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DISCRETE STOKES EQUATIONS∗
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Abstract. We consider the multigrid solution of the generalized Stokes equations with a segre-
gated (i.e., equationwise) Gauss–Seidel smoother based on a Uzawa-type iteration. We analyze the
smoother in the framework of local Fourier analysis, and obtain an analytic bound on the smoothing
factor showing uniform performance for a family of Stokes problems. These results are confirmed by
the numerical computation of the two-grid convergence factor for different types of grids and dis-
cretizations. Numerical results also show that the actual convergence of the W-cycle is approximately
the same as that obtained by a Vanka smoother, despite this latter smoother being significantly more
costly per iteration step.
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1. Introduction. The need to solve the generalized Stokes equations appears
in incompressible fluid dynamics and in some structural mechanics applications, as
in plasticity, beam and shell studies. In the simulation of fluid flow by the nonlinear
time-dependent Navier–Stokes equations, a generalized Stokes problem also has to be
solved at each nonlinear iteration.

The Stokes equations form a saddlepoint problem, and depending on the choice
of discretization method, one may end up with a matrix in 2 × 2 block form, in
which the lower diagonal block is either a zero block or a block containing very small
matrix elements. Saddlepoint problems are well known and well studied in numerical
analysis. An overview of this topic has been presented in [2].

The tradition of solving Stokes equations with multigrid is long, and interesting
approaches have been presented during the last 35 years. Basically two approaches
have established themselves, and their difference lies in the type of smoothing operator
adopted. A state-of-the-art smoother for the Stokes equations is a Gauss–Seidel-
type coupled Vanka smoother [18], in which the primary unknowns, pressure and
the velocities in a grid cell, are updated simultaneously. Each smoothing step then
requires us to solve as many small systems as there are cells in the grid.
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Decoupled, i.e., equationwise, smoothing is often preferred for reasons of cost
efficiency. For Stokes problems, one first transforms the discrete system such that
equationwise smoothing on the transformed discrete system brings excellent smooth-
ing factors. Equationwise, decoupled smoothing on a transformed system is called
distributive smoothing [4, 22].

These two state-of-the-art smoothers are somewhat involved, as compared to basic
smoothing techniques for scalar elliptic PDEs. Straightforward generalization of the
basic pointwise smoothing principle to systems of equations, like the Stokes equations,
implies a segregated, decoupled smoothing scheme in which the individual equations
of the PDE system are considered to be scalar equations. In this paper we present such
a smoother. Issues associated with standard equationwise smoothing procedures like
damped Jacobi and Gauss–Seidel are avoided by considering an Uzawa-type iteration.
A similar Uzawa smoother was presented in a Ph.D. thesis by P. Nigon, as well as in
a conference proceedings paper in the 1980s [13]. Here we present a new analysis of
this approach leading to a deeper understanding of the multigrid performance and to
the formulation of a more efficient variant.

For the velocity components, any basic smoothing technique applicable to scalar
elliptic PDEs is possible, but our analysis favors symmetric schemes. This leads us to
focus on symmetric Gauss–Seidel smoothing; that is, one forward pointwise Gauss–
Seidel sweep for all velocity unknowns followed by one backward sweep. In [13], two
forward Gauss–Seidel sweeps were used instead, and numerical results reveal that,
everything else being equal, our choice is indeed more effective.

The Uzawa-like procedure amounts to a simple Richardson iteration for the
smoothing of the pressure unknowns. As usual, such iteration involves a relaxation,
or damping, parameter.

Here we provide an upper bound on the smoothing factor [17] associated with the
proposed Uzawa smoother that indicates how the different parameters may affect the
convergence, and we deduce a rule of thumb to select the aforementioned damping
parameter as a function of the main problem characteristics.

We then consider three typical discretizations of a family of Stokes problems,
ranging from stationary to time dependent with a small time step. In each case,
we perform numerical experiments that confirm the relevance of our analysis and
the efficiency of the proposed approach. Our upper bound on the smoothing factor
gives an excellent estimation of the exact smoothing factor, and selecting the pa-
rameter according to the proposed rule of thumb is indeed optimal or near optimal.
The smoothing factor reflects well the two-grid convergence factor computed by local
Fourier analysis (LFA), as well as the actual convergence factor associated with prac-
tical multigrid cycles. Finally, the convergence is roughly the same as that obtained
with the Vanka smoother; since this latter is significantly more costly per step, it
means that our approach is effective, at least for the selected examples.

The outline of the paper is as follows. In section 2, we present the generalized
(i.e., parametrized) Stokes equations and give properties of the linear systems result-
ing from their discretizations. The Uzawa smoother is introduced in section 3, where
we also develop our analysis of the associated smoothing factor. This analysis is then
numerically illustrated in the subsequent sections, where we consider successively a
staggered marker-and-cell discretization (section 4), a collocated grid discretization
with an artificial pressure term (section 5), and a stabilized linear finite element
method on an equilateral triangular mesh (section 6). Concluding remarks are given
in section 7.
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2. The generalized Stokes equations and their discretization. Given a
bounded polygonal domain Ω ⊆ R

2 with a Lipschitz-continuous boundary ∂Ω, the
generalized Stokes problem in d dimensions (with d = 2 or d = 3) requires finding the
velocity vector u : Ω → R

d, and the kinematic pressure field p : Ω → R, satisfying

(2.1)
ξu− νΔu+∇p = f in Ω,

∇ · u = 0 in Ω,

where f represents a prescribed force, and the parameters ν > 0 (viscosity) and ξ ≥ 0
are given. The latter is often a quantity proportional to the inverse of the time step
in an implicit time integration method applied to a nonstationary Stokes problem;
ξ = 0 corresponds to the classical stationary Stokes problem. Whatever the chosen
scheme, the discretization of (2.1) leads to a linear system of the form

(2.2) K =

(
A BT

B −C

)
.

In this matrix, A is the discrete representation of the operator ξ−νΔ; more precisely,
A is block diagonal with one diagonal block per spatial dimension, being the discrete
operator acting on one of the velocity components. It further follows that A is sym-
metric positive definite (SPD). The matrix block BT is the discrete gradient and B the
discrete divergence; C is a stabilization term which is needed by some discretization
schemes to avoid spurious solutions. Such spurious solutions arise when the discrete
gradient admits more than the constant vector in its null space or near null space;
i.e., when the discrete gradient is zero or near zero for some spurious pressure modes.
The existence of such modes depends on which discretization scheme is used for ve-
locities and pressure. We refer to, e.g., [20] and [7] for more details on, respectively,
finite difference and finite element discretizations. Note a required property of the
stabilization operator: if B is not full rank, C has to be positive definite on the null
space of BT , which further entails that the system matrix is nonsingular [2].

An important exception to this latter rule is when the boundary conditions are
such that the physical pressure is only determined up to a constant. To make the
problem well-posed, one needs then to impose some additional condition, such as

(2.3)

∫
Ω

p dx = 0.

At the discrete level, this is reflected in the fact that BT1 = 0, where 1 is the vector
of all ones. Hence, matrix K may be singular with a null space spanned by (0 1T )T .
Whether K is singular or not depends on C, but, to preserve accuracy, stabilization
operators need to be small for smooth modes, and often satisfy C 1 = 0 as well (see
section 5 below for an example).

The singularity ofK poses no particular difficulties when solving the linear system
by an iterative method; see, e.g., [7, section 8.3] for a detailed discussion in the context
of the Navier–Stokes equations. Basically, the system is compatible because the right-
hand side of (2.1) together with the lack of boundary conditions for the pressure entail
that the right-hand side of the discrete system is zero for the second block of equations.
Further, starting from, say, the zero vector as an initial approximation, all updates are
kept orthogonal to the kernel vector (0 1T )T ; that is, all updates are such that the
discrete pressure unknowns have mean value zero, implying that the constraint (2.3) is
satisfied at the discrete level by all successive approximations. Regarding the iteration
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matrix, it means that the eigenvalue 1 associated with the singular mode does not
have to be taken into account. The convergence is governed by the “effective” spectral
radius, which corresponds to the maximum in modulus of the other eigenvalues.

Considering multigrid solution methods in particular, prolongation operators are
often such that a discrete pressure with mean value zero on the coarse grid maintains
mean value zero once prolongated to the fine grid; i.e., no special treatment is needed
when the coarse solver picks up the “correct” solution. The situation may be different
regarding relaxation. However, as will be seen in the next section, the smoother that
we propose in this work preserves the mean value of the discrete pressure as soon as
BT1 = 0 and C 1 = 0; i.e., here too, no particular treatment is needed to enforce
(2.3) at the discrete level when the system is singular.

3. The Uzawa smoother. For the Stokes operator, current state-of-the-art
smoothers are Vanka and distributive relaxations, as mentioned in the introduction.
Both ensure a form of coupling between the relaxation processes applied to the un-
knowns belonging to a same grid cell. Interestingly, the smoother proposed here does
not fall into these two categories of relaxation methods, and is truly decoupled.

Our approach is not rooted in multigrid research, but in the Uzawa method (e.g.,
[2, section 8.1]), which is an iterative scheme to solve linear systems with a matrix of
the form (2.2). It amounts to performing stationary iterations with the preconditioner(

A
B −ω−1 I

)
,

where ω is some positive parameter. The presence of the matrix block A in this
preconditioner implies an exact solve for velocity at each iteration. This makes the
approach costly, and the Uzawa method is in fact popular thanks to the “inexact
variants” that replace this block by some preconditioner for A.

In the multigrid context, it seems natural to consider as smoother this operator
where A is replaced by a typical smoother MA; that is, to consider the smoother

(3.1) M =

(
MA 0
B −ω−1 I

)
.

Because of the structure of A (block diagonal with diagonal blocks corresponding to
discrete ξ − νΔ), all commonly used smoothers for scalar elliptic PDEs can be used
to define MA.

The smoother (3.1) is a decoupled smoother, and a single smoothing step can be
described as follows: given (uT ,pT )T an approximation of the solution to the system,
compute the relaxed approximation (ûT , p̂T )T according to

• apply smoother MA to relax the system Au = f −BTp;
i.e., û = u+M−1

A

(
f −Au−BTp

)
;

• update the pressure: p̂ = p+ ω (B û− C p).
When K is singular because BT1 = 0 and C1 = 0, one has 1TB = 1TC = 0
and therefore 1T p̂ = 1Tp, i.e., the relaxation associated with the Uzawa smoother
preserves the mean value of the discrete pressure as discussed at the end of section 2.

When MA consists of two forward Gauss–Seidel sweeps for velocities, this scheme
is the one suggested in [13]. In this work, we shall consider another variant, where
MA is based on symmetric Gauss–Seidel iterations for A, i.e.,

(3.2) MA = (DA + LA) D
−1
A (DA + UA) ,
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where DA, LA, and UA are, respectively, the diagonal, the strict lower, and the strict
upper parts of A. Besides being a good smoother, such an MA satisfies two important
properties needed by our theoretical analysis. First, it is SPD when A is SPD and,
next, the associated largest eigenvalue satisfies (see, e.g., [1, Theorem 7.17])

(3.3) λmax(M
−1
A A) ≤ 1.

Numerical experiments will also reveal that the convergence associated with such an
MA is often faster than that obtained by two SOR sweeps as in [13], for essentially
the same cost.

Our analysis of the Uzawa smoother requires us to first make the assumptions
and simplifications associated with the LFA framework. LFA (also known as local
mode analysis) is the most powerful tool for the quantitative analysis and design
of efficient multigrid methods. In this analysis an infinite regular grid is considered
and boundary conditions are not taken into account. LFA was introduced by Brandt
in [3] and afterwards extended in [5]. A good introduction can be found in the paper
by Stüben and Trottenberg [16] and in the books by Wesseling [19], Trottenberg,
Oosterlee, and A. Schüller [17], and Wienands and Joppich [21].

In this framework, the discrete operators can be expressed in a basis (the Fourier
basis) in which they have a simpler form. For instance, discrete representations of
ξ − νΔ are typically diagonal, each component corresponding to a particular “fre-
quency,” LFA is further based on the classification of these frequencies in “low fre-
quency” components and “high frequency” components. The idea behind this is the
following: multigrid methods work if the smoother and the coarse grid operator inter-
act properly, and it is generally expected that the smoother damps the high frequency
components of the error whereas the coarse grid correction damps the low frequency
ones. Hence, regarding the smoother, most important is its action on the high fre-
quency components.

It is convenient to permute the components so that the high frequency ones are
labeled first. Then A, expressed in the Fourier basis, admits the block diagonal form

AF =

(
Ahigh

Alow

)
.

The exact structure of B in this basis depends on the discretization scheme, but, as a
general rule, the different types of frequency do not mismatch. That is, the discrete
gradient of a low (resp., high) frequency pressure vector involve only low (resp., high)
frequency velocity components. Moreover, typical stabilization matrices C are also
block diagonal with respect to this partitioning of frequencies. Hence, the system
matrix in the Fourier basis has the form

(3.4) KF =

⎛⎜⎜⎝
Ahigh B∗

high

Alow B∗
low

Bhigh −Chigh

Blow −Clow

⎞⎟⎟⎠ .

For Bhigh and Blow , the conjugate transpose appears in the top right block because
the basis transformation is orthogonal but in general complex. Hence the transformed
matrix is no longer real, and blocks that were transposes of each other become con-
jugate transposes of each other. Blocks that were symmetric become Hermitian, and
remain definite if they were previously definite. In particular, if C was positive defi-
nite on the null space of B∗, Chigh is positive definite on the null space of B∗

high , and
Clow is positive definite on the null space of B∗

low .
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The smoother has to be expressed in the same basis. In fact, standard smoothers
for scalar elliptic PDEs are also diagonal when expressed in the Fourier basis; hence,
applying to MA the same transformations and permutations as to A yields

M
(A)
F =

(
M

(A)
high

M
(A)
low

)
.

Because the basis transformation is orthogonal, the identity remains the identity in
the new basis. Hence the smoother (3.1) becomes

(3.5) MF =

⎛⎜⎜⎝
M

(A)
high

M
(A)
low

Bhigh −ω−1I
Blow −ω−1I

⎞⎟⎟⎠ .

Now, despite the simpler form of the operators in the new basis, performing a
complete analysis of the multigrid iteration matrix often remains out of reach for
systems of PDEs. If one is interested in the smoother’s performance, insight can be
gained by considering a simplified (and, in some sense, idealized) scheme, in which
the coarse grid corrections erase exactly all low frequency components of the error,
while leaving the high frequency ones unchanged [17]. The corresponding convergence
factor is referred to as the smoothing factor, and the following theorem allows us to
bound this latter for the Uzawa smoother (3.1).

Theorem 3.1. Let KF be defined by (3.4), where Ahigh , Alow , Chigh , and Clow

are, respectively, nhigh×nhigh , nlow×nlow , mhigh×mhigh , and mlow×mlow Hermitian
matrices with mhigh ≤ nhigh . Assume that Ahigh is positive definite, that Chigh is
nonnegative definite, and that either Bhigh has full rank or Chigh is positive definite
on the null space of B∗

high .

Let MF be defined by (3.5), where M
(A)
high , M

(A)
low are, respectively, nhigh × nhigh

and nlow × nlow Hermitian positive definite matrices.
Define the smoothing factor μ by

μ = ρ
( (

I −M−1
F KF

)
T (F)
c

)
,

where

T (F)
c =

⎛⎜⎜⎝
Inhigh

0nlow×nlow

Imhigh

0mlow×mlow

⎞⎟⎟⎠ .

If λmax(M
(A)
high

−1
Ahigh ) ≤ 1, letting

μA = ρ
(
I −M

(A)
high

−1
Ahigh

)
and

μS = ρ
(
I − ω

(
Chigh +BhighA

−1
highB

∗
high

))
,

it follows that

(3.6) μ ≤ μ = max
(
(μA)

1/2
, μS

)
.
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Proof. Using

M−1
F =

⎛⎜⎜⎜⎜⎜⎝
M

(A)
high

−1

M
(A)
low

−1

ω BhighM
(A)
high

−1
−ωImhigh

ω BlowM
(A)
low

−1
−ωImlow

⎞⎟⎟⎟⎟⎟⎠ ,

one can check that

μ = ρ(I −M−1
highKhigh ),

where

Khigh =

(
Ahigh B∗

high

Bhigh −Chigh

)
, Mhigh =

(
M

(A)
high

Bhigh −ω−1Imhigh

)
.

The required result then follows from Corollary 4.5 in [14]. Strictly speaking, this
latter result is proved only for real matrices. But, examining thoroughly its proof
as well as that of the theorems it is based on, it turns out that the extension to the
complex case runs smoothly, reading “symmetric” as “Hermitian” and “transpose” as
“conjugate transpose.”

Note that (3.3) implies λmax(M
(A)
high

−1
Ahigh ) ≤ 1. Hence the only additional

assumption in Theorem 3.1 always holds with the symmetric Gauss–Seidel smoother.
This theorem provides a bound on the smoothing factor involving only the smoothing
factor μA associated with the smoother for velocities, and μS , which can be seen as
the smoothing factor associated with Richardson iterations for the Schur complement

(3.7) S = C +BA−1BT .

Bounding μA raises no particular difficulties. Often one can reuse available results
for scalar elliptic PDEs [17, 21]. The analysis of μS is more tricky. Theorem 3.2,
below, is helpful in this respect. As will be seen, it helps to select ω in a sensible way.
It allows us to estimate μS as a function of the main parameters associated with a
discrete representation of the problem (2.1). In this context, A = A(0) + ν G, with
A(0) a discrete representation of (−Δ) and G of the identity. Further, C = ν−1C(0),
where C(0) is the proper stabilization term when ν = 1.1 Representing these matrices
in the Fourier basis and splitting them into high and low frequency components then
naturally leads to the representation (3.8) the theorem is based on.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Let ν > 0 and ξ ≥ 0
be real numbers such that

(3.8) Ahigh = ν A
(0)
high + ξ Ghigh and Chigh = ν−1 C

(0)
high

for some Hermitian positive definite matrices A
(0)
high , Ghigh , and Hermitian nonnega-

tive definite matrix C
(0)
high . Let h > 0, β > 0, η > 0, and γ ≥ 0 be real numbers such

1Because the quality of the stabilization depends on the eigenvalue distribution of the Schur
complement [7], it is clear that the stabilization term has to be kept proportional to ν−1.
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that

λmax

(
Chigh +BhighA

(0)
high

−1
B∗

high

)
≤ β,(3.9)

λmax

(
G−1

highA
(0)
high

)
≤ 1

η h2
,(3.10)

λmax

(
C

(0)
high

)
≤ γ.(3.11)

Then, setting, for some positive real number τ ,

(3.12) ω =
τ ν

(
1 + η ξ h2

ν

)
β + γ η ξ h2

ν

,

one has μS < 1 if τ < 2. Moreover, letting

κβ =
β

λmin

(
Chigh +BhighA

(0)
high

−1
B∗

high

) ,(3.13)

κη =
1

η h2 λmin

(
G−1

highA
(0)
high

) ,(3.14)

κγ =

⎧⎪⎪⎨⎪⎪⎩
1 if Chigh = 0,

γ

λmin

(
C

(0)
high

) if Chigh is positive definite,

∞ otherwise,

(3.15)

we obtain

μS ≤ max

⎛⎝τ − 1, 1− τ
1+η

ξ h2

ν

1+κη η
ξ h2

ν

β
κβ

+
γ
κγ

κη η
ξ h2

ν

β+γ η
ξ h2

ν

⎞⎠(3.16)

≤ max

(
τ − 1, 1− τ

max(κβ κη, κγ)

)
.(3.17)

In particular, if ξ = 0,

(3.18) μS ≤ max

(
τ − 1, 1− τ

κβ

)
.

Proof. Reading inequalities in the nonnegative definite sense (Q ≥ R if and only
if Q−R is nonnegative definite), one first checks that

Chigh +BhighA
−1
highB

∗
high = ν−1 C

(0)
high +Bhigh

(
ν A

(0)
high + ξ Ghigh

)−1

B∗
high

(3.19)

≤ ν−1

(
C

(0)
high +Bhigh

(
1 + η ξ h2

ν

)−1

A
(0)
high

−1
B∗

high

)
= ν−1

1+η
ξ h2

ν

(
C

(0)
high +BhighA

(0)
high

−1
B∗

high + η ξ h2

ν C
(0)
high

)
≤ ν−1

1+η
ξ h2

ν

(
β + γ η ξ h2

ν

)
I.
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Hence, with ω given by (3.12), all eigenvalues of ω(Chigh + BhighA
−1
highB

∗
high ) are in

the interval (0, τ), entailing μS < 1 if 0 < τ < 2. Moreover,

μS ≤ max

⎛⎝τ − 1, 1−
τ ν
(
1 + η ξ h2

ν

)
λmin

(
Chigh +BhighA

−1
highB

∗
high

)
β + γ η ξ h2

ν

⎞⎠ ,

whereas, reusing (3.19),

Chigh +BhighA
−1
highB

∗
high ≥ ν−1

(
C

(0)
high + Bhigh

(
1 + κη η

ξ h2

ν

)−1

A
(0)
high

−1
B∗

high

)
= ν−1

1+κη η
ξ h2

ν

(
C

(0)
high +BhighA

(0)
high

−1
B∗

high + κη η
ξ h2

ν C
(0)
high

)
≥ ν−1

1+κη η
ξ h2

ν

(
β
κβ

+ γ
κγ

κη η
ξ h2

ν

)
I.

Then (3.16) and (3.18) follow by considering, respectively, the second and the first
term in the maximum. Eventually, (3.17) follows from (3.16) using

1+η
ξ h2

ν

1+κη η
ξ h2

ν

≥ 1
κη

and

β
κβ

+
γ
κγ

κη η
ξ h2

ν

β+γ η
ξ h2

ν

≥ min
(

1
κβ

,
κη

κγ

)
.

Because of the different quantities involved, the insight gained from this theorem
may seem unclear. How to use the above results is best seen by examples, hence
we primarily refer the reader to the following sections where typical applications are
considered.

A few general remarks can be made. First of all, only estimates of β, γ, and η are
needed to use the rule (3.12) which we suggest for practical implementations; κβ, κη,
and κγ are less critical because their values only influence the bounds on μS and not
the practical usage of the method. Regarding these latter parameters, it is sufficient
to know that they are bounded independently of the mesh size and possibly other
problem parameters, so that the bounds (3.16), (3.17), (3.18) remain significantly
below one.

Equation (3.12) also involves the additional parameter τ , and one would like to use
the optimal value, which does not seem possible having only estimates for β, γ, and η.
In fact, the presentation followed in Theorem 3.2 is motivated by the observation that,
at least in the examples considered, the numerical results obtained following (3.12)
are fairly insensitive to τ (see the next section). We explain this with the bound (3.6)
of Theorem 3.1: as soon as μS ≤ (μA)

1/2, fine tuning to further decrease μS does not
influence the final bound on the smoothing factor. In the next sections, we therefore
mostly display results obtained by fixing τ = 1.4, which we found optimal or close to
optimal in all cases. This value is close to the largest one such that τ − 1 is still below
(μA)

1/2 for common values of this parameter. Thus, in some sense, it minimizes the
second term of the maximum expressions in (3.16), (3.17), (3.18) under the constraint
that the first term remains below (μA)

1/2.
Considering (3.12), it is also clear that only β is needed when ξ = 0, and, more

generally (given that γ ≤ β by virtue of (3.9), (3.11)), for any ξ such that η ξ h2

ν � 1.
When η is smaller than 1, as in all examples discussed below, this in particular holds

when ξ h2

ν � 1; that is, in most common situations.
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Two approaches can be followed to estimate the constants β, η, and γ. If one
performs an LFA for the problem at hand (as we do in the next sections), the matrices
involved in the definitions (3.9), (3.10) and (3.11) are explicitly available, and, in
general, diagonal. Deriving their largest eigenvalues is a straightforward task.

Alternatively, let A(0), G, and C(0) be discrete representations of, respectively,
(−Δ), the identity, and the stabilization term for ν = 1; i.e., the matrices from where

A
(0)
high , Ghigh , and C

(0)
high are derived. Clearly, (3.9), (3.10), (3.11) a fortiori hold if

λmax

(
C(0) +BA(0)−1

BT
)
≤ β,(3.20)

λmax

(
G−1A(0)

)
≤ 1

η h2
,(3.21)

λmax

(
C(0)

)
≤ γ;(3.22)

that is, if the inequalities hold with respect to the complete matrices and not just with
respect to their restrictions to the high frequency components. Hence one may obtain
valid estimates for β, η, and γ by analyzing these latter inequalities instead of (3.9),
(3.10), (3.11). This is attractive if one does not want to perform a full LFA of the
problem: the inequalities (3.20), (3.21), and (3.22) do not depend on whether one uses
the Fourier basis or the matrices from the discretization. This may give some loss of
accuracy and, for instance, using β larger than the smallest value satisfying (3.9) leads
to an underestimation of ω in (3.12). However, in the examples considered below, we
found that this approach gave only minor differences in the problem parameters β, η,
and γ, and hardly any impact on the method’s performance.

Taking this latter viewpoint also allows us to quickly estimate the order of mag-
nitude of the different constants. Here we have to distinguish finite difference and
finite element discretizations.

In the finite difference case, it turns out that β is a constant close to one, whereas,
since G is the identity, (3.21) holds with η = 1/8 in two-dimensional cases (A is five
point Laplacian) and η = 1/12 in three dimensions (A is seven point Laplacian).
The parameter γ is equal to zero when a stable scheme is used, and depends on the
stabilization term otherwise; see section 5 for an example. Note that if γ does not
vanish, it has to be a constant smaller or equal to β (compare (3.9) and (3.11)).

For a finite element method, the analysis in [7, section 5.5] allows us to derive
estimates for the constants β and γ in (3.20) and (3.22). They depend on the finite-
element-type, and also on boundary conditions and the dimension of the problem, but,
as a general rule, both β and γ are equal to a constant close to one times λmax(Q),
where Q is the pressure mass matrix; that is, β and γ are proportional to h2. As, on
the other hand, η in (3.21) is still a constant independent of h, it follows that, in the
finite element context, ω in (3.12) is proportional to h−2, which is somehow counter
intuitive for a “relaxation” parameter. But the numerical results in section 6 clearly
confirm that this rule is the correct one. This is precisely the main outcome of the
theoretical results in this section: they allow us to quickly identify relevant values for
ω, which one could have missed with just an empirical approach.

4. Finite difference discretization on staggered grid.

Two-dimensional case. As a first example discretization, we consider the
marker-and-cell (MAC) finite difference scheme [11]. We assume that Ω is a unit
square region (0, 1) × (0, 1) divided into a uniform grid of cells of size h. The dis-
crete velocities and pressures are distributed in a staggered arrangement. That is, the
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◦: u
•: v

Fig. 1. Staggered grid location of unknowns for Stokes equations.

discrete pressure unknowns p are defined at the cell centers (the ×–points), and the
discrete values of u and v, the components of the velocity vector, are located at the
grid cell faces in the ◦– and •–points, respectively; see Figure 1.

It is well known that the MAC scheme is naturally stable with C = 0; see, for
example, [15]. Hence the matrix of the discrete system is

(4.1) Kh =

(
Ah BT

h

Bh 0

)
.

Notice that Bh is full rank, except that BT
h 1 = 0, but, as discussed at the end of

section 2, this singularity entails no practical difficulty.
In order to solve the linear system, a geometric multigrid method based on the

Uzawa smoother described above can be designed. Regarding the coarse-grid correc-
tion part of the algorithm, in multigrid methods for Cartesian grid discretizations,
one chooses standard geometric grid coarsening, i.e., the sequence of coarse grids is
obtained by doubling the mesh size in each space direction. In this framework, an ap-
propriate coarse-grid correction consists of geometric transfer operators Rh,2h, P2h,h,
and a direct coarse-grid discretization. The intergrid transfer operators that act on
the different unknowns are dictated by the staggered grid. For the Stokes equations,
they are defined as follows: At grid points corresponding to velocity unknowns u and
v, one can consider 6-point restrictions and at grid points associated with pressure
unknowns ph a 4-point cell-centered restriction can be applied. In stencil notation
these restriction operators are given by

Ru
h,2h =

1

8

⎡⎣ 1 2 1
∗

1 2 1

⎤⎦ , Rv
h,2h =

1

8

⎡⎣ 1 1
2 ∗ 2
1 1

⎤⎦ , Rp
h,2h =

1

4

⎡⎣ 1 1
∗

1 1

⎤⎦ ,

respectively. For the prolongation of the corrections, we have applied the correspond-
ing adjoint operators multiplied by a factor of 4.

To apply the results of the preceding section, we need to set up the framework
of LFA analysis. In this context, we define an extension of the staggered grid to an
infinite grid Gh = G1

h ∪G2
h ∪G3

h, where

Gj
h := {xj

k1,k2
= (k1, k2)h+ δj | k1, k2 ∈ Z} with δj =

⎧⎨⎩
(0, h/2) if j = 1,
(h/2, 0) if j = 2,
(h/2, h/2) if j = 3.

The velocity unknowns u, and v, are located at points x1
k1,k2

∈ G1
h and x2

k1,k2
∈ G2

h,

respectively, whereas pressure unknowns are situated at nodes x3
k1,k2

∈ G3
h. From the
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definition of the occurring operators on Gh, the discrete solution, its current approx-
imation, and the corresponding error or residual can be represented by formal linear
combinations of complex exponential functions, the Fourier modes. These functions
form a unitary basis of the space of bounded infinite grid functions, and in Gh they
are given by

ϕh(θ,xk1,k2) :=

⎛⎜⎝ eıθ·x
1
k1,k2

/h

eıθ·x
2
k1,k2

/h

eıθ·x
3
k1,k2

/h

⎞⎟⎠ ,

where θ ∈ Θ := (−π, π]2, xk1,k2 = (x1
k1,k2

,x2
k1,k2

,x3
k1,k2

), xj
k1,k2

∈ Gj
h. In this way,

the Fourier space is defined by

F(Gh) := span{ϕh(θ, ·) | θ ∈ Θ},

and the behavior of the multigrid components can be analyzed by evaluating their
effect on the Fourier modes. The subset of low frequencies is defined as Θ2h

low =
(−π/2, π/2]2, and the subset of high frequencies is Θ\Θ2h

low . In the transition from
Gh to G2h, each low frequency θ = θ00 ∈ Θ2h

low is coupled with three high frequencies
θ11, θ10, θ01, given by

θij = θ00 − (i sign(θ1), j sign(θ2))π, i, j = 0, 1.

Because of this, the Fourier space can be subdivided into the corresponding four-
dimensional subspaces, known as 2h-harmonics:

F2h(θ) :=
{
ϕh(θ

00, ·),ϕh(θ
11, ·),ϕh(θ

10, ·),ϕh(θ
01, ·)

}
with θ = θ00 ∈ Θ2h

low .

The two-grid iteration matrix reads

Mh,2h = Sν2
h (Ih − P2h,h(K2h)

−1Rh,2hLh)S
ν1
h ,

where Sh = I−M−1
h Kh is the iteration matrix associated with the smoother, and ν1,

ν2 are, respectively, the number of presmoothing and postsmoothing steps. The LFA
two-grid convergence factor

(4.2) ρ = ρ (Mh,2h)

is easily computed because Mh,2h is block diagonal with respect to the partitioning in
2h-harmonics; that is, only four coupled frequencies have to be considered at a time.

Often this convergence factor is well approximated by μν1+ν2 , where μ is the
smoothing factor already introduced in the preceding section, which can also be de-
fined as

μ = sup
Θ\Θ2h

low

ρ (Sh(θ)) .

We now discuss the application of Theorems 3.1 and 3.2 to bound μ by selecting
the parameter ω in the Uzawa smoother on a sensible basis. 2 It is well known that

2The theorems are proved for finite-dimensional matrices only. However, if LFA matrices are
infinite dimensional, they are block diagonal with respect to the partitioning in 2h-harmonics, and
one may check that applying the theorems separately to each diagonal block yields the same result
as a formal extension of these theorems to the infinite-dimensional case.
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Table 1

MAC scheme for the two-dimensional problem: LFA smoothing factor μ together with its the-
oretical bound μ provided in (3.6), as a function of the parameter ω given in (3.12) for τ ∈ [1, 1.6].

ξ τ = 1 τ = 1.1 τ = 1.2 τ = 1.3 τ = 1.4 τ = 1.5 τ = 1.6
ω 1 1.1 1.2 1.3 1.4 1.5 1.6

0 μ 0.5 0.5 0.5 0.5 0.5 0.5 0.6
μ 0.5 0.5 0.5 0.5 0.5 0.5 0.6
ω 1.19 1.30 1.42 1.54 1.66 1.78 1.90

105 μ 0.36 0.36 0.36 0.36 0.36 0.36 0.42
μ 0.36 0.36 0.36 0.36 0.36 0.36 0.42

the smoothing factor of the symmetric Gauss–Seidel method for the standard 5-point
discretization of Laplace operator is μA = 0.25 [16]. Further, for the MAC scheme, β
and κβ in (3.9), (3.13) are equal to one. Hence, assuming that the parameter ω has
been selected according to (3.12), one has, for ξ = 0,

μ = max (0.5, τ − 1) .

This implies that if τ ≤ 1.5, the upper bound on the smoothing factor is determined
by the smoother for velocities, whereas, if τ > 1.5, it corresponds to the smoothing
factor associated with Richardson iterations for the Schur complement.

For ξ > 0, since

λmin

(
A

(0)
high

)
≥ 2

h2
, λmax

(
A

(0)
high

)
≤ 8

h2
,

it follows that η = 1/8 in formula (3.10), and κη = 4 in (3.14), so that (because C = 0,
γ = 0, and, therefore, κγ is not important)

(4.3) μS ≤ max

(
τ − 1, 1− τ

8ν + ξh2

8ν + 4ξh2

)
.

Notice that μA decreases with increasing ξ and becomes small when ξ is fairly large;
then, our bound μ on μ amounts to the above value of μS .

To illustrate this numerically, we fix h−1 = 256 and ν = 1 (observe that only the
ratio ξ/ν matters), and consider two values of ξ, whereas the parameter τ is varied in
the interval [1, 1.6]. In Table 1, the parameter ω given by (3.12), and the theoretical
bound of the smoothing factor μ provided by (3.6), together with the exact LFA
smoothing factor μ are shown.

Our bound μ accurately matches the actual smoothing factor μ. Regarding the
choice of parameter τ, any value τ ∈ [1, 1.5] seems appropriate. From now on, we fix
the value τ = 1.4. This choice is based on the robustness of the resulting method for
all cases analyzed in this work, including the different discretization schemes.

With parameter τ fixed, we analyze the behavior of the proposed smoother (3.1)
based on symmetric Gauss–Seidel (SGS) relaxation for MA, and compare its perfor-
mance with variants where MA is based on a standard (forward) Gauss–Seidel (GS)
method; with two sweeps, this corresponds to the method suggested in [13], which
has roughly the same cost, whereas one sweep represents a cheaper alternative. In
Table 2, for different values of ξ and different numbers of smoothing steps, we present
the smoothing factor and the LFA two-grid convergence factor (4.2), using ω as in
(3.12) with τ = 1.4. Results are displayed for h−1 = 256 and h−1 = 1024. The
method suggested in this work is significantly better than the method in [13], except
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Table 2

MAC scheme for the two-dimensional problem: results using the rule (3.12) with τ = 1.4; 1
(resp., 2) sw. stands for 1 (resp., 2) GS sweep(s) for velocities in each smoothing step; 2 sw. is the
strategy in [13].

h−1 = 256 h−1 = 1024

SGS for MA GS for MA SGS for MA GS for MA

2 sw. 1 sw. 2 sw. 1 sw.
ξ ω μν1+ν2 ρ ρ ρ ω μν1+ν2 ρ ρ ρ

ν1 + ν2 = 1
0 1.40 0.50 0.44 0.87 1.42 1.40 0.50 0.44 0.87 1.42

100 1.40 0.50 0.44 0.87 1.42 1.40 0.50 0.44 0.87 1.42
105 1.66 0.36 0.80 0.80 1.24 1.41 0.48 0.43 0.84 1.42

ν1 + ν2 = 4
0 1.40 0.06 0.08 0.71 4.16 1.40 0.06 0.08 0.72 4.16

100 1.40 0.06 0.08 0.71 4.16 1.40 0.06 0.08 0.72 4.16
105 1.66 0.01 0.04 0.18 2.40 1.41 0.05 0.07 0.65 4.00

Table 3

MAC scheme for the two-dimensional problem: number of iterations and average convergence
factor for different numbers of smoothing steps.

Cycle(ν1, ν2) ξ = 0 ξ = 105

Uzawa Vanka Uzawa Vanka
#it. (ρ) #it. (ρ) #it. (ρ) #it. (ρ)

V(1,0) - (-) 57 (0.75) - - - -
V(0,1) - (-) 45 (0.65) - - - -
W(1,0) 27 (0.45) 26 (0.45) 35 (0.53) 22 (0.40)

V(2,0) 37 (0.57) 30 (0.48) - - 130 (0.86)
V(1,1) 51 (0.76) 31 (0.62) - - 88 (0.84)
V(0,2) 21 (0.33) 20 (0.36) 58 (0.71) 115 (0.86)
W(1,1) 17 (0.29) 15 (0.24) 13 (0.22) 11 (0.15)

W(2,1) 11 (0.14) 11 (0.16) 9 (0.10) 8 (0.08)

V(4,0) 17 (0.27) 19 (0.35) 16 (0.28) 12 (0.09)
V(2,2) 22 (0.49) 16 (0.31) 12 (0.27) 8 (0.09)
V(0,4) 12 (0.15) 13 (0.15) 12 (0.15) 10 (0.10)
W(2,2) 8 (0.07) 10 (0.13) 8 (0.06) 7 (0.04)

in one case where both perform similarly. Moreover, just one forward sweep on ve-
locities does not lead to a convergent method. Observe further that the convergence
factors associated with the proposed approach are uniformly very small when using
four smoothing steps,.

We also consider the performance of multigrid cycles on finite grids. For simplicity,
Dirichlet boundary conditions for the velocities are assumed (as well as in the rest of
the presented numerical experiments). We compare the Uzawa smoother as defined in
this work with a state-of-the-art Vanka smoother [18]. Vanka smoothers are block GS
methods where one block consists of a small number of degrees of freedom. For the
MAC scheme, the pressure and the velocities in the x- and y-directions in a grid cell
are simultaneously updated, resulting in 5×5 blocks. A relaxation parameter w = 0.7
has been used in the implementation of the Vanka smoother for improving its results.
In Table 3, for V- and W-cycles and different numbers of smoothing steps, we present
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Table 4

MAC scheme for the three-dimensional problem: LFA smoothing factor μ together with the two-
grid convergence factor ρ predicted by the LFA and the W-cycle asymptotic convergence factor ρh.

ν1 + ν2 1 2 3 4

μν1+ν2 0.56 0.32 0.18 0.10
ρ 0.54 0.29 0.16 0.08
ρh 0.51 0.28 0.15 0.08

the number of multigrid iterations needed to reduce the residual by a factor of 10−10

in norm, on a grid with h−1 = 256, together with the average convergence factor (in
parentheses). Since the convergence provided by W-cycles does not depend on how
the smoothing steps are distributed, we only present results for one of the possible
configurations. For both smoothers, sufficiently large numbers of smoothing steps are
required to obtain satisfactory V-cycle results, and only postsmoothing appears the
best choice. The W-cycle appears faster and also more robust, converging already with
one smoothing step. Regarding the comparison of both methods, the Vanka smoother
appears slightly more robust when selecting V-cycles with only presmoothing. But
if one focuses on the most efficient options, the multigrid performance is similar for
both smoothers; that is, it does not pay off to incur the additional computational
costs induced by the Vanka smoother.

Three-dimensional case. We consider the MAC discretization of (2.1) on the
unit cube (Ω = (0, 1)3), with a uniform grid consisting of cells of size h. Similarly
to the corresponding two-dimensional scheme, the pressure unknowns are located at
the cell centers whereas the three components of the velocity are situated at the face
centers. Here we consider only the Stokes case, that is, ξ = 0.

For the solution of the corresponding linear system, we use a three-dimensional
geometric multigrid method based on the Uzawa smoother, and direct coarse grid
discretization. The restriction operators are dictated by the staggered location of the
unknowns. We employ 12-point restrictions for the components of the velocity and
an 8-point cell-centered restriction for the pressure. The prolongation operators are
the corresponding adjoint operators.

The smoothing factor of the SGS method for the standard 7-point discretization of
the Laplace operator is μA = 0.3215. Moreover, the MAC scheme is naturally stable,
implying C = 0 in (2.2), and β and κβ are equal to one. Hence, taking again τ = 1.4
and selecting parameter ω according to (3.12) (i.e., ω = τ = 1.4), we obtain μS ≤ 0.4
and, therefore, μ ≤ μ̄ =

√
μA = 0.567. This turns out to be practically equal to the

computed smoothing factor μ. In Table 4, we further compare this latter with two-
grid convergence factors ρ predicted by LFA and the asymptotic convergence factor
ρh obtained on a grid with h−1 = 64, using a W-cycle. As in the two-dimensional
case, our theory appears relevant and the resulting method is efficient.

5. Finite difference discretization on collocated grid.

Two-dimensional case. The second example of discretization is a standard
finite difference discretization on a collocated grid; i.e., all unknowns are located at the
vertices of grid cells, which makes the discretization somewhat easier but induces the
presence of spurious pressure modes with zero discrete divergence. To rule out these
modes, the continuity equation is perturbed by adding an artificial elliptic pressure
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term. The matrix of the discrete system is then

(5.1) K =

(
A BT

B −C

)
,

where C = −αh2Δh is a scaled discrete Laplacian (with Neumann boundary condi-
tions) acting on pressure unknowns. As this term is proportional to h2, second order
accuracy is maintained when all terms in the system are discretized with second order
accuracy. Notice that K is singular because BT1 = 0 and C1 = 0; this singularity
is managed as discussed at the end of section 2 and therefore entails no practical
difficulty.

For parameter α a well-balanced choice needs to be made. It should be chosen
sufficiently small to maintain accuracy but at the same time sufficiently large to
guarantee stable solutions; here we use α = 1/16 , which appears to be a reasonable
choice in practice [12].

To solve the resulting system of algebraic equations, a geometric multigrid with
standard coarse-grid correction components is adopted. Standard, h–2h, grid coarsen-
ing is employed and the intergrid transfer operators are full-weighting restriction and
bilinear interpolation. We analyze whether the proposed Uzawa smoother also gives
satisfactory results for this type of collocated grid discretization. Basic local Fourier
analysis [21] accompanies the numerical experiments, based on an infinite collocated
grid Gh. Fourier modes are three-component vectors whose elements are identical to
the scalar Fourier components ϕh(θ,x) = eıθx/h.

To define ω with the rule (3.12), we need information about the parameter β
in (3.9), and, when ξ > 0, also on η and γ in (3.10), (3.11). After some algebraic
calculations, (3.9) is satisfied with β = 0.775. For the 5-point finite difference scheme,
we have η = 1/8 as in the preceding section, whereas, due to the simple form of the
stabilization term, it is easy to derive that γ = 1/2. Since we deal with the same
5-point discretization of the Laplacian, the smoothing factor of the symmetric GS
method remains μA = 0.25 when ξ = 0 and is smaller for increasing ξ. Because κβ

is larger than 1 in this example, it follows that, when using τ = 1.4, the dominating
term in our upper bound μ is always μS ; i.e., (3.6) amounts to μ ≤ μ = μS . In Table
5, for different values of ξ and different numbers of smoothing steps, we present the

Table 5

Finite difference discretization on collocated grids for the two-dimensional problem: results
using the rule (3.12) with τ = 1.4; 1 (resp., 2) sw. stands for 1 (resp., 2) GS sweep(s) for velocities
in each smoothing step; 2 sw. is the strategy in [13].

h−1 = 256 h−1 = 1024

SGS for MA GS for MA SGS for MA GS for MA

2 sw. 1 sw. 2 sw. 1 sw.
ξ ω μν1+ν2 ρ ρ ρ ω μν1+ν2 ρ ρ ρ

ν1 + ν2 = 1
0 1.80 0.53 0.53 0.80 0.86 1.80 0.53 0.53 0.80 0.86

100 1.80 0.53 0.53 0.80 0.86 1.80 0.53 0.53 0.80 0.86
105 1.91 0.51 0.51 0.51 0.66 1.81 0.53 0.53 0.77 0.85

ν1 + ν2 = 4
0 1.80 0.08 0.10 0.61 0.79 1.80 0.08 0.10 0.61 0.79

100 1.80 0.08 0.10 0.61 0.79 1.80 0.08 0.10 0.61 0.79
105 1.91 0.06 0.16 0.16 0.25 1.81 0.08 0.09 0.52 0.73
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smoothing factor and the LFA two-grid convergence factor for the proposed smoother.
As in the previous section, we compare with the same Uzawa smoother but with
standard GS instead of SGS for MA. Similar conclusions apply. The method proposed
here exhibits significantly better convergence results than the method in [13], except
for very large values of ξ, for which both perform similarly for h−1 = 256.

As discussed at the end of section 3, it may be easier or more general to define
ω based on β from (3.20) instead of (3.9). In the present case, this would lead to a
slightly larger value, namely, β = 1 instead of β = 0.775 considered above. Using as
usual τ = 1.4, this yields, e.g., ω = 1.40 when ξ = 0, and the two-grid convergence
factor equals 0.17 for h−1 = 256 and ν1 + ν2 = 4. Hence there is no significant
difference with ω induced by β = 0.775. Similar conclusions are obtained for other
values of ξ and h, suggesting that one may indeed define ω with β from (3.20) without
significant loss of performance.

Three-dimensional case. Here we consider the Stokes case (2.1) with ξ = 0. As
in the two-dimensional case, we use a stabilization term C = −αh2Δh with α = 1/16.
The multigrid components for the solution of the linear system are the well-known
vertex-centered coarse-grid correction operators.

Regarding the proposed Uzawa smoother, (3.12) amounts here to ω = τ/β. Since
β = 0.887, using τ = 1.4 yields ω = 1.58. Further, calculation shows that κβ = 3.52,
and therefore the bound (3.18) is μS ≤ 0.60. This is larger than (μA)

1/2 = 0.567,
hence the bound (3.6) on the smoothing factor is μ = 0.60. Here again, numerical
computation reveals that this is an accurate prediction of the actual smoothing factor,
whereas the two-grid convergence factor predicted by LFA (for one smoothing step) is
also ρ = 0.60. Finally, further computation shows that the convergence factors asso-
ciated with the W-cycle also accurately match this LFA two-grid convergence factor.

6. Linear finite element discretization on triangular grid. The third ex-
ample of discretization deals with a linear finite element formulation of problem (2.1)
on an equilateral structured triangular mesh. We thus consider the weak formulation
of (2.1).

Find (u, p) ∈ U ×Q, such that

ξ(u,v) + ν(∇u,∇v) − (p,∇ · v) = (f ,v) ∀v ∈ U ,(6.1)

(∇ · u, q) = 0 ∀q ∈ Q,(6.2)

where (·, ·) denotes the L2 scalar product, Ω is a bounded domain in R
2, U =

(H1
0 (Ω))

2, and Q = L2
0(Ω) = {q ∈ L2(Ω) |

∫
Ω
qdx = 0}, i.e., L2(Ω) functions which

only differ by a constant are not distinguished.
Let Th be an equilateral structured triangulation of Ω, and Uh ⊂ (H1

0 (Ω))
2, and

Qh ⊂ L2
0(Ω) be the corresponding spaces of piecewise linear functions on Th. Since

the pair (Uh,Qh) provides an unstable finite element scheme, similarly to the case of
finite differences on a collocated grid, we must add an additional term to the discrete
equations for stabilization. To this end, we consider the bilinear form on Qh × Qh

defined by

c(ph, qh) =
∑
T∈Th

h2

∫
T

∇ph∇qhdx,

where h denotes grid size (i.e., the length of the edge on T ). The stabilized discrete
formulation of the Stokes problem in its weak form reads as follows.
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Table 6

P1-P1 scheme for equilateral triangular grids: results using the rule (3.12) with τ = 1.4; 1
(resp., 2) sw. stands for 1 (resp., 2) GS sweep(s) for velocities in each smoothing step; 2 sw. is the
strategy in [13].

h−1 = 256 h−1 = 1024

SGS for MA GS for MA SGS for MA GS for MA

2 sw. 1 sw. 2 sw. 1 sw.
ξ ω μν1+ν2 ρ ρ ρ ω μν1+ν2 ρ ρ ρ

ν1 + ν2 = 1
0 2.06/h2 0.33 0.66 0.72 0.58 2.06/h2 0.33 0.66 0.72 0.58

100 2.06/h2 0.33 0.66 0.72 0.58 2.06/h2 0.33 0.66 0.72 0.58
105 2.10/h2 0.24 0.44 0.48 0.44 2.06/h2 0.32 0.65 0.70 0.58

ν1 + ν2 = 4
0 2.06/h2 0.01 0.10 0.27 0.43 2.06/h2 0.01 0.10 0.27 0.43

100 2.06/h2 0.01 0.10 0.27 0.43 2.06/h2 0.01 0.10 0.27 0.43
105 2.10/h2 0.003 0.19 0.19 0.19 2.06/h2 0.01 0.08 0.23 0.40

Find (uh, ph) ∈ Uh ×Qh, such that

ξ(uh,vh) + ν(∇uh,∇vh)− (ph,∇ · vh) = (f ,vh) ∀vh ∈ Uh,(6.3)

(∇ · uh, qh) + ᾱc(ph, qh) = 0 ∀qh ∈ Qh,(6.4)

where the term ᾱc(ph, qh) refers to the stabilization of the problem, and ᾱ > 0 is a
given parameter. The choice ᾱ = 1/12 appears to be optimal for linear elements [6],
so it is used here as well.

The discrete problem obtained gives rise to a saddle point problem like (5.1). A
geometric multigrid method based on the proposed Uzawa smoother is employed to
solve the discrete equations. The hierarchy of grids is obtained by a regular refinement,
dividing the triangular domain into four congruent triangles, connecting the midpoints
of their edges, and so forth until the mesh has the desired scale. The intergrid transfer
operators are the canonical operators related to linear finite elements over triangles,
i.e., the 7-point prolongation and its adjoint as the restriction [10].

LFA is typically applied to discretizations on rectangular grids; however, in [8]
LFA was extended to discretizations on nonrectangular grids, in particular, to trian-
gular grids. The key to this generalization was a two-dimensional Fourier transform
using coordinates in nonorthogonal bases. A unitary basis fitting the structure of
the grid is considered as the spatial basis, and its reciprocal basis is considered for
the frequency space. This way, a discrete Fourier transform for discrete functions
defined on nonrectangular grids can be defined and LFA on nonrectangular grids can
be performed as on rectangular grids.

We first apply Theorem 3.2 to the finite element method structured equilateral
triangular grid discretization. The smoothing factor of the SGS method for this
discretization of the Laplacian is μA = 0.173. Further, we find η = 1/24 and γ =√
3h2/4. Finally, (3.9) is satisfied with β = 0.68 h2.
With the help of the triangular LFA, the convergence behavior of multigrid based

on the Uzawa smoother is analyzed for different values of ξ and different numbers
of smoothing steps. Its performance is compared to the Uzawa smoother resulting
from standard GS relaxation for MA and the approach in [13]. These comparisons are
presented in Table 6, where for different numbers of smoothing steps and different val-
ues of ξ the two-grid convergence factors computed by LFA are shown, together with
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Table 7

Linear finite element method for the two-dimensional problem: number of iterations and asymp-
totic convergence factor for the W-cycle, with different numbers of smoothing steps.

ξ = 0
Uzawa Vanka

(ν1 + ν2) #it. (ρ) #it. (ρ)

1 41 (0.63) 21 (0.38)
2 14 (0.22) 10 (0.14)
3 10 (0.13) 8 (0.08)
4 9 (0.10) 7 (0.06)

the parameter ω given by the theory, as well as the corresponding smoothing factor.
The results are displayed for h−1 = 256 and h−1 = 1024. For small ξ-values the pro-
posed approach is superior to the other two multigrid strategies, when more than one
smoothing step is considered. In the case of large ξ, the performance is comparable.

As in previous numerical sections, we are interested in the numerical convergence
of the multigrid cycles. Moreover, we compare the behavior of the proposed strategy
with multigrid based on a suitable Vanka smoother. It simultaneously updates, for
each grid point, the corresponding pressure unknown and the twelve unknowns associ-
ated with the velocities located at the six points around it, resulting in 13×13 systems
that are updated during the processing of a vertex of the triangulation. A relaxation
parameter w = 0.7 has been chosen for improving the smoothing properties of the
Vanka smoother. In Table 7, the number of iterations to reduce the initial residual by
a factor of 10−10 is shown, together with the asymptotic convergence factor in paren-
theses. The results are displayed for W-cycles with different numbers of smoothing
steps, for ξ = 0. The convergence of the Uzawa-based multigrid method is comparable
to the performance with Vanka smoothers, that are, however, more expensive.

7. Conclusions. An Uzawa smoothing method for the multigrid solution of the
generalized Stokes system has been introduced, discussed, and analyzed. It involves
some parameter ω, and detailed LFA smoothing analysis resulted in a formula to
determine it appropriately. The resulting multigrid method appears efficient for stag-
gered and collocated finite difference discretizations, as well as for a finite element
discretization. It also compares favorably with Vanka smoother-based multigrid.

As for any study based on LFA, our analysis is restricted to constant coefficient
problems. Regarding situations where, as in [9], the viscosity ν (strongly) varies
inside the domain, we further observe that our rule (3.12) to define the parameter
ω cannot be used anymore without ambiguity, as it sets ω proportional to ν. A
straightforward adaptation would then consist in letting this parameter be variable
as well, to keep it proportional to ν. In practice, it amounts to applying a “local”
value of ω according to the “local” value of ν when relaxing the pressure unknowns as
indicated in the pseudoalgorithm in section 3. Such generalization deserves, however,
further investigations that are outside the scope of the present paper.
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