this section
we present another approximation for the ion distribu-
tion, which will lead to a better overall approximation of
the electric field, and of the self field induced by the ion
trail. The price however to pay for this is a much more
complicated analytical expression for the density and the
field.

A better approximation for ρ would be an ellipsoidal
Gaussian distribution centered around (r = 0, z = 〈z〉ρ)
with width 〈z2〉cρ = 〈z2〉ρ − 〈z〉2ρ and 〈r2〉cρ = 〈r2〉ρ in
the z- and r-direction, respectively. The height of this
Gaussian should be such that the total amount of ions at
time t is still equal to σ0e

ft. The appropriate expression
for the ion distribution is:

ρ(r, z, t) =
σ0e

ft

(2π)3/2S2
rSz

e−r2/(2S2

r )−(z−〈z〉ρ)2/(2S2

z) (38)

However, as far as we know, no closed analytical expres-
sion is known for the field of such an ellipsoidal Gaussian
charge distribution. So instead, we take a spherical Gaus-
sian distribution with the same height as the one defined
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FIG. 4: The transition distance αd according to Eq. 37) as a
function of the background electric field Eb and the diffusion
coefficient D for σ0 = 10−4 and ν = 0.

in Eq. (38):

ρ2(r, z, τ) =
σ0e

fτ

(2π)3/2S3
ρ

e−(r2+(z−〈z〉ρ)2)/(2S2

ρ) , (39)

where

S3
ρ = 〈r2〉cρ

√

〈z2〉cρ

=

(

2D(τ − 1

f
)

√

2D(τ − 1

f
) + l2α

)

. (40)

The electric field induced by this ion distribution is:

Eρ2
(r, z, τ) =

σ0e
fτ

8πS2
ρ

F

(√

|sρ|2
2S2

ρ

)

, (41)

where sρ is defined in Eq. (35).
In Fig. 5 we compare the densities and fields given by

the numerical solution and ρ1 and ρ2. It shows clearly
that the approximation ρ2 does not give a better approx-
imation of the field ahead of the electron cloud. This
can be explained by the fact that, the region ahead of
the electron cloud does not contain any ions, so that the
field induced by the ions is only a function of the total
number of ions, which is the same in both ρ1 and ρ2. On
the other hand, inside the ion cloud the approximation is
much better. Therefore, evaluating the electron and ion
densities with Eqs. (13) and (39) and their fields with
Eqs. (15) and (41), at the transition time T1 given by
Eq. (37), will give a good approximation of the status of
the process at the time that streamer regime is entered.
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FIG. 5: The ion density (upper figure), total charge density
(middle figure) and electric field (lower figure) on the axis,
computed with E0 = 0.25, at τ = 2000. The solid lines
give the numerical solution, the dash-dotted lines the solution
corresponding to ρ1 and the dotted lines to ρ2.

V. CONCLUSIONS

In this paper, the particle distributions and associated
fields of an electron avalanche in a homogeneous electric
field were analyzed. During the exponential growth of
the total number of electrons and ions, the electrons are
described by the known Gaussian distribution, but we
found that the spatial moments of the ion distribution
can also be calculated. As a result, we find that the cen-
ters of mass of electron and ion distribution both travel
with the electron drift velocity within the external field.
For the ions this is remarkable, since they are assumed
to be immobile; their center of mass motion is therefore
purely due to generation of additional ions. The distance
between the centers of mass is given by the ionization
length 1/α(Eb). Furthermore, the electron cloud widens
homogeneously through diffusion, so its width both in
the longitudinal and in the radial direction is given by√

2Dτ . The ion cloud lags behind and has the some-
what smaller “delayed” radius

√

2Dτ [1 − 1/(αd)] in the
radial direction while its extension in the longitudinal di-
rection can be larger, in particular, for small times, as it is
characterized by

√

`2
α + 2Dτ [1 − 1/(αd)] where `α is the

dimensionless version of the ionization length 1/α(Eb).

Furthermore, we evaluate the field of the electron cloud
exactly and the field of the ion cloud approximately, and
derive a criterion for the avalanche to streamer transition
that takes diffusion into account. It corrects Meek’s crite-
rion that stated that αd ' 18 − 21, d being the transition
travel distance and α the ionization cross section of the
electrons. The transition distance strongly depends on
diffusion and on the background electric field. For high
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fields, the transition time saturates towards αd ' 15.
On the other hand, for low fields, when the processes are
diffusion dominated, the avalanche lasts much longer.

The analytical models described in this paper give a
useful tool to describe the negative streamer formation.
Especially at relatively low, realistic, fields, the present
model gives an accurate description of the avalanche to
streamer transition. We stress that our criterion for the
transition is based on the space charges affecting the
background electric field in such a way that the lineariza-
tion around it no longer holds. This corresponds to the
moment that the electron cloud and its ion trail start re-
ducing sensibly the electric field strength between them.
The criteria for spark breakdown derived by Meek [15],
and for positive streamer formation by Bazelyan [17] are
based on the space charges screening out the field be-
tween the positively and negatively charged regions, i.e.
k = O(1). However, their calculations are based on the
linearization around the uniform background field, which
obviously does not hold at these values of k. More-
over, the situation of complete screening might never be
reached in the full nonlinear dynamics [21, 25, 26].

In [17] the diffusive widening of the electron was not
accounted for in the derivation of the criterion. The dif-
fusion however has considerable effects on the electron
and ion distribution, and especially at low fields it can
considerably delay the emergence of a streamer. Indeed,
in high fields, the transition to a streamer occurs after
the electron cloud has traveled a much shorter distance
than expected by Bazelyan.

The nonlinear streamer propagation is the subject
of other studies. In that phase the space charges and
electric field strongly interact, and the analytical study
of such streamers is far more difficult than the analysis
of the avalanche phase [27].
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