
Faster across the PCIe bus:
A GPU library for lightweight decompression

including support for patched compression schemes

Eyal Rozenberg
CWI, Amsterdam

E.Rozenberg@cwi.nl

Peter Boncz
CWI, Amsterdam

P.Boncz@cwi.nl

ABSTRACT
This short paper present a collection of GPU lightweight
decompression algorithms implementations within a FOSS
library,Giddy – the first to be published to offer such function-
ality. As the use of compression is important in ameliorating
PCIe data transfer bottlenecks, we believe this library and
its constituent implementations can serve as useful building
blocks in GPU-accelerated DBMSes — as well as other data-
intensive systems.
The paper also includes an initial exploration of GPU-

oriented patched compression schemes. Patching makes com-
pression ratio robust against outliers, and is important with
real-life data, which (in contrast to many synthetic benchmark
datasets) exhibits non-uniform data distributions and noise.

An experimental evaluation of both the unpatched and the
patched schemes in Giddy is included.

1. INTRODUCTION
The computational power of GPUs and the rapid pace of

its increase, has made GPUs an interesting platform for a
broad class of General-Purpose tasks (GPGPU), among which
query processing [4]. In practice, though, actually acceler-
ating database workloads by GPU processing is hindered by
the required data transfers over the PCIe bus. In a previ-
ous GPU-accelerated query processor one of the authors had
participated in building [2], on TPC-H benchmark query work-
loads, 7̃0% of time was typically spent purely on such transfer.
Some published research circumvents this problem, by assum-
ing the data is GPU-memory-resident; but this is unrealistic,
since the fast on-GPU memory is 10x-25x smaller than main
system memory, and minuscule when considering secondary
storage. It is thus imperative to tackle this bottleneck for
GPUs to make a difference where acceleration is important,
i.e. when processing very large amounts of data.

While heavily data distribution dependent, compression in
data warehouses reduce volumes by a factor of 3–4 in typical
use cases, with this translating directly into shorter PCIe
transfer times. And while compressed-form data incurs a
penalty in computation and GPU memory write time for de-
compression, overall performance is still likely to improve by a
factor close to the compression ratio, times the fraction of time
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DaMoN’17, May 15, 2017, Chicago, IL, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5025-9/17/05. . . 15.00

DOI: http://dx.doi.org/10.1145/3076113.3076122

spent on data transfer. Moreover, compressed forms of data
may be operated on directly, speeding up various execution
plan operations [1] and reducing the amount of data to require
actual decompression eventually.
Prior work on de/compression with GPUs mostly regards

use of the GPU as the means (e.g. [8]) and de/compression
as the ends — a computational task offloaded to a GPU. The
only works where lightweight compression schemes are the
means, and computational work (such as query processing)
on the GPU the ends, are [7] and [15]. The latter contributes
useful auto-tuning compression methods and parameters, but
does not describe GPU decompression methods, which are the
focus here. The former paper surveys a number of lightweight
compression schemes usable for sending columnar data across
PCIe; discusses the relative desirability of composing GPU
compression schemes; and presents experimental results, eval-
uating the performance of decompression proper and of some
analytic queries on compressed data. The data layout and
decompression algorithm for each scheme is described in broad
strokes mostly. Unfortunately, by now (6 years later), the
authors of [7] report the source code for that work has been lost.

This paper contributes a free, open-sourceGPUcompression
library with amodern implementation of the most widely-used
lightweight database compression schemes. It is the first paper
to explore the use of GPU-targetted patched decompression
schemes [23]. Patching makes compression ratios robust to
outliers, which are prevalent in (noisy) real-life data — as
opposed to synthetic benchmark-generated datasets, such as
the TPC benchmarks. We think this library provides a useful
building block for today’s and tomorrow’s GPU-accelerated
data management systems.

2. THE DECOMPRESSORS LIBRARY
Our library implementing the decompressors can be found

in an online public repository [16]. It uses C++14 for host-side
code and C++11-flavored CUDA for device-side code, and is
GPLv3-licensed. There are threemodes of using it: (i) Directly
including GPU kernel sources in a program— as they are kept
separate for any wrapper code (ii) Using thin per-kernel low-
level GPU kernel wrapper classes (iii) Obtaining opaque kernel
wrappers, accessed via a base-class pointer, froma string-keyed
factory initialized at program load time. A facility is provided
for selecting appropriate kernel launch parameters, either auto-
matically (with options (ii) and (iii)) or manually (all options).
The compression schemes currently supported are:

Unpatched: BITMAP,FOR,DELTA,DICT,NS,NSV (vari-
able length), MODEL (see below), RLE.

Patched: DICT, NSF, NSV, FOR, BITMAP, MODEL.
These are supported for all relevant combinations of sizes of
1, 2, 4 and 8 bytes. The patched schemes are available in two

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301647338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/3076113.3076122


variants, “naive” and with compressed patch position indices;
these are discussed in Subsection 3.1 below. Note that among
the many variants of NS schemes, we follow — at this stage
of implementation — the choice in [7] of two NS variants, in
which the compressed elements themselves are byte-aligned.

The library is under active development, particularly with
the aim of further improving performance, and supporting
additional compression schemes (e.g. from among those sur-
veyed [5], and the patched schemes PFOR-DELTA [23] and
Fast-PFOR [5]). This paper only covers what has already
implemented and tested.

3. COMPRESSION SCHEMES
For most of the unpatched schemes, we use a different layout

of compressed data, and/or a different algorithm for decom-
pression, than established CPU-oriented variants of these
schemes; often these are also different also from the GPU-
targeted work in [7]. Going into the details is beyond the
scope of this short-form paper; instead, we’ll list recurring
aspects of these variations.
Columnnar layout of compressed data. While several
DBMSes using compression are columnar, i.e. physically hold
the data of a single column of all records toghether, separate
from the data for other columns — this ‘columnarity’ of the
layout is not typically maintained after compression. The
common practice is creating tightly-knit compressed blocks,
with headers and in-block data of various types; and that is
very useful on a CPU, keeping all relevant data necessary for
decompressing a short sequence of elements closeby in cache.
On a GPU, however, such of the cache for a lightweight decom-
pression workload is essentially impossible: So many threads
would try to use is simultaneously, or nearly-simultaneously,
and it would simply get thrashed. For this reason (among
others) we chose keep the different kinds of data as separate,
uniformly-typed arrays. Figure 1 illustrates, in particular,
this difference in data layout.
Anchoring. In some schemes, a small number of single values,
which may be derived from a large part the compressed form
with some computational work, are necessary for completing
the decompression. An example: The sum of compressed
elements upto some point, in the DELTA scheme. Instead of
actually computing these, we augment the compressed form
with their pre-computated values, regularly over large com-
pressed segments; this speeds up the decompression algorithm
at the price of a minute degradation in compression ratio.
Anchors may involve positions in the input or output, or other
parameters which aren’t values in the uncompressed domain.
Scheme-specific implementation optimization. The
work in [7] made use of well-known GPU primitives such
as Gather (referring to a Map with the map function being
an array lookup). and Prefix Sum (a.k.a. Prefix Scan; see [10,
§3.1.1]). We utilize them less often, and when we do, it is
sometimes with some modification or a part cut-out. Instead,
more schemes involve specific code for their decompression.

3.1 Patched schemes
The original patched lightweight compression schemes in

[23] (PFOR, PFOR-DELTA and PDICT) were designed in the
fit-everything-into-the-block-in-cache approach, mentioned
above; and the patch values for each block are, in fact, crammed
into it. The consequence of this choice is temporal locality
and cache-locality of the unpatched decompression and the
application patches. In [12] (and [13]), this construction can
be said to be partially unpacked in favor of vertical layout of
unpatched data and patch information. On a GPU, we opt

for complete unpacking and fully vertical layouts — following
the same similarly to the unpatched schemes. In fact, we
decouple the unpatched decompression from the application
of patches entirely: We schedule a complete decompression
using an unpatched scheme — any of those listed in Section 2
(except for DELTA); and an aposteriori patching operation on
the decompressed column.
The nature of this aposteriori patching phase depends on

how the patches are laid out in memory. The Naive Patching
layout constitutes two corresponding arrays, of patch positions
and values of the uncompressed type; its application is simply
a Scatter operation [9] — in which case they need not even be
sorted. An example appears in 1.

One can go beyond naive patching by compressing the patch
values and/or the patch positions. Bothmay involve cascading
other lightweight compression schemes (an option not imple-
mented in Giddy), but for the patch positions one can tailor
a custom representation, based on knowledge regarding their
distribution. Indeed, we may assume that patch positions are
monotone increasing; and in this case, either there are very
few patches (and then the compression ratio of the patches
doesn’t matter), or they are not too far apart on the average,
and can form multiple runs with small offsets from a baseline
position. We are currently working on a Compressed Indices
aposteriori patching scheme using these principles — which
has an initial implementation in-place, not yet instrumented
for performance testing.

3.2 Less-common unpatched schemes
Generalized FOR. In the FOR scheme, the same constant ref-
erence value is added to every compressed element (or rather
the same value throughout each segment of the column). It
is rather straightforward to generalize this to the addition
of a value depending on the position of the uncompressed
element; in other words, decompression is the elementwise
column addition of model-function-generated column and the
compressed form of our column: Instead of d(i) = c(i) + v
we have d(i) = c(i)+f(i), where d is our decompressed col-
umn, c is its compressed form, and v and f are a constant
and a function respectively. One naturally conceives of some
finite-dimensional linear space of potential model functions
f ; say, the space of polynomial functions of degree up to d.
Thus a model function is specified to the kernel by passing its
d+1 coefficients (or rather, a set of such coefficients for each
segment). The original FOR scheme is the special case of this
generalization with f(i)=v uniformly.
MODEL. Consider the generalized FOR just described, with-
out the compressed elements; this is the MODEL compression
scheme. The decompressed data is merely the evaluation of a
(per-segment) model function. This is a ‘degenerate’ scheme,
which cannot apply to most columns; but its implementation
and use is not without motivation. For example, “Record ID”-
type columns in schemata of append-only databases (such as
c_custkey in Section 4) do often perfectly fit an affine function
(f(i)=a0+i); and there is also its relation to generalized FOR,
and its possible augmentation with patches for outlier data
(see Subsection 3.1).

4. EXPERIMENTAL EVALUATION

4.1 Experimental setup
The library was evaluated using a GPU kernel test harness

available online [17], along with instructions on reproducing
the results. Timing includes only the kernel execution proper;
the PCIe transfer times are stated based on the rule of thumb



exception section

header entry points

code section

3 1

4 1 5 2 6 5 3 5

7 3 2

989

5 0

1 3

98

(a) in Vectorwise

0Frame
of Reference

9 8 9 9Patch values

3 1 4 1 5 (?) 2 6 5 3 5 (?) (?) 7 (?) 3 2Compressed 
Data

5 11 12 14Patch 
positions

(b) in Giddy (naive patching)

Figure 1: Patched FOR compressed form layout, with digits of π as the data: 3.1415926535897932

of 12 GB/sec achievable bandwidth with PCIe 3.0. Experi-
ments were conducted on an ASUS card with nVIDIA GTX
Titan X GPU (GM200 chip, 336 GB/sec memory bandwidth),
with factory settings. CUDA v8.0.44 was used, on a Fedora
24 system with nVIDIA driver v375.26.
Data sets used. The implementations were evaluated us-
ing two kinds of data: synthetic and real-life. Our synthetic
data are the generated tables for the widely-used TPC-H
benchmark [21]. They have a uniform distributions for non-
deterministic data: No local skews, noise or outliers. Thus
when they are compressible, they are only amenable to uniform,
non-adaptive compression — as they exhibits no changing
behavior, outliers, or skewed frequency distribution. We used
Scale Factor 10, with 59986052∼=60M records in lineitem.
The “Real-life” data used is the US Department of trans-

port’s on-time flight information,Ontime for short, available
online [22]. It is a single de-normalized table, with ~100
columns. Each record describes a flight: When it left and
arrived, where to and where from, what diversions and delays
it experienced and so on. We limit our data to the years
2000-2008: 59287698∼=60M records overall, similar to TPC-H
at SF 10. While this data set is not part of a well-established
database benchmark, it has been to compare analytic DBMS
performance in the past [20]. The raw data files are ‘dirty’:
mis-typed values, missing fields which should not be nulls,
duplicate entries for the same flight etc.; we therefore perform
some minimal scrubbing and unification of in-file order before
actually loading the data.

Readers are referred to the repositories [18, 19], with scripts
to obtain and load the two data sets. These scripts may be
useful independently of the reproduction of our results.
Experiment description. For every column selected for
the experiments, we chose a single compression scheme when
it clearly outdoes all others, or several schemes otherwise. If
the column benefits from patching, the best patched and un-
patched schemes were chosen. Each column was decompressed
6 times with each chosen scheme; the first run was ignored
and the reported result is the median of the last 5.

Direct comparison with other work on lightweight compres-
sion, or reproduction of experiments therein, was not carried
out. First, w.r.t.on-CPU decompression — most compression
schemes are somewhat modified, as described in Section 3,
thus it would be an apples-to-oranges comparison; also, the
bandwidths achievable on a CPU are typically an order of
magnitude lower, or more (see e.g. [12, 5]). Unfortunately,
immediate comparison was also impossible with the work in
[7]: The paper itself includes few exact experiment results;
the GPU used there was of a much older architecture; and the
source code used in that paper was misplaced by the authors
[6] and cannot be brought up-to-date.
Direct reproducing of experiments in other work was not

carried out. With respect to on-CPU decompression, usu-
ally the data layout is somewhat different, so they are not
supported as such, and it would be an apples-to-oranges com-

parison; also, on-CPU decompression speeds are typically an
order-of-magnitude slower than on the GPU ).

4.2 Results and observations

Column

byte
wi-
dth

size
(MB)

compres-
sion

scheme

co-
mpr.
ratio

TX
time
(ms)

decomp.
b/w

(GB/s)

decomp.
time
(ms)

l_returnflag 1 60 BITMAP 2.67 1.874 39.287 1.526
l_linestatus 1 60 BITMAP 4.00 1.249 34.232 1.752
c_custkey 4 6 MODEL ∞ 0 325.520 0.018
p_partkey 4 8 MODEL ∞ 0 312.903 0.025
c_custkey 4 6 DELTA 3.99 0.125 76.065 0.078
o_orderkey 4 60 DELTA 3.99 1.252 98.102 0.611
p_partkey 4 8 DELTA 3.99 0.166 78.052 0.102
s_suppkey 4 0.4 DELTA 3.99 0.008 40.064 0.009
l_quantity 8 479.9 DICT 8.00 4.998 209.261 2.293
l_discount 8 479.9 DICT 8.00 4.998 208.310 2.303
p_size 4 8 DICT 4.00 0.166 159.137 0.050
s_nationkey 4 0.4 DICT 4.00 0.008 51.440 0.007
c_nationkey 4 6 DICT 4.00 0.125 168.619 0.035
l_linenumber 4 239.9 DICT 4.00 4.998 178.493 1.344
p_retailprice 8 16 DICT 3.76 0.354 154.896 0.103
l_linenumber 4 239.9 NS 4.00 4.998 149.360 1.606
l_discount 8 479.9 NS 8.00 4.998 179.193 2.678
l_quantity 8 479.9 NS 4.00 9.997 166.839 2.876
l_extendedprice 8 479.9 NS 2.00 19.995 160.358 2.992
ps_availqty 4 32 NS 2.00 1.333 135.612 0.235
l_shipdate 4 239.9 FOR 2.00 10.017 160.653 1.493
o_orderdate 4 60 FOR 2.00 2.504 160.795 0.373
l_orderkey 4 239.9 FOR 2.00 10.017 144.370 10.017

Table 1: Timing results with TPC-H columns.

l_returnflag (BITMAP)

l_linestatus (BITMAP)

c_custkey (MODEL)

p_partkey (MODEL)

c_custkey (DELTA)

o_orderkey (DELTA)

p_partkey (DELTA)

s_suppkey (DELTA)

l_orderkey (DELTA)

l_quantity (DICT)

l_discount (DICT)

p_size (DICT)

s_nationkey (DICT)

c_nationkey (DICT)

l_linenumber (DICT)

p_retailprice (DICT)

l_linenumber (NS)

l_discount (NS)

l_quantity (NS)

l_extendedprice (NS)

ps_availqty (NS)

l_shipdate (FOR)

o_orderdate (FOR)

l_orderkey (FOR)

l_orderkey (RLE)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Uncompressed TX then decompress Simultaneous TX & decompress

Figure 2: Benefits of using compression for copying a
column to GPU memory (TPCH data)

Ontime column results – observations. As this work
regards lightweight schemes, the yardstick for evaluating per-
formance should be writing at the full memory bandwidth (336
GB/sec for the GM200 GPU used); normalize by this value
when considering the bandwidth column in the results tables 1
and 2. One should also bear this in mind when comparing
against On-CPUdecompression, where the per-socketmemory
bandwidth is typically under 30 GB/sec per socket today.
Two of the columns fit a model function perfectly, and are

thus compressed using the MODEL scheme, with an affine



model function: i 7→1·i+1. In an actual DBMS, one might
expect such a column never to be materialized at all, with
accesses to it replaced by invocations of the function.

As predicted, the TPC-H data does not benefit from patched
compression schemes (except perhaps for l_orderkey), nor
from using NSV (as opposed to NS).
Decompression speed for shorter columns degrades — be-

low several million elements performance gets lower. This is
partly due to suboptimal launch configuration choice for small
columns, but partly since a massively-parallel device needs
more threads to mask the latency of memory reads.

The compression ratios achieved are sometimes lower than
the potential optima, since some columns are best compressed
to a number of bits which isn’t a full number of bytes (as one
can conclude from [21, §5]).

Column

byte
wi-
dth

size
(MB)

compres-
sion

scheme

co-
mpr.
ratio

TX
time
(ms)

decomp.
b/w

(GB/s)

decomp.
time
(ms)

depdel15 1 59.3 PBITMAP 2.80 1.763 38.7 1.532
depdel15 1 59.3 BITMAP 2.67 1.853 36.2 1.636
originairportid 4 237.2 PDICT(1B) 3.93 5.029 174.5 1.359
originairportid 4 237.2 DICT(2B) 2.00 9.881 161.0 1.473
originairportseqid 4 237.2 PDICT(1B) 3.88 5.098 163.0 1.455
originairportseqid 4 237.2 DICT(2B) 2.00 9.881 160.8 1.475
origincitymarketid 4 237.2 PDICT(1B) 3.98 4.965 175.1 1.354
origincitymarketid 4 237.2 DICT(2B) 2.00 9.881 160.7 1.475
depdelay 2 118.6 PDICT(1B) 1.97 5.017 138.1 0.858
depdelayminutes 2 118.6 DICT(2B) 1.98 5.017 128.6 0.921
originstate 2 118.6 DICT(1B) 2.00 10.875 135.3 0.876
originstatefips 2 118.6 DICT(1B) 2.00 11.875 135.3 0.876
airlineid 4 237.2 RLE 354.48 14.875 91.4 2.594
year_ 2 118.6 RLE 337.80 15.875 62.1 1.911
uniquecarrier 2 118.6 RLE 211.05 16.875 45.5 2.603
carrier 2 118.6 RLE 211.05 17.875 45.5 2.605
quarter 1 59.3 RLE 169.32 18.875 32.1 1.846
month_ 1 59.3 RLE 169.26 19.875 32.1 1.848
dayofmonth 1 59.3 RLE 165.95 20.875 31.3 1.895
dayofweek 1 59.3 RLE 165.95 21.875 31.3 1.892
flightdate 4 237.2 RLE 162.42 22.875 120.2 1.974

Table 2: Timing results using USDT-Ontime columns

depdel15 (PBITMAP)

depdel15 (BITMAP)

originairportid (PDICT(1B))

originairportid (DICT(2B))

originairportseqid (PDICT(1B))

originairportseqid (DICT(2B))

origincitymarketid (PDICT(1B))

origincitymarketid (DICT(2B))

depdelay (PDICT(1B))

depdelayminutes (PDICT(1B))

originstate (DICT(1B))

originstatefips (DICT(1B))

airlineid (RLE)

year_ (RLE)

uniquecarrier (RLE)

carrier (RLE)

quarter (RLE)

month_ (RLE)

dayofmonth (RLE)

dayofweek (RLE)

flightdate (RLE)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Uncompressed TX then Decompress Simultaneous TX & decompress

Figure 3: Benefits of using compression for copying a
column to GPU memory (USDT-Ontime data)

Ontime column results – observations. The Ontime
data has a multi-column key, as opposed to most TPC-H
tables; these key columns exhibit long runs, which RLE com-
presses very well. Unfortunately, the RLE decompressor is not
yet performance-optimized, so its use is not maximally ben-
eficial. Most other columns have limited support within their
domain — but not the lower valued-elements which would
motivate the use of NS or NSV. This explains why many of the
columns use DICT compression; and such behavior is typical
of (fixed-length) string columns.

Another difference from TPC-H-like data is a non-uniform
distribution over this support; for many columns it is concen-
trated enough, that one can reduce the dictionary size by a
full byte and still capture the vast majority of values. For
these columns, patching becomes relevant.

One of the patched columns, depdel15, differs from the oth-
ers in that its patch data is actually rather large—bringing the
compression ratio of down from 4 (BITMAP with 2 bitmaps)
to only about 2.8: This is in fact a nullable boolean column,
with 2.13% nulls, relatively spread out. With other columns
a dictionary on the most frequent values can be constructed,
so as to capture all but a tiny fraction of the frequency dis-
tribution’s weight; in this case we have to swallow a large
percentage of patches, not far from the limit of beneficiality:
At compression ratio 2.67 it’s already worth it to use 3 bitmaps.
Glancing at the table, we notice that the PCIe transfer time is
almost identical between the two schemes, and Figure 3 shows
us the advantage is minimal. Still, the patch information itself
is highly compressible, and with cascaded compression this
would yield an additional improvement. This is an illustration
how real-life data often admits a wide variety of compression
scheme features and variations.

Other than depdel15, the other columns utilizing patching
exhibit a similar behavior bothwith respect to the compression
ratio (2x improvement) and to the decompression bandwidth:
A noticeable, but modest, reduction.

5. DISCUSSION AND CONCLUSION
In this paper we have focused on decompressing full columns

(or large parts thereof) into GPU memory. However, it is by
now well-established that processing analytic queries quickly
(using a CPU) involves avoiding columnmaterializations when
possible, especially before they have undergone initial filtering
in the early stages of an execution plan. On a CPU, the two
prominent approaches to doing this are vectorization [3] —
materializing small chunks into a cache between query plan
operations— and just-in-time compiled pipelined execution of
multiple fused operators, where tuple data is passed through
CPU registers [14]. Both techniques can be combined in a
system, typically the variation in compression parameters
that table scans need to deal with is better dealt with with
vectorized decompression in scans, while the subsequent query
pipeline can be JIT-compiled [11]. We expect both approaches
to be relevant, for on-GPU query processing work, particularly
w.r.t. decompression. Thus, in some cases data will only have
to be decompressed into registers before it can be filtered or
aggregated. In other cases — such as as cascaded compression
schemes, perhaps — it may be decompressed into the SM
block-shared memory, with blocks performing operations on
decompressed chunks. In both these cases, our decompression
implementations are likely to serve well enough, sometimes
with higher bandwidth (being free of the bottleneck of having
to write much more than they read into global GPU memory).
A third case is patching: A query plan compiler might

schedule two different work paths for the underlying-scheme
decompressed column, with no patches applied, and for the
naive patch data, which can be thought of as a small column in
sparse representation. Alternatively, it might opt to schedule
a different decompressor, which applies its patches locally
(and perhaps less efficiently). This direction points at the pos-
sibility of queries operating on the smallest byte-addressable
compressed form of data directly. In case data were com-
pressed using sub-byte bit-widths, partial decompression to
the smallest whole byte-width could be used, that still falls
short of decompressing to the full SQL type the schema de-
mands (if the data distribution allows this – opportunities are
detectable using MinMax block-wise statistics).

Overall, we believe compression is a highly relevant theme
for database systems work that includes GPUs, and we hope
our library can be of use for such research.



6. REFERENCES
[1] D. J. Abadi. Query

execution in column-oriented database systems. PhD
thesis, Massachusetts Institute of Technology, 2008.

[2] A. Agbaria, D. Minor, N. Peterfruend, O. Rosenberg,
and E. Rozenberg. Overtaking cpu dbmses with a gpu in
whole-query analytic processing. In Proc. ADMS, 2016.

[3] P. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-pipelining query execution.
In Proc. CIDR, volume 5, pages 225–237, 2005.

[4] S. Breß,
M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake.
GPU-accelerated database systems: Survey and open
challenges. In Proc. BigDataScience. ACM/IEEE, 2014.

[5] P. Damme, D. Habich, J. Hildebrand, and W. Lehner.
Lightweight data compression algorithms: An
experimental survey. In Proc. EDBT, 2017. to appear.

[6] W. Fang and B. He. Personal communication.
[7] W. Fang, B. He, and Q. Luo. Database compression on

graphics processors. Proc. VLDB, 3(1-2):670–680, 2010.
[8] S. Funasaka, K. Nakano,

and Y. Ito. Light loss-less data compression, with GPU
implementation. In Proc. ICA3PP, pages 281–294, 2016.

[9] B. He, N. K. Govindaraju, Q. Luo, and B. Smith.
Efficient gather and scatter operations on graphics
processors. In Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, page 46. ACM, 2007.

[10] B. He, M. Lu,
K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and
P. V. Sander. Relational query coprocessing on graphics
processors. Trans. DB Sys., 34(4):21:1–21:39, Dec. 2009.

[11] H. Lang, T. Mühlbauer, F. Funke, P. Boncz, T. Neumann,
and A. Kemper. Data blocks: Hybrid OLTP and OLAP
on compressed storage using both vectorization and
compilation. In Proc. SIGMOD, pages 311–326, 2016.

[12] D. Lemire and L. Boytsov. Decoding
billions of integers per second through vectorization.
Software: Practice and Experience, 45(1):1–29, 2015.

[13] D. Lemire, L. Boytsov, O. Kaser, M. Caron,
L. Dionne, M. Lemay, E. Kruus, A. Bedini, M. Petri, and
R. B. Araujo. http://github.com/lemire/FastPFOR/.

[14] T. Neumann.
Efficiently compiling efficient query plans for modern
hardware. Proc. VLDB, 4(9):539–550, June 2011.

[15] P. Przymus
and K. Kaczmarski. Compression planner for time series
database with GPU support. Trans. Large-Scale Data-
and Knowledge-Centered Systems, 15:36–63, 2014.

[16] E. Rozenberg. https://github.com/eyalroz/libgiddy.
[17] E. Rozenberg.

https://bitbucket.org/eyalroz/db-kernel-testbench.
[18] E. Rozenberg.

https://github.com/eyalroz/usdt-ontime-tools.
[19] E. Rozenberg. https://github.com/eyalroz/tpch-tools.
[20] B. Schwartz.

https://www.percona.com/blog/2009/09/29/quick-
comparison-of-myisam-infobright-and-monetdb/.

[21] The TPC Council. TPC Benchmark
H (rev 2.17.1), 2014. http://www.tpc.org/tpch.

[22] http://www.rita.dot.gov/bts/.
[23] M. Zukowski, S. Heman,

N. Nes, and P. Boncz. Super-scalar RAM–CPU cache
compression. In Proc. ICDE, pages 59–59. IEEE, 2006.


	Introduction
	The decompressors library
	Compression schemes
	Patched schemes
	Less-common unpatched schemes

	Experimental evaluation
	Experimental setup
	Results and observations

	Discussion and Conclusion
	References

