# A THEOREM OF TRUEMPER* 

MICHELE CONFORTI, BERT GERARDS, and AJAI KAPOOR

Received November 5, 1997

An important theorem due to Truemper characterizes the graphs whose edges can be labeled so that all chordless cycles have prescribed parities. This theorem has proven to be an essential tool in the study of various objects like balanced matrices, graphs with no even length chordless cycle and graphs with no odd length chordless cycle with at least five edges. In this paper we prove this theorem in a novel and elementary way and derive some of its consequences. In particular, we show an easy way to obtain Tutte's characterization of regular matrices.

## 1. Truemper's theorem

Let $\beta$ be a 0,1 vector indexed by the chordless cycles of an undirected graph $G=(V, E)$. In this paper, we consider the following system of linear equations over $G F(2)$ :
(1) $l(C)=\beta_{C} \bmod 2$ for every chordless cycle $C$ of $G$,
where $l(C):=\sum_{e \in E(C)} l(e)$. A 0,1 labeling $l$ of the edges of $G$ satisfying (1) is called a $\beta$-balancing of $G$. If $G$ admits a $\beta$-balancing it is called $\beta$-balanceable.

We denote by $\beta^{H}$ the restriction of the vector $\beta$ to the chordless cycles of an induced subgraph $H$ of $G$. In [14], Truemper showed the following theorem:

[^0]Theorem 1.1. A graph $G$ is $\beta$-balanceable if and only if every induced subgraph $H$ that is a 3-path configuration or a wheel (Figure 1.) is $\beta^{H_{-}}$ balanceable.


Fig. 1. 3-path configurations and a wheel

There are three types of 3-path configurations (3PC's): a $3 P C(x, y)$, where node $x$ and node $y$ are connected by three internally disjoint paths $P_{1}, P_{2}$ and $P_{3} ;$ a $3 P C(x y z, u)$, where $x y z$ is a triangle and $P_{1}, P_{2}$ and $P_{3}$ are three internally disjoint paths with endnodes $x, y$ and $z$ respectively and a common endnode $u$; and a $3 P C(x y z, u v w)$, which consists of two node disjoint triangles $x y z$ and $u v w$ and three disjoint paths $P_{1}, P_{2}$ and $P_{3}$ with endnodes $x$ and $u, y$ and $v$, and $z$ and $w$ respectively. In all three cases the nodes of $P_{i} \cup P_{j}, i \neq j$, must induce a chordless cycle. This implies that all paths $P_{1}, P_{2}, P_{3}$ of a $3 P C(x, y)$ have length greater than one. A wheel is a graph $(C, x)$ consisting of a chordless cycle $C$ and a node $x \notin V(C)$ that has at least three neighbors on $C$. We call $C$ the rim and $x$ the center of the wheel $(C, x)$. Note that a $3 P C(x y z, u)$ may also be a wheel.

From standard linear algebra it follows that the system of linear equations (1) is infeasible if and only if
(2) $G$ contains chordless cycles $C_{1}, \ldots, C_{k}$ such that $C_{1} \Delta \cdots \Delta C_{k}=\emptyset$ and $\beta_{C_{1}}+\cdots+\beta_{C_{k}}=1 \bmod 2$.

So, (2) provides a co-NP characterization of $\beta$-balanceability of $G$. Theorem 1.1 states that the chordless cycles of $G$ satisfying (2) can be chosen so that their support graph is a 3-path configuration or a wheel, which substantially sharpens (2).

In this paper, we give an alternative simple proof of Theorem 1.1 and we highlight its importance by deriving some well known theorems, such as Tutte's characterization of regular matrices, the characterization of balanceable matrices, and of even, odd and universally signable graphs.

A derivation of Tutte's characterization of regular matroids from Theorem 1.1 has already been given by Truemper in [13]. In fact, in [14], he derived from Theorem 1.1 Reid's characterization of ternary matroids [1], [11], which generalizes Tutte's result. Our derivation of Tutte's result is more direct. Truemper's theorem also played a role in the proof of another extension of Tutte's result, namely Geelen's characterization of the symmetric $0, \pm 1$ matrices in which all principal submatrices have $0, \pm 1$ determinants [9].

Our proof of Theorem 1.1 is divided into two parts. First we derive two graph-theoretic lemmas on the occurrence of 3-path configurations and wheels. Next these results are used in the second part of the proof, which is more explicitly concerned with the linear algebra involved in solving the linear system (1). Throughout the paper, $N(v)$ will denote the set of neighbors of node $v$.

Lemma 1.1. Let $C$ be a chordless cycle of $G$ with $G \neq C$ such that $V(C)$ contains no $K_{2}$ cutset of $G$. Then $C$ is contained in a 3-path configuration or a wheel in $G$.

Proof. Let $G$ and $C$ form a counterexample. First assume that $C$ is not a triangle. Choose two nonadjacent nodes $u^{*}$ and $w^{*}$ in $C$ and a $u^{*} w^{*}$-path $P=u^{*}, u, \ldots, w, w^{*}$ whose intermediate nodes and edges are $G \backslash V(C)$ such that $P$ is as short as possible. The existence of such a pair of nodes $u^{*}$ and $w^{*}$ follows because $G \neq C$ and $V(C)$ contains no $K_{2}$ cutset. As $C$ is not contained in a 3-path configuration or a wheel, $u$ and $v$ are distinct. For the same reason, both $U:=N(u) \cap V(C)$ and $W:=N(w) \cap V(C)$ consist of a single node or two adjacent nodes.

Let $Y$ be the set of nodes in $C$ that have a neighbor in $V(P) \backslash\left\{u^{*}, u, w, w{ }^{*}\right\}$. $Y$ is nonempty as otherwise $P \cup C$ induces a 3 -path configuration (if $U \cap W=()$ or a wheel (if $U \cap W \neq \emptyset$ ). By the minimality of $P$, the nodes of $Y \cup U$ are pairwise adjacent. Hence, $|Y \cup U| \leq 2$. So, as $u^{*} \nsubseteq Y$, we have that $|Y|=|U \backslash Y|=1$ and, by symmetry, also $|W \backslash Y|=1$. But then $C \cup P$ induces a wheel with the single node in $Y$ as its center, a contradiction.

So $C=c_{1}, c_{2}, c_{3}$ is a triangle. As $G \neq C$ and as $\left\{c_{1}, c_{2}\right\}$ and $\left\{c_{1}, c_{3}\right\}$ are no cutsets of $G$, the edge $c_{2} c_{3}$ is not an edge cutset of $G \backslash\left\{c_{1}\right\}$. Hence, there exists a chordless cycle $C^{\prime}$ in $G \backslash\left\{c_{1}\right\}$ containing $c_{2} c_{3}$. As $\left\{c_{2}, c_{3}\right\}$ is not a $K_{2}$ cutset, there exists for each such $C^{\prime \prime}$ a $c_{1} x$-path $Q$ in $G \backslash V\left(C^{\prime \prime}\right)$ such that $x$
is adjacent to a node in $V\left(C_{1}\right) \backslash\left\{c_{2}, c_{3}\right\}$. Now select $C^{\prime}$ and $Q$ such that $Q$ is as short as possible. As $C \cup C^{\prime}$ is not a wheel, $N\left(c_{1}\right) \cap V\left(C^{\prime}\right)=\left\{c_{2}, c_{3}\right\}$; in particular, $x \neq c_{1}$. By the minimality of $Q, x$ has at most two neighbors in $C^{\prime}$ and if it has two, they are adjacent. There exists a $y \in V(Q) \backslash\left\{c_{1}\right\}$ adjacent to $c_{2}$ or $c_{3}$, because otherwise $C \cup C^{\prime} \cup Q$ would be a 3-path configuration or, in case $x$ is adjacent to $c_{2}$ or $c_{3}$, a wheel. Choose such $y$ closest to $c_{1}$ in $Q$ and assume that $y$ is adjacent to $c_{2}$. Any $c_{1} c_{3}$-path with nodes in $\left(V(Q) \cup V\left(C^{\prime}\right)\right) \backslash\left\{c_{2}\right\}$ and not using edge $c_{1} c_{3}$ contains $y$, so a shortest such path induces with $C$ a wheel with center $c_{2}$, a contradiction.

For $e \in E(G), G^{e}$ denotes the graph whose node set represents the chordless cycles of $G$ containing $e$ and whose edges are the pairs $C_{1}, C_{2}$ in $V\left(G^{e}\right)$ for which there exists a 3 -path configuration or a wheel containing both $C_{1}$ and $C_{2}$.

Lemma 1.2. If $e=u v$ is not a $K_{2}$ cutset of $G, G^{e}$ is connected.
Proof. Assume not. Choose two chordless cycles $C_{1}$ and $C_{2}$ of $G$ in different components of $G^{e}$ with the distance $d\left(C_{1}, C_{2}\right)$ of $V\left(C_{1}\right) \backslash\{u, v\}$ and $V\left(C_{2}\right) \backslash$ $\{u, v\}$ in $G \backslash\{u, v\}$ minimal and, subject to this, $\left|V\left(C_{1}\right) \cup V\left(C_{2}\right)\right|$ minimal. Choose an st-path $P$ in $C_{1} \backslash\{e\}$ with $V(P) \cap V\left(C_{2}\right)=\{s, t\}$. Let $Q$ be the st-path in $C_{2}$ through $e$.

We first prove $P \cup Q=C_{1}$. If not, both $V\left(C_{1}\right) \cup V(P) \cup V(Q)$ and $V\left(C_{2}\right) \cup$ $V(P) \cup V(Q)$ are properly contained in $V\left(C_{1}\right) \cup V\left(C_{2}\right)$. Let $C$ be a chordless cycle through $e$ with nodes in $V(P) \cup V(Q)$. Then $C \neq C_{1}, C \neq C_{2}, d\left(C_{1}, C\right)=$ $d\left(C, C_{2}\right)=0$, and $\left|V(C) \cup V\left(C_{2}\right)\right|$ and $\left|V\left(C_{1}\right) \cup V(C)\right|$ are both smaller than $\left|V\left(C_{1}\right) \cup V\left(C_{2}\right)\right|$. Now $C$ and $C_{2}$ or $C_{1}$ and $C$ contradict the choice of $C_{1}$ and $C_{2}$. So $P \cup Q=C_{1}$.

Let $T$ be a shortest path from $V\left(C_{1}\right) \backslash\{u, v\}$ to $V\left(C_{2}\right) \backslash\{u, v\}$ in $G \backslash\{u, v\}$. (Note that, $T$ may be a single node in $V\left(C_{1}\right) \cap V\left(C_{2}\right) \backslash\{u, v\}$.) $C_{1}$ contains no $K_{2}$ cutset of the graph $G^{\prime}$ induced by $C_{1}, C_{2}$ and $T$. Hence by Lemma 1.1, $G^{\prime}$ contains a chordless cycle $\tilde{C}_{1}$ adjacent to $C_{1}$ in $G^{e} . V\left(\tilde{C}_{1}\right) \backslash V\left(C_{1}\right)$ is obviously nonempty, so by the choice of $C_{1}$ and $C_{2}, d\left(C_{1}, C_{2}\right)=d\left(\tilde{C}_{1}, C_{2}\right)=0$. As $P \cup Q=C_{1}$, all intermediate nodes of $Q$ have degree 2 in $G^{\prime}$, so $\tilde{C}_{1}$ contains Q. As $\tilde{C}_{1} \neq C_{1}, V\left(\tilde{C}_{1}\right) \cup V\left(C_{2}\right)$ is properly contained in $V\left(C_{1}\right) \cup V\left(C_{2}\right)$, contradicting the choice of $C_{1}$ and $C_{2}$.

The rest of the proof of Theorem 1.1 is mainly algebraic, concerning the solvability of the linear system (1). For this we need two easy facts from the linear algebra over $G F(2)$ of circuits and cuts in a graph. By $\chi_{\delta(U)}$ we will denote the characteristic vector of the subset $\delta(U)$ of $E(G)$ consisting of the edges leaving node set $U \subseteq V(G)$.

Lemma 1.3. If $l$ is a $\beta$-balancing and $l^{\prime}$ a 0,1 labeling of the edges of $G$, then $l^{\prime}$ is a $\beta$-balancing of $G$ if and only if $l^{\prime}=l+\chi_{\delta(U)} \bmod 2$ for some $U \subseteq V(G)$.

Proof. $l^{\prime}$ is a $\beta$-balancing of $G$ if and only if $\nu:=l+l^{\prime}$ satisfies $\nu(C)=0 \bmod 2$ for each chordless cycle $C$ in $G$. As each cycle of $G$ is the symmetric difference of chordless cycles in $G$, the latter is equivalent to $\nu(C)=0 \bmod 2$ for each cycle $C$ of $G$. Now it is easy to see that this is equivalent to $\nu=\chi_{\delta(U)}$ for some $U \subseteq V(G)$.

Corollary 1.1. If $G^{\prime}$ is an induced subgraph of a $\beta$-balanceable graph $G$, then each $\beta^{G^{\prime}}$-balancing of $G^{\prime}$ extends to a $\beta$-balancing of $G$.

Proof. Let $l$ be a $\beta$-balancing of $G$ and $l^{\prime}$ be a $\beta^{G^{\prime}}$-balancing of $G^{\prime}$. Then the restriction $l^{G^{\prime}}$ of $l$ to $G^{\prime}$ is a $\beta^{G^{\prime}}$-balancing. By Lemma $1.3, l^{\prime}=l^{G^{\prime}}+\chi_{\delta_{G^{\prime}}}(U)$ for some $U \subseteq V\left(G^{\prime}\right) \subseteq V(G)$. Hence, again by Lemma 1.3, the extension $l+\chi_{\delta_{G}(U)}$ of $l^{\prime}$ is a $\beta$-balancing of $G$. (Sums taken modulo 2).

Assume $G$ is connected and contains a clique cutset $K_{t}$ with $t$ nodes and let $G_{1}^{\prime}, G_{2}^{\prime}, \ldots, G_{n}^{\prime}$ be the components of the subgraph induced by $V(G) \backslash K_{t}$. The blocks of $G$ are the subgraphs $G_{i}$ induced by $V\left(G_{i}^{\prime}\right) \cup K_{t}, i=1, \ldots, n$.

Corollary 1.2. If $G$ contains a $K_{t}$ cutset, then $G$ is $\beta$-halanceable if and only if each block $G_{i}$ is $\beta^{G_{i}}$-balanceable.

Proof. The "only if" part is obvious. We prove the "if" statement. Fix a $\beta^{K_{t}}$-balancing $l$ of the clique $K_{t}$. By Corollary 1.1, in each block $G_{i}$ we may extend $l$ to a $\beta^{G_{i}}$-balancing of $G_{i}$. As each chordless cycle lies entirely in one of the blocks, we thus get a $\beta$-balancing of $G$.

Proof of Theorem 1.1. The necessity of the condition is obvious. We prove the sufficiency by induction on $V(G)$. Let uv be an edge of $G$. By Corollary 1.2, we may assume that $G$ is connected and has no $K_{1}$ or $K_{2}$ cutset.

Fix a $\beta^{\{\backslash \backslash u\} \text {-balancing of } G \backslash\{u\} \text {. By Corollary 1.1, we may extend its }}$ restriction to $G \backslash\{u, v\}$ to a $\beta^{(i \backslash\{v\}}$-balancing of $G \backslash\{v\}$. Thus we obtained a labeling of all the edges except uv. Assigning label () to uv, we obtain a labeling, $\ell$ say, of $E(G)$. We call a chordless circuit $C$ correct if $\ell(C)=\beta_{C}$ mod 2; otherwise we call $C$ incorrect. All chordless cycles $C$ not containing uv are correct. Furthermore at least one chordless cycle $C_{1}$ containing $u v$ is incorrect (else $\ell$ is a $\beta$-balancing of $G$ ) and at least one chordless cycle $C_{2}$ is correct (else by resetting $\ell(u v)$ to 1 , we have a $\beta$-balancing of $G$ ).

As $\{u, v\}$ is not a $K_{2}$ cutset of $G$, by Lemma 1.2 , we may choose $C_{1}$ and $C_{2}$ to be adjacent in $G^{u v}$. Hence there is a 3-path configuration or a wheel $G^{\prime}$ containing both $C_{1}$ and $C_{2}$. Since every edge of $G^{\prime}$ (and in particular $u v$ ) is in exactly two chordless cycles of $G^{\prime}, C_{2}$ is the only incorrect chordless cycle of $G^{\prime}$. So, denoting the set of chordless cycles in $G^{\prime}$ by $\mathcal{C}^{\prime}$, we get $\sum_{C \in \mathcal{C}^{\prime}} \beta_{C}=1+\sum_{C \in \mathcal{C}^{\prime}} \sum_{e \in E(C)} \ell(e)=1+\sum_{e \in E\left(G^{\prime}\right)} \sum_{C \in \mathcal{C}^{\prime}, C \ni e} \ell(e)=$ $1+\sum_{e \in E\left(G^{\prime}\right)} 2 \ell(e)=1 \bmod 2$. Hence, by (2), $G^{\prime}$ is not $\beta^{G^{\prime}}$-balanceable.

## 2. Even and odd-signable graphs

A hole is a chordless cycle of length greater than three. Graphs with no odd holes are related to perfect graphs since the famous strong perfect graph conjecture states that a graph $G$ is perfect if and only if $G$ and its complement contain no odd hole.

A graph $G$ is even-signable if $G$ is $\beta$-balanceable for the vector $\beta_{C}=1$ if $C$ is a triangle of $G$ and $\beta_{C}=0$ if $C$ is a hole of $G$. Even-signable graphs were introduced in [7] and they generalize graphs with no odd holes, for $G$ contains no odd hole if and only if $G$ is even-signable with all labels equal to one. By checking which 3-path configurations and wheel are not even-signable, we get from Theorem 1.1 the following characterization of even-signable graphs.

Theorem 2.2. A graph is even-signable if and only if it contains no genuine $3 P C(x y z, u)$ and no odd wheel.

Here, a $3 P C(x y z, u)$ is genuine if in all paths $P_{1}, P_{2}, P_{3}$ has length greater than one, and a wheel is odd if it contains an odd number of triangles.

Theorem 1.1 might turn out useful in understanding graphs with no odd holes. That this is not inconceivable could be argued from the fact that in [4] a polynomial time recognition algorithm is given to test if a graph contains no even hole and that heavily relies on Theorem 2.3 below. We call a graph odd-signable if it is $\beta$-balanceable for the vector $\beta$ of all ones. Note that a graph has no even holes if and only if it is odd-signable with all labels equal to one.

Theorem 2.3. A graph is odd-signable if and only if it contains no $3 P C(x, y)$, no $3 P C(x y z$, uvw $)$, and no even wheel.

Here, a wheel $(C, x)$ is even if $x$ has an even number of neighbors on $C$. (Note that a wheel may be both even and odd and that $K_{4}$ is a wheel that is
neither even nor odd). Theorem 2.3 follows immediately from Theorem 1.1 by checking which 3-path configurations and wheels are not odd-signable.

The recognition problem for both even-signable and odd-signable graphs is still open. In [5] both problems are solved for graphs that do not contain a cap as induced subgraph. (A cap is a hole $H$ plus a node that has two neighbors in $H$ and these neighbors are adjacent).

## 3. Universally signable graphs

Let $G$ be a graph that is $\beta$-balanced for all 0,1 vectors $\beta$ that have an entry of 1 corresponding to the triangles of $G$. Such a graph we call universally signable. Clearly triangulated graphs, i.e. graphs that do not contain a hole, are universally signable. In [6] these graphs are shown to generalize many of the structural properties of triangulated graphs. From Theorem 1.1 it follows that $G$ is universally signable if and only if no hole of $G$ belongs to a 3 -path configuration or a wheel. Hence we get the following result.

Theorem 3.4. A graph $G$ is universally signable if and only if $G$ contains no 3-path configuration and no wheel that is distinct from $K_{4}$.

As a consequence of Theorem 3.4 and Lemma 1.1 we have the following decomposition theorem.

Theorem 3.5. A connected universally signable graph that is not a hole and is not a triangulated graph contains a $K_{1}$ or $K_{2}$ cutset.

It was the above decomposition theorem that prompted us to look for a new proof for Theorem 1.1.

## 4. $\alpha$-balanced graphs, regular and balanceable matrices

Let $\alpha$ be a vector with entries in $\{0,1,2,3\}$ indexed by the chordless cycles of a graph $G$. A graph $G$ is $\alpha$-balanceable if its edges can be labeled with labels -1 and +1 so that for every chordless cycle $C$ of $G, l(C)=\alpha_{C}$; mod 4. Such a labeling is an $\alpha$-balancing of $G$. As we shall see there is a strong relationship between $\alpha$ - and $\beta$-balanceability. In fact, Truemper proved Theorem 1.1 (on $\beta$-balanceability) by first proving Theorem 4.6 below (on cx-balanceablility) and then showing that the two statements are equivalent.
Theorem 4.6. A graph is $\alpha$-balanccable if and only if ace is even for all even length chordless cycles $C$ and odd otherwise and every induced subgraph $H$ of $G$ that is a 3 -path configuration or a wheel is $\alpha^{H}$-batanceable.

To see that the two theorems are equivalent indeed, note that an $\alpha$ balancing of $G$ with labels of 1 and -1 , is implied by a $\beta$-balancing with $\beta_{C}:=\frac{\alpha_{C}-|E(C)|}{2} \bmod 2$, by replacing the 0 's by -1 's. Similarly the $\beta-$ balancing of $G$ with labels of 0 and 1 is implied by an $\alpha$-balancing with $\alpha_{C}:=2 \beta_{C}+|E(C)| \bmod 4$, by replacing the -1 's by 0 's.

## Balanceable and balanced matrices

The bipartite graph $G(A)$ of a matrix $A$ has the row and column sets of $A$ as color classes and an edge $i j$ with label $l_{A}(i j):=a_{i j}$ for each nonzero entry $a_{i j}$ of $A$. A $0, \pm 1$ matrix $A$ is balanced if $G(A)$ is $\alpha$-balanced for the vector $\alpha$ of all zeroes. A 0,1 matrix $A$ is balanceable if $G(A)$ is $\alpha$-balanceable for the vector $\alpha$ of all zeroes. From now on, signing means replacing some of the $1^{\prime} s$ with $-1^{\prime} s$. By straightforward checking, we can now derive from Theorem 4.6 the following characterization of balanceable matrices.

Theorem 4.7. $A 0,1$ matrix $A$ is balanceable if and only if $G(A)$ contains no wheel with an odd number of spokes and no $3 P C(x, y)$ such that $x$ and $y$ belong to opposite sides of the bipartition.

In [3] a polynomial algorithm is given to recognize if a matrix is balanceable or balanced. Balanced $0, \pm 1$ matrices have interesting polyhedral properties and have recently been the subject of several investigations, see [8] for a survey.

By the same argument used to obtain Theorem 4.6 from Theorem 1.1, we get from Lemma 1.3 the following result.

Lemma 4.4. (Camion [2]) The balanced signings of a balanceable graph are unique up to multiplication of some rows and columns by -1 .

Totally unimodular and regular matrices: A theorem of Tutte
A matrix is totally unimodular if all of its square submatrices have determinant $0, \pm 1$. Consequently a totally unimodular matrix is a $0, \pm 1$ matrix. If $\tilde{A}$ is a $0, \pm 1$ matrix such that $G(\tilde{A})$ is a chordless cycle $C$, then $\operatorname{det}(\tilde{A})=0$ if $l_{A}(C)=0 \bmod 4$ and $\operatorname{det}(\tilde{A})= \pm 2$ if $l_{A}(C)=2 \bmod 4$. So, totally unimodular matrices are balanced.

A 0,1 matrix is regular if it can be signed to be totally unimodular. Clearly, regular matrices are balanceable. Moreover, as total unimodularity is invariant under multiplication of rows and columns by -1 , the following lemma follows from Lemma 4.4.

Lemma 4.5. Every balanced signing of a regular matrix is totally unimodular.

To state the theorem of Tutte characterizing regular matrices, we need to introduce the notion of pivoting a matrix: pivoting a matrix $A$ on a nonzero entry $a_{i j}$ yields the matrix $B$ with entries defined as follows:

$$
b_{k l}:= \begin{cases}-a_{k l} & \text { if } k=i, j=l \\ a_{k l} & \text { if } k=i, j \neq l \\ a_{k l}-a_{i j}^{-1} a_{i l} a_{k j} & \text { if } k \neq i, j \neq l\end{cases}
$$

Lemma 4.6. Let $B$ be the result of pivoting $A=\left[\begin{array}{cc}\epsilon & y^{T} \\ x & D\end{array}\right]$ on the nonzero entry $\epsilon$. Then the following hold:
i) $B=\left[\begin{array}{cc}-\epsilon & y^{T} \\ x & D-\epsilon^{-1} x y^{T}\end{array}\right]$.
ii) Pivoting $B$ on $-\epsilon$ yields $A$.
iii) If $A$ is square, $\operatorname{det}(A)=\epsilon \operatorname{det}\left(D-\epsilon^{-1} x y^{T}\right)$ and $\operatorname{det}(B)=-\epsilon \operatorname{det}(D)$.
iv) If $\epsilon= \pm 1$, then the set of absolute values of the subdeterminants of $A$ is equal to the set of absolute values of the subdeterminants of $B$.

Proof. i) and ii) are obvious from the definition of pivoting. As the matrix $\left[\begin{array}{cc}\epsilon & y^{T} \\ 0 & D-\epsilon^{-1} x y^{T}\end{array}\right]$ follows from $A$ by row operations, we get that $\operatorname{det}(A)=$ $\epsilon \operatorname{det}\left(D-\epsilon^{-1} x y^{T}\right)$. Combining this with ii), yields $\operatorname{det}(B)=-\epsilon \operatorname{det}(D)$. So iii) follows as well. Remains to prove iv); assume $\epsilon= \pm 1$. By ii) it follows that it suffices to prove that if $M$ is a square submatrix of $A$, then there exists a subdeterminant of $B$ with value $\pm$ det $(M)$. By taking transposes, if necessary, we may assume that $M$ contains $\epsilon$ or is disjoint from the top row. Moreover, we may delete from $A$ all rows and columns that do not contain $\epsilon$ and do not intersect $M$. In other words, we may assume that $M=A, M=D$ or $M=[x \mid D]$. If $M=A$ or $M=D$ then, by i) and iii), the determinant of $M$ occurs, up to a sign, in $B$. If $M=[x \mid D]$, then it can be turned into the the submatrix $\left[x, D-\epsilon^{-1} x y^{T}\right]$ of $B$ by column operations. Hence, also in this case the determinant of $M$ occurs up to a sign in $B$.

We will pivot matrices both over the reals ( $\mathbb{R}$-pivoting) and over GF(2) ( $G F(2)$-pivoting).
Lemma 4.7. Let $\tilde{A}$ be a balanced signing of a 1,1 matrix $A$. Let $B$ be the result of $G F(2)$-pivoting $A$ on an entry $a_{i,}$. Then $\mathbb{R}$-pivoting $\bar{A}$ on the corresponding ontry $\tilde{a}_{i j}$ yields a (not necessarily balanced!) $0, \pm 1$ signing $\bar{B}$ of $B$.

Proof. As, obviously, $\tilde{B}$ and $B$ are congruent modulo 2 , it suffices to show that $\tilde{B}$ is a $0, \pm 1$ matrix. If not, then for some $k \neq i$ and $l \neq j, \tilde{a}_{k l}-\tilde{a}_{i j}^{-1} \tilde{a}_{i l} \tilde{a}_{k j} \neq$ $0, \pm 1$. But, then the four entries $\tilde{a}_{i j}, \tilde{a}_{i l}, \tilde{a}_{k j}$, and $\tilde{a}_{k l}$ make up an unbalanced submatrix of $\tilde{A}$, a contradiction.

Lemma 4.8. Every nonregular 0,1 matrix can be $G F(2)$-pivoted into a nonbalanceable matrix.
Proof. Let $A$ be a counterexample. We may assume that $A$ is minimally nonregular (minimal under taking submatrices and pivoting). We first prove the following:
(*) If $u$ and $w$ are in different color classes of $G(A)$, then $w$ has degree 2 in $G(A) \backslash\{u\}$.
To prove this, let $v$ be adjacent to $u$ and different from $w$ (as $A$ is minimally nonregular, $v$ exists). Let $B$ be the result of $G F(2)$-pivoting $A$ on $a_{u v}$. $B$ is also minimal nonregular and balanceable. Let $\hat{B}$ be a balanced signing of $B$. Then as all proper submatrices of $B$ are regular and all submatrices of $\hat{B}$ are balanced, it follows from Lemma 4.5 that $\operatorname{det}(\hat{B})$ is the only subdeterminant of $\hat{B}$ that is not $0, \pm 1$. Let $\hat{A}$ be the result of $\mathbb{R}$-pivoting $\hat{B}$ on $\hat{b}_{u v}$; as $\hat{B}$ is balanced, by Lemma 4.7, $\hat{A}$ is a signing of $A$. By Lemma 4.6, iii) and iv), the only subdeterminant of $\hat{A}$ that is not $0, \pm 1$ is the determinant of the submatrix $\hat{A}-\{u, v\}$ corresponding to $G(A) \backslash\{u, v\}$. As $A-\{u, v\}$ is regular, and $\hat{A}-\{u, v\}$ is not totally unimodular, it follows from Lemma 4.5 that $\hat{A}-\{u, v\}$ is not balanced. As all proper subdeterminants are $0, \pm 1$, $G(A) \backslash\{u, v\}$ is a chordless cycle. So, as $v$ is not adjacent to $w,(*)$ follows.

By $(*), G(A)$ is 3-regular (each node $w$ has a neighbor $u$ ). But now, again by $(*), G(A)$ is the complete bipartite graph $K_{3,3}$. As $A$ is nonregular, this is impossible.

The next remark follows from the definition of pivoting.
Remark 4.1. Let $B$ be the result of $G F(2)$-pivoting a 0,1 matrix $A$ on $a_{i j}=1$. Then $G(B)$ is obtained from $G(A)$ by picking each pair $k \in N(i) \backslash\{j\}$, $l \in N(j) \backslash\{i\}$, adding edge $k l$ if $k$ and $l$ are nonadjacent in $G(A)$ and removing edge $k l$ if $k$ and $l$ are adjacent in $G(A)$.

Tutte [16], [17] proves the following:
Theorem 4.8. $A \quad 0,1$ matrix $A$ is regular if and only if for no matrix $B$, obtained from $A$ by $G F(2)$-pivoting, $G(B)$ contains a wheel whose rim has length 6.

Proof. Assume $A$ is a regular matrix and let $\tilde{A}$ be a totally unimodular signing of $A$. Let $\tilde{B}$ be the result of $\mathbb{R}$-pivoting $\tilde{A}$ on a nonzero entry $\tilde{a}_{i j}$ and let $B$ be the result of $G F(2)$-pivoting $A$ on entry $a_{i j}$. By Lemma 4.7, $\tilde{B}$ is a signing of $B$ and by Lemma 4.6 iv), $\tilde{B}$ is totally unimodular. So $B$ is regular and the necessity follows.

For the sufficiency part, let $A$ be a nonregular 0,1 matrix. Then, by Lemma 4.8, we can $G F(2)$-pivot $A$ into a nonbalanceable 0,1 matrix $B$. By Theorem 4.7, $G(B)$ contains a $3 P C(x, y)$ where $x$ and $y$ belong to distinct color classes, or a wheel $(C, x)$ where $x$ has an odd number, greater than one, of neighbors in $C$.

If $G(B)$ contains a $3 P C(x, y)$, then, by Remark 4.1, we can perform a series of $G F(2)$-pivots on $B$ so that in the end all three $x y$-paths in the $3 P C(x, y)$ have length three. When that is achieved, $G F(2)$-pivoting on an entry corresponding to an edge incident with $x$, will yield a wheel whose rim has length 6.

If $G(B)$ contains a wheel $(C, x)$ and $x$ has an odd number of neighbors in the $\operatorname{rim} C$, then, by Remark 4.1, we can perform a series of $G F(2)$ pivots on $B$ so that all the sectors of $(C, x)$, i.e. the subpaths of $C$ between two consecutive neighbors of $x$, have length two. When all sectors do have length 2 and $x$ has more than three neighbors in $C$, a $G F(2)$-pivot on an entry corresponding to an edge of $C$, yields a wheel $\left(C^{\prime}, x\right)$ such that $x$ has two less neighbors in $C^{\prime}$ than in $C$. The new wheel $\left(C^{\prime}, x\right)$ has one sector of length 4 now, but that can be reduced to length 2 by a single pivot, as before. So ultimately, we will obtain a wheel whose rim has length 6 .

Tutte's original proof of the above theorem is quite difficult. A short, self-contained proof can be found in [10]. In [12], a polynomial algorithm is given to recognize if a matrix is regular or totally unimodular. For a faster algorithm, see [15].

## References

[1] R.. E. Bixby: On Reid's characterization of the ternary matroids, Journal of Combinatorial Theory Ser. B, 20 (1979), 174-204.
[2] P. Camion: Caractérisation des matrices unimodulaires, Cahiers du Centre d'Études de Recherche Operationelle, 5 (1963), 181-190.
[3] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković: Balanced 0, $\pm 1$ matrices, Parts I-II, 1994, to appear in Journal of Combinatorial Theory Ser. B.
[4] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković: Even-hole-free graphs, Parts I-II, preprints, Carnegie Mellon University, 1997.
[5] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković: Even and odd holes in cap-free graphs, 1996, Journal of Graph Theory, 30 (1999), 289-308.
[6] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković: Universally signable graphs, Combinatorica, 17 (1997), 67-77.
[7] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković: A Mickey-Mouse decomposition theorem, in: E. Balas and J. Clausen (eds.), Integer Programming and Combinatorial Optimization, 4th International IPCO Conference, Copenhagen, Denmark, May 29-31, 1995, Proceedings, volume 920 of Lecture Notes in Computer Science, Springer Verlag, Berlin, 1995, 321-328.
[8] M. Conforti, G. Cornuéjols, A. Kapoor, M. R. Rao, and K. Vušković: Balanced matrices, in: J. R. Birge, K. G. Murty (eds.), Mathematical Programming: State of the Art 1994, The University of Michigan, 1994, 1-33.
[9] J. F. Geelen: A generalization of Tutte's characterization of totally unimodular matrices, Journal of Combinatorial Theory Ser. B, 70 (1997), 101-117.
[10] A. M. H. Gerards: A short proof of Tutte's characterization of totally unimodular matrices, Linear Algebra and its Applications, 114/115 (1989), 207-212.
[11] P. D. Seymour: Matroid representation over GF(3), Journal of Combinatorial Theory Ser. B, 26 (1979), 159-173.
[12] P. D. Seymour: Decomposition of regular matroids, Journal of Combinatorial Theory Ser. B, 28 (1980), 305-359.
[13] K. Truemper: On balanced matrices and Tutte's characterization of regular matroids, preprint, 1978.
[14] K. Truemper: Alpha-balanced graphs and matrices and GF(3)-representability of matroids, Journal of Combinatorial Theory Ser. B, 32 (1982), 112-139.
[15] K. Truemper: A decomposition theory for matroids. V. Testing of matrix total unimodularity, Journal of Combinatorial Theory Ser. B, 49 (1990), 241-281.
[16] W. T. Tutte: A homotopy theorem for matroids I, II, Transactions of the American Mathematical Society, 88 (1958), 144-160, 161-174.
[17] W. T. Tutte: Lectures on matroids, Journal of Research of the National Bureau of Standard (B), 69 (1965), 1-47 [reprinted in: D. McCarthy, R. G. Stanton (eds.), Selected papers of W. T. Tutte, Vol, II, Charles Babbage Research Centre, St. Pierre, Manitoba, 1979, pp. 439-496].

## Michele Conforti

Dipartimento di Matematica Pura ed Applicata, Università di Padova, Via Belzoni 7, 35131 Padova, Italy
conforti@math.unipd.it

## Ajai Kapoor

Dipartimento di Matematica Pura ed Applicata,
Università di Padova,
Via Belzoni 7, 35131 Padova, Italy

## Bert Gerards

CWI, P.O. Box 94079, 1090 GB
Amsterdam, The Netherlands
and
Eindhoven University of Technology
Department of Mathematics and Computer Science
P.O. Box 513, 5600 MB Eindhoven The Netherlands
bert.gerards@cwi.nl


[^0]:    * Research carried out with financial support of the project TMR-DONET nr. ERB FMRX-CT98-0202 of the European Community.

    Ajai Kapoor was supported in part by a grant from Gruppo Nazionale Delle RicercheCNR.

    Mathematics Subject Classification (1991): 05C50, 05B35

