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THE GRAPHS WITH ALL SUBGRAPHS T-PERFECT* 

A. M. H. GERARDSt AND F. B. SHEPHERDt 

Abstract. The richest class of t-perfect graphs known so far consists of the graphs with no 
so-called odd-K4. Clearly, these graphs have the special property that they are hereditary t-perfect 
in the sense that every subgraph is also t-perfect, but they are not the only ones. In this paper we 
characterize hereditary t-perfect graphs by showing that any non-t-perfect graph contains a non-t
perfect subdivision of K4, called a bad-K4. To prove the result we show which "weakly 3-connected" 
graphs contain no bad-K4; as a side-product of this we get a polynomial time recognition algorithm. 

It should be noted that our result does not characterize t-perfection, as that is not maintained 
when taking subgraphs but only when taking induced subgraphs. 
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1. Introduction. A graph G = (V, E) is t-perfect if the polyhedron 

P(G) := {x E R.vl Xv > 0 (v E V), 

(1) 
Xu +xv ::::; 1 (uv EE), 

I: ::::; jV(C)l-1 ( C is odd circuit in G) Xv 2 
vEV(C) 

has integral vertices only, i.e., when P( G) is the stable set polytope of G. T-perfection 
was introduced by Chvatal [4], and a characterization of it has proved elusive. The 
first two classes of graphs known to bet-perfect are series-parallel graphs (conjectured 
by Chvatal [4] and proved by Boulala and Uhry [2]) and almost bipartite graphs, i.e., 
graphs with a node that is contained in every odd circuit [5]. A common extension of 
these two classes is the class of graphs that do not contain an odd-K4 as a subgraph. 
Here odd-K4 means a subdivision of K4, the complete graph on four nodes, in which all 
triangles have become odd circuits (cf. Figure la). Graphs containing no odd-K4 are 
t-perfect [9]. However, there are odd-K4 's that are t-perfect, namely, the good-K4 's: 
a good-K4 is a subdivision of K4, in which two nonadjacent edges are not subdivided 
and the other four edges have become even paths (cf. Figure lb). An odd-K4 that is 
not good is called a bad-K4; bad-K4 's are not t-perfect (Lemma 11). The main result 
of this paper is the following theorem. 

THEOREM 1. If G contains no bad-K4 as a subgraph, then it is t-perfect. 
We prove this in section 3. One of the main tools is the following decomposition 

result. 
THEOREM 2. If G is weakly 3-connected, i.e., a subdivision of a 3-node-connected 

simple graph, then it contains no bad-K4 if and only if one of the following holds: 
- G contains no odd-K4; 
- G is an odd.P9 ; 
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FIG· 1. Dashed cuT"IJes indicate internally node disjoint paths of positive length, which in (b) 
all have even length. 

odd-P 9 

I 
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Frc. 2. Dashed r.uT"IJes indicate internally node disjoint paths of positive even length. The 
shaded reg·ions in (b) indicate the second and third leaf of the book. 

- G is a clean pad; 
- G is a book. 

An odd-Pg is a graph obtained from a six circuit u 1 u2, ... , u5u5, u5u1 by adding 
three node disjoint even u;u;+3-paths (i = 1, 2, 3); see Figure 2a. Note that the 
smallest odd-P9 is the Petersen graph with a node removed. 

A pad is a graph G with a Hamiltonian circuit w1 , u 1 , w2 , u2 , ... , Wk, Uk such that 
an edge not on the Hamiltonian circuit has both end nodes in U(G) := {u1 , u2, ... , uk}· 
(We also define W(G) := {w1 , w2 , ... , wk}.) 

Clearly, a pad has exactly one Hamiltonian circuit, which we denote by R( G) and 
call the rim of the pad. The set of edges not on the rim, called chords, will be denoted 
by K ( G). A pad G is clean if neither of the two pads in Figure 3 can be derived from 
G by deleting chords and contracting edges on the rim. 

A book is any graph that can be constructed as follows: 
- Take two nodes h1 and h2 (the hinges of the book), and join them by an edge. 
- Take a third node c, the center of the book, and add two internally node 

disjoint even paths, one from c to h 1 and one from c to h2 (together with 
h 1 h2 these paths form the spine of the book). 

- Add n internally node disjoint even hih2-paths P1, ... , Pn, and select on each 
Pi a nonempty collection T; of nodes that are an even distance from h1 on 
Pi. 
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- Finally, add all edges in Ri := {er I r ET;}, i = 1, ... , n. 

·~ . 
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! 
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Note that the union of each Pi U Ri with the spine forms a pad. We call theHe pads 
the leaves of the book. The path P; is called the trim of the leaf. Figure 2b indicates 
a book with 3 leaves. 

As side-product we obtain the following result (we shall give the easy proof in 
section 2.3). 

THEOREJ\1 3. There exists a polynomial time algorithm that decides whether or 
not a given graph G contains a bad-K4. 

Another easy Hide-product, of which we skip the proof, is that graphs with no 
bad-K4 are 3-colorable. This generalizes a result of Catlin [3] that graphs with no 
odd-K4 are 3-colorable. Toft [12] conjectures that a graph is 3-colorable if it does not 
contain a subgraph isomorphic to a graph obtained from K 4 by replacing all six edges 
with odd paths. 

Characterizations around t-perfection. Shepherd [ll] characterized which 
near-bipartite graphs are t-perfect. (A graph is near-bipartite if for each node v and 
each odd circuit C there is a neighbor of v on C. In fact, Shepherd [ll] characterized 
the stable set polytopes of all near-bipartite graphs.) However, the characterization 
oft-perfection among all graphs is still open. 

The graph in Figure 4 is t-perfect-as is easily proved-·-but contains a bad-K4 , 

which is not t-perfect. Thus t-perfection is not closed under taking subgraphs. T
perfection is however closed under taking induced subgraphs, i.e., under the deletion 
of nodes, but a complete list of minimally induced non-t-perfect graphs is not yet 
known. 

However, combining Theorem 1 and Lemma ll, we do have the following: 

(2) A graph contains no bad-K4 if and only if all its subgraphs are t-perfect. 

The result of Gerards and Schrijver shows that graphs with no odd-K4 are t-perfect. 
In fact, there it is proved that a graph G = (V, E) has no odd-K4 if and only if for all 
a, b E zv and all c, d E zE the polyhedron 



THE GRAPHS WITH ALL SUBGRAPHS T-PERFECT 527 

(3) {x E RV I av S Xv S bv (v E V);cuv S Xu +xv S duv (uv EE)} 

has Chvatal-rank 1, which means that the convex hull of the integral vectors in that 
polyhedron is obtained by adding all rank-1 Chvatal-Gomory cuts. From Theorem 1 
it is not hard to see that a similar result holds for graphs with no bad-K4. 

COROLLARY 4. G = (V, E) contains no bad-K4 if and only if for all a, b E zv 
and all c E zE the polyhedron 

(4) { X E RV I av S Xv S bv ( V E V); Xu + Xv S Cuv (UV E E)} 

has Chvatal-rank 1. 
The rank-1 Chvatal-Gomory cuts needed here are 

(5) L Xv S ~ l L Cuvj (C is an odd circuit in G). 
vEV(C) uvEE(C) 

One of the main open questions about t-perfection is whether the system of linear 
inequalities given in (1) is totally dual integral. This property holds for graphs with 
no odd-K4 [6], but we have not yet been able to verify this for graphs with no bad-K4 . 

By the decomposition results used in Gerards [6], it follows that to check for which 
graphs the system in (1) is totally dual integral for all subgraphs, we may confine 
ourselves to clean pads and books. 

Preliminaries. If G is a graph and u and v are nodes in G of degree at least 3, 
then a uv-leg of G is a uv-path Pin G such that all nodes of P, except u and v, have 
degree 2 in G. 

If P is a path in G and u, v E V(P) we denote the uv-path in P by Puv· If 
e =UV E E(G), Pe := Puv· 

2. Structure of graphs with no bad-K4 . We first prove that if a weakly 
3-connected graph with no bad-K4 contains an odd-K4 , then it is either an odd-P9, a 
book, or a pad (Lemma 5). Next we prove that a weakly 3-connected pad with no 
bad-K4 is clean (Lemma 6). Together these two lemmas prove the only-if direction 
of the equivalence in Theorem 2. As odd-P9 's clearly have no bad-K4 , the if direction 
follows by proving that clean pads (Lemma 7) and books (Lemma 8) have no bad-K4. 
We conclude this section with a recognition algorithm for graphs with no bad-K4. 

2.1. Books and pads. Let G be a pad. If His a subgraph of G and not a pad 
itself, we denote by K(H) the edges in K(G) with both end nodes in V(H). 

If P is a path on R( G), we say that chords e and f are nested on P, written as 
e >- p f, if e, f E K(P) and P1 is a subpath of Pe. Chords e, f of K( G) are nested if 
they are nested on some path on R(G); if not, e and f cross (notation: ex!). 

LEMMA 5. Let G be a weakly 3-connected graph with no bad-K4. If G contains 
an odd-K4 , then G is an odd-P9 , a book or a pad. 

Proof We first give some definitions: Let H be a subgraph of a graph G. A route 
of H or an H-route is a uv-path P in G such that V(P) n V(H) = { u, v} and such 
that no leg of H contains both u and v. We say that nodes u1,u2, and u3 induce an 
extended triangle in H if each pair is connected by a leg of H. A collection of three 
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FIG. 5. Dotted and dashed curves indicate internally node disjoint paths; dashed curves have 
positive length, whereas dotted curves may have length zero. In (a), dashed curves have an even 
number of edges. 

internally node disjoint vu;-paths P; (i = 1, 2, 3) that are internally node disjoint from 
H is called an H -tripod if v (j_ V ( H) and u1, u2, u3 induce an extended triangle in H. 

It is an easy graph theoretical fact that if H is a weakly 3-connected proper 
subgraph of a weakly 3-connected graph G, then G contains an H-route, or each leg 
of H is a leg of G and G contains an H-tripod. Moreover, adding an H-route to a 
weakly 3-connected graph H yields a weakly 3-connected graph. 

Assume that G is a counterexample to the lemma with a minimum number of 
edges. 

CLAIM 1. G contains no odd-Pg. 
Proof of Claim 1. Suppose the claim is false and that H is an odd-Pg in G. Let 

u1u2,u2u3 , ... , u6u 1 be the six length-1 legs of H; and, for i = 1,2,3, let pi be 
the even u;ui+3-leg of H (see Figure 5a). By assumption G =I- H. As H is weakly 
3-connected and has no extended triangle, there exists an H-route Pin G. Lets and 
t be the end nodes of P. One argues that without loss of generality, s E P 1 \ u 1 and 
t E P 2 \ U5 (see Figure 5b). Let G' := (H \ P~18 ) UP and C1, C2, C3, and C4 be 
circuits as indicated in Figure 5c. Clearly, C1 and C4 are odd circuits. Moreover, C2 
is even, as otherwise the union of C1 , C2, and C4 is a bad-K4. Hence, C3 is odd, so the 
union of C4, C3, and the symmetric difference of C1 and C2 forms a bad-K4 . D 

CLAIM 2. If H is a good-K4 and P an H-route, then P is an edge and HU P is 
a pad with R(H UP)= R(H). 

Proof of Claim 2. H is a pad. Let u1 u3 and u2u4 be the two chords of H 
and Q 1 , Q2 , Q3 and Q4 be the four legs of H on R( H) (see Figure 6a). Let s 
and t be the two end nodes of P. We may assume that s E V(Q1) \ {u1,u2 } and 
t E V(Q 2 ) U V(Q3 ) \ {u2,u4}. Let C be the unique circuit in (R(H) UP)\ Q4 (see 
Figure 6b, c). 

Fir~t suppose that C is even. If t were in V ( Q2 ) \ { u 2} (Figure 6b), then 
(H \ Qu2 1) UP would be an odd-K4, with R1 := u 1u 3 and R2 := u4u2 U Q~ 8 as 
a pair of node disjoint legs. As R1 has length 1 and R2 does not, this odd-K4 V:ould 
be bad, sot E V(Q3) \ {u3, u4} (see Figure 6c). As HU P is not an odd-P9, one of 
Q.~ 1 s, Q~2 s• Q~3 t, and Q~4 t has more than one edge. By symmetry we may assume 
that this is the case for Q~18 • But then all the legs of the odd-K4 (H \ Q2) UP, 
except maybe P or Q~41 , have more than one edge. Hence this odd-K4 is bad. 

Therefore, C is odd and thus H* := R(H) UP U { u4u2 } is an odd-K4 • Therefore, 
P has length 1 and H* is a pad with R(H*) = R(H). From this it trivially follows 
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FIG. 6. Dotted and dashed curves indicate internally node disjoint paths; dashed curves have 
positive length, whereas dotted curves may have length zero. Jn (a), dashed curves have an even 
number of edges. 

that also HU Pisa pad with R(H UP)= R(H). D 
A pad is called maximal if there is no larger pad with the same rim. A subgraph 

H of G is induced if all edges of G with both end nodes in V ( H) are in H. 
CLAIM 3. No weakly 3-connected maximal pad has a route; hence each one is an 

induced subgraph of G and has a tripod. 
Proof of Claim 3. Let H be a weakly 3-connected pad, and let P be an H-route 

with end nodes sand t. Let Q1 and Q2 be the two st-paths on R(H). As H' := HUP 
is weakly 3-connected, there exists a chord e = u1u2 of H with Ui E V(Qi) \ {s,t} for 
i = 1, 2. Moreover, as H is weakly 3-connected, there exists a chord f of H crossing 
e. Now, H* := R(H) U { e, J} is a good-K4 . As P is an H-route, f -f. st. Thus, sand t 
lie in different legs of H*. Hence, by Claim 2, P is an edge-e*, say-and H* U e* is a 
pad with R(H* Ue*) = R(H*) = R(H). It is trivial to see from this that H' =Hue• 
is a pad as well. Hence H is not maximal. Therefore, weakly 3-connected maximal 
pads have no routes. 

Now, let H be a weakly 3-connected maximal pad. As it is not equal to G, it 
must have a tripod. Moreover, if it were not intluced, one of its legs would not be a 
leg of G, but then there would be an H-route. As we have seen, this is not the case, 
so H is an induced subgraph of G. 0 

If H is a pad, u E V(H) is called a center of H if the following hold: H has a 
chord vw such that all other chords cross it and have u as end node, and H has a 
tripod such that (i) one of its three paths has end node u and this path is of length 
1 and (ii) the other two paths end in v and w and are even. We call such a tripod 
fitting H at u. 

CLAIM 4. Each weakly 3-connected maximal pad has at least one center, and each 
of its tripods fits at some center of the pad. 

Proof of Claim 4. Let H be a weakly 3-connected maximal pad; let P1, P2, and 
P3 be the legs of any H-tripod. Denote the end node of Pi on H by u;. Let Qij be 
the UiUj-path on R(H) that does not contain the third node in {u1,u2,u3}. As His 
weakly 3-connected, one of Q12 , Q23 , and Q31 is not a leg of H; i.e., one of the legs of 
the extended triangle induced by u1 ,u2,u3 is an edge of K(G). Suppose that Q13 is 
not a leg and, consequently, u1u3 E K(H). 

(6) If uiuj E K(H), then Pi U Pj is an even path. 

Indeed, if not then R(H), Pi U Pj and one of the chords of H crossing u;uj form a 
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FIG. 7. Dotted curves indicate internally node disjoint even paths. The bold edges and curves 
form a bad-K4. 

bad-K4. 

(7)P1 U P2 and P2 U P3 are odd paths, and so, by (6), Q12 and Q23 are legs of H. 

To see this, let xy be a chord of H crossing u1 U3; assume x E Q23 . It follows from 
(6) that if (7) were false, then P1 , P2 , P3, Q~~x' xy, Q 13 , and u1 u3 would constitute a 
bad-K4. By (6) and (7), P1,P2,P3,Q12 ,Q23 , and u1u3 form an odd-K4, which implies 
that 

(8) P2 consists of a single edge. 

It remains to prove that u2 is a center of H. Suppose that this is not the case; then 
there exists a chord e of H with both end nodes in Q13 (recall that Q 12 and Q23 are 
legs of H). But then P1, P2, ?3, Q 12 , Q23 , and (Q13 \ Q!3) U {e} form a bad-K4. D 

CLAIM 5. G contains a book with at least two leaves. 
Proof of Claim 5. There exists a weakly 3-connected pad (namely, each good-K4 

is one). As G is not a pad, by Claim 3 there exists a weakly 3-connected pad with no 
route and hence has a tripod. This pad and that tripod together form a book with 
two leaves. D 

Let H be a book with center c and hinges v and w, maximum number of leaves 
Li, ... , Ln, and maximum number of edges. Note that for any i =f j, Li contains an 
Lrtripod centered at c. As in the proof of Claim 4, this implies that each chord of 
L1 has one end in c and the other on the trim of Lj. Moreover, each V(Lj) induces 
a maximal pad, so by maximality of fl, each Lj is a maximal pad. 

CLAIM 6. There exists no ii-tripod. 
Proof of Claim 6. Let T be a tripod of H. As all extended triangles are contained 

in leaves, W.!} may assume that T is a tripod of leaf L1 • If T fits £ 1 at the center of 
the book, H U T would be a larger book. Hence T fits L1 at a node different from 
c. However, then Li has two tripods (namely, T and one in L2 ) that fit at different 
nodes of Li, so Li has at least two centers, which implies that it is a goodK 4. There 
are two possibilities for how the tripods fit at different nodes (see Figure 7). It is not 
hard to see that in either case, L1 U L2 U T contains a bad-K4. D 

As G itself is not ~book, H has a route--P, say. Let x and y be the end nodes 
of P. As the leaves of H are maximal pads, no one contains both x and y, so we may 
assume that x E V(L1) \ V(L2) and y E V(L2) \ V(L1). 
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FIG. 9. Dashed curves indicate internally node disjoint even paths of positive length. The closed 
curve on the outside is the rim. 

Let Q be the trim of L2. First, if Q and P do not form a tripod of L1, then the 
trim of L1 contains at least three legs, so L1 has a route, contradicting Claim 3. Thus 
Q and P form an L1-tripod, which-as Q is even-fits at x (by (7)), so P consists of 
a single edge and L1 has exactly one chord other than vw, namely, xc. By symmetry, 
the only chords of L2 are vw and ye. However, now, xc, ye, xy, and the three even 
paths in L 1 U £ 2 from v to x, y, and c form a bad-K4 • This yields a final 
contradiction. D 

2.2. Clean pads. Before we can state and prove the next lemma, we need some 
further definitions. Let G be a pad. Chords e and f touch, written as e V f, if they 
share an end node. Chords e and f are parallel (ell!) if they are nested but do not 
touch. 

A mesh is a collection of four chords e, fi, h, h with the following properties: 
- ex Ji, ex f2, fillh and hile; 
- h is not a chord of any of the four legs on R( G) of the pad R( G) U { e, fi, f2} 

that are adjacent with e. 
There are several possibilities for four chords to form a mesh. They are listed in 
Figure 8. If we delete the paths P and Q on R( G) indicated in Figure 8, we obtain a 
bad-K4 . Hence, a pad with no bad-K4 contains no mesh. 

A 3-chain is a triple e,f,g E K(G) such that e >-p f 'rp g for some path Pon 
R( G). A dirty triple is a collection of three pairwise parallel edges that do not form a 
3-chain (see Figure 9a). A path Pon R(G) is nesting if each pair of chords on K(P) 
is nested. G is nesting if, for each pair of nodes s, t E V(G), one of the two st-paths 
on R( G) is nesting. 

It is straightforward to prove that 
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FlG. JO. Dotted and dashed curves indicate internally node disjoint even paths; dashed curves 
have posdive length, whereas dotted curves may have length zero. The closed curve on the outside 
is the rim. The bold edges and curves in (c) form a test. 

(9) a pad is clean if and only if it is nesting and contains no mesh and no dirty 
triple. 

LEMMA 6. Each weakly 3-connected pad with no bad-K4 is clean. 
Proof. Let G be a weakly 3-connected pad with no bad-K4 . We have already seen 

that G contains no mesh. Assume that G is not clean. 
CLAI!v1 7. G is nonnesting. 
Proof of Claim 7. Suppose that G is nesting. Hence, it contains a dirty triple 

T := {f,g, h}. Let Pe, Qe (e ET) be as in Figure 9a. As G is weakly 3-connected, for 
each e E T there exists an edge Ze := UeVe crossing e. Assume Ue E Pe for each e ET. 
Then, for each e ET, Ve E Qe, because if Vf, say, were not in Qf, then Zf,g,f,h 
would form a mesh or G would be nonnesting. 

By symmetry, we may assume that z1llh. As Zf, Zh, f, h is no mesh, Zh V f, so 
z1i Ilg. Repeating this argument we get that z9 V hand ZJ V g. However, now G contains 
a bad-K4 (namely, the bold lines in Figure 9c)---a contradiction! 0 

CLAIJ:Vl 8. There exist two edge disjoint paths P1 and P2 on R( G) and edges 
e1,fi E K(P1) and e2,h E K(P2) such that 

(i) e; and fi are not nested on Pi (i = 1, 2), 
(ii) both ei and fi share an end node with Pi ( i = 1, 2), 

(iii) e1 x Ji. 
Proof of Claim 8. By the previous claim, there exist two edge disjoint paths P 1 

and P2 on R( G) and chords e 1 , e2, Ji, and h satisfying ( i). It is not hard to see that 
these paths and chords can be chosen to satisfy (ii) as well. If neither e1 and Ji nor 
e2 and hare crossing, choose z crossing e 1 (G is weakly 3-connected). With the aid 
of z, it is straightforward to see that either we can find edge disjoint paths P 1 and 
P2 satisfying (i), (ii), and (iii) or we find a mesh (see Figure 9a). As the latter is 
impossible, the claim follows. 0 

Choose P1, P2, ei, Ji, e2, and has in the previous claim, with IE(P1 )1 + IE(P2)l 
maximal. Let Ui, Vi be the end nodes of P; (i = 1,2). As G is weakly 3-connected, 
there exists a chord z = uv with v E P2 \ { u2 , v2 } and u tf_ P2 . By the maximality of 
IE(Pi)I + jE(P2)I, u E P1 \ { u1, v1 } (see Figure lOb). 

First, consider the special case in Figure lOc. It contains a bad-K4 , indicated by 
the bold edges. However, the general case, as in Figure lOb, can be transformed to 
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FIG. 11. Dashed curves indicate internally node disjoint even paths of positive length. The 
closed curve on the 01dside is the rim. 

that special case by contracting legs on R( G). As legs are even paths, this contraction 
could not have created a bad-K4 if one in G did not already exist. Hence we have a 
contradiction, so G is clean. D 

A chord of a pad is called universal if it is not parallel with any other chord. 
LEMMA 7. No clean pad contains a bad-K4 . 

Proof Let G be a clean pad containing a bad-K4 H such that IE(G)I is minimal. 
Let u1, u2, U3, and U4 be the four nodes of H that have degree three in H. For 
i,j = 1, ... , 4, let piJ be the u;u1-leg of H. 

CLAIM 9. The following hold: 
(i) K(G) ~ E(H). 

(ii) All legs of G on R(G) have length 2. 

(iii) If Pisa leg of H, then IPnR(G)I:::; 2. If IPnR(G)I = 2, then Pisa leg of 
G on R( G) or P has length 3. In the latter case, the four legs of H meeting 
P are even, and the sixth leg consists of a single edge. 

(iv) Ifu,v E U(G) form a 2-node cutset of G, then there exists a uv-path Pon 
R( G) with 2 or 4 edges. If P has 4 edges, it has one chord, which meets 
exactly one of u and v. 

Proof of Claim 9. If (i) were false, deleting an edge from K(G) \ E(H) would 
contradict the minimality of G, as would contracting legs of G into legs of length 2 if 
(ii) were false. 

To prove (iii), suppose P is a leg of H that contains edges of R( G). Let e1 and 
e2 be consecutive edges on P n R( G). By the minimality of G, contracting e1 and e2 
in H does not yield a bad-K4 . This means that the leg P of H containing e1 and e2, 
has length 2 or 3. Moreover, in the latter case the four legs of H meeting P are even 
and the sixth one has length one. Hence (iii) follows. 

To see (iv), note that if G has a two node cutset, then H lies mainly on one "side" 
of that cutset in the sense that one side of the cutset contains at least five legs of H 
and the other side contains at most (part of) the sixth leg. D 

CLAIM 10. G has no universal chord. 
Proof of Claim 10. Let uv be a universal chord. This means that G \ {u, v} is 

bipartite, so uv is a leg of H. Assume u = u 1 and v = u2. Let Q1 and Q2 be the 
two uv-paths in R(G). We call Q 1 U K(Q2) and Q2 U K(Q 1) the two sides of G. For 
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i, j = 1, ... , 4, let a;j be the first edge on pij going from Ui to Uj. (Thus, a.;j = aji if 
and only if IPiJ I = l.) 

As IP121 = L it follows by Claim 9 that for i = 1, 2 and j = 3, 4, ~-ij E R(G) if 
and only if pi1 is a leg of Gin R(G). Moreover, as the circuit pli U P 22 U {u1u2} is 
odd for i = 3, 4, we have the following: 

(10) If i = 3, 4, then ali and a 2i lie on the same side of G. Moreover, pli and P 2 i 

are both even or both odd. 

Also, as the circuit pi3 U ? 34 U p 4i is odd for i = 1, 2, we have that 

(11) if i = 1, 2, then ai3 and ai4 lie on different sides of G. 

Next we rule out the different cases one by one: 

(12) At least one of a13, a14, a23, and a24 is in R( G). 

Suppose that this is not the case and that a 13 E K(Q 1). Then from (10) and (11) it 
follows that a23 E K( Q1) and a 14 , a24 E K(Q2 ). Thus both Q1 and Q2 are nonnesting, 
which is a contradiction. 

(13) For i = 1, 2, either a;3 or a;4 is in K(G). 

To see this, assume that a 13 E Q1 and ai4 E Q2 (see Figure lOa). By (10), all legs 
of H adjacent to u1 u2 are even. Hence P 34 is odd, and as H is bad, it has at least 
three edges. By symmetry, we may assume that Q;,2 u 4 is not internally node disjoint 
with P 34 . Hence P 24 =IQ; u . Therefore, by (10), a24 E K(Q 1 ) and a42 x u1u2 (by 
Claim 9(iii) and since u1 u2 is "universal). However, this implies that P 23 =I= Q.;,2 .u3 , so, 
by (10), a23 E K(Q2 ) and a32 x u1u2. If a32 x a23, then a32, a2:3, a42, and a24 form a 
mesh, so a32 and a23 do not cros8. Similarly, a42 and a24 do not cro8S. However, this 
implies that G is nonnesting, a contradiction. Hence (13) follows. 

From the above we may assume that a13 E Q1 and a 14 E K(Q 1), so p 2:3 cannot 
1 2 2 be Qu 2u3 • Hence a23 E K ( Q ) and a32 x ·u1 u2. First assume that a24 E Q and 

consequently a41 x u1u2 (see Figure lOb). As G is nesting, by symmetry we may 
assume that a32 x a23, but this implies that a32,a41,a23, and a14 form a rnesh. As G 
is clean, this is a contradiction, so a24 rf. Q2. Hence, a24 E K(Q1) (see Figure lOc). 
As a32, a41, a23, and a24 is not a mesh, a32 does not cross a 23 . Similarly, a 24 does not 
cross a14. But this means that G is nonnesting-a contradiction! D 

A chord is crossed if it is crossed by at least one other chord. We call chords e1 
and e2 distant if e1 lle2 and, for i = 1, 2, the path Pi on R(G) with the same end nodes 
a8 e; but node disjoint from e3 _i satisfies K(Pi) = {ei}· 

CLAIM 11. Each pair of distant chords contains a noncrnssed chord. 
Proof of Claim 11. Let e1 and e2 be a pair of distant chords. Suppose that e1 

is crossed by z1 and e2 by z2. For i = 1, 2, Zi does not cross e3_i, as otherwise, Zi 

would be universal, or there would be a mesh, or e1 and e2 would not be distant. 
As G is nesting z1 x z2. Let x1 be the end node of z1 and x 2 be the end node of z2 
such that there exists an x1x2-path on R(G), called Q, that is internally node disjoint 
with e1 and e2. Assume z1 and z2 are selected such that Q is as short as possible. 
As G contains no mesh, either z1 V e2 or z2 v e1; assume the latter is the case (see 
Figure 11). 

For i = 1, 2, let Y; be a chord parallel with z; (z1 and z 2 are not universal). From 
the fact that G is clean, that e1 and e2 are distant, and that Q is minimal, one is able 
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FIG. 12. Dotted and dashed curves indicate internally node disjoint even paths; dashed curves 
have positive length, whereas dotted curves may have length zero. The closed curve on the outside 
is the rim. 

to deduce that Y2 E K ( Q \ x2). As e1, e2, Y2 cannot form a dirty triple, y2 is adjacent 
to e2, so x1 is an end node of e2. Hence we have symmetry between i = 1 and i = 2. 
Therefore, Yi E K ( Q \ xi) and is adjacent to e1 , but now the edges e1 , e2 , y1 , and y2 
show that G is not nesting-a contradiction! D 

If e = uv is a noncrossed chord, then u and v share a common neighbor in R( G) 
(by Claim 9(iv)), which we denote by Ue· As e E E(H), the node Ue will not be in 
V(H). 

CLAIM 12. Each pair of distant chords contains a crossed chord. Moreover, the 
noncrossed chords in G are pairwise adjacent and there are at most two of them. 

Proof of Claim 12. To prove the first statement, suppose that it is false. Let 
e and f be two parallel nonadjacent noncrossed chords. Let Q1 and Q2 be the two 
paths on R(G) joining an end of e with an end of f. As G is nesting, we may assume 
that K(Q2 ) = 0 and that Q1 is nesting. As His contained in G' = G \ { ue, u1 }, G1 

is nonbipartite. Hence K(Q 1 ) =I- 0. Leth E K(Q 1 ) with Ql minimal. As G has no 
dirty triple, his adjacent to e or to f. Thus, let us assume that h and e share an end 
node--1J, say. As Q 1 is nesting all chords in K(Q 1) are in 8(v). But that means that 
all odd circuits in G' contain v. This is impossible since not all odd circuits in H can 
go through a single node. 

The second statement easily follows from the first. Indeed, two parallel noncrossed 
chords are clearly distant by Claim 9(iv), so by the first statement of this claim they 
cannot exist. Suppose there are three pairwise adjacent noncrossed chords e1 , e2, and 
e3 . They cannot meet at a single node, as this would contradict Claim 9(iv), so they 
form a triangle. Hence K ( G) = { e1 , e2 , e3 } and R( G) is a circuit of length 6, but that 
graph has no bad-K4 . 0 

CLAIM 13. There is exactly one noncrossed chord. 
Proof of Claim 13. Suppose that this claim is false. Let e = xy and f = yz be 

two noncrossed chords. Let Q be the xz-path on R(G) not containing y. As e is not 
universal, K(Q) =f. 0. Let g E K(Q) with Qg minimal. Let h x g (by the previous 
claim, g is crossed). As Q is nesting, h E 8(y) and each chord in K(Q) crosses h. 
Hence, h is universal--a contradiction! D 

As there are no universal edges, there exists a pair of distant chords. By Claims 11 
and 12 one of the two-e = uv, say-is crossed, and the other, f, is not. Let P be the 
uv-path on R(G) not containing u1. Let Q1 and Q2 be the two paths constituting 
R( G) \ ( P U { u f}). For i = 1, 2, let Ki be the collection of edges crossing e with end 
node in Qi. 

CLAIM 14. K ( Q1 ) = K( Q2 ) = 0, K1 =/= (/J, and K2 "I= (/J. 
Proof of Claim 14. As G is nesting, (i) K(Q1 ) = 0 or K(Q2 ) = 0, (ii) K(Q1 ) = 0 
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or K2 = 0, and (iii) K(Q2 ) = 0 or K 1 = 0. From thi~ it is easy to c~eck that if the 
claim is false, then either K 1 = 0 and K(Q 1 ) = 0 or K 2 = 0 and K(Q 2 ) = 0. Assume 
that the latter is the case. Let w be the common end node of P and Q 1 . There exists 
an odd circuit in H not containing w. As UJ rf. V(H), this means that G \ { Uf, w} 
is nonbipartite. It is straightforward to check that this implies that K( Q 1) contains 
a chord parallel with e. Let h be such a chord with Q~ minimal. Then e and h are 
distant, so by Claim 11, h is noncrossed, but this contradicts Claim 13. D 

Let Q be the path R(G) \ n1. For i = 1, 2, let ei EK' with Qei n P maximal. As 
e, e 1 , e2 , f do not from a mesh, e1 x e2 or e1 V e2 , so there exists a node-w, say--- that 
lies on Qe, n P and on Qe2 n P. By Claim 14 this means that w lies on Q9 for each 
chord g E K(Q) = K(G). Hence G \ { w, n1} is bipartite. As H does not contain Uf, 

this is a final contradiction. D 
LEMMA 8. No book contains a bad-K4. 
Proof. Suppose that G is a book, and let H be any odd-K4 in G. Let C be the 

spine, h1 and h2 be the hinges, and c be the center of G. It is easy to see that for 
every e E E(C) there is a node v E {h1 , h2 , c} such that each odd circuit in G \ e 
contains v. Hence H must contain C. Consequently, H should be entirely contained 
in one of the leaves of G. As all leaves are clean pads, H must be a good-K4. D 

2.3. Recognizing graphs with no bad-K4 . In this section we prove Theo
rem 3, which says that one can check-in polynomial time---whether or not a given 
graph G contains a bad-.K4. 

First of all, note that odd-P9 's, books and clean pads are easily recognized. Second, 
a polynomial-time recognition algorithm for the containment of an odd-K4 is given 
by Gerards et. al. [8] ( cf. Gerards [7]). Hence, by Theorem 2, it suffices to prove that 
we can find for each graph G in polynomial time a polynomial-length list ,C of weakly 
3-connected graphs smaller than G such that G contains a bad-K4 if and only if at 
least one member of[, contains a bad-K4 . The following two easy-to-prove lemmas 
show that this is indeed the case. 

We need some definitions and notations. If G is a graph, then [G1 , G2 ],,,v is called 
a split if G1 and G2 are subgraphs of G such that V(Gi) n V(G2 ) = {u,v}; E(G 1 ) 

and E(G2) partition E(G), IE(G1)I, IE(G2)I ;:::: 4; and neither G1 nor G2 is an odd 
circuit. If G2 is bipartite and contains an odd uv-path, we call the split odd. If G 2 is 
bipartite and contains an even 'UV-path, we call the split even. If both G 1 and G 2 are 
nonbipartite, we call the split strong. 

If u and v are two nodes of a graph Hand£ E .N, then [HJL, denotes the graph 
obtained from H by adding a path from u to v with £ edges; we abbreviate this as 
[H]~'.; := [[H]~,v]~,v· 

LEMMA 9. Let [G1, G2]u,v be a split of a 2-connected graph G. Then the following 
hold: 

- If [Gi, G2]u,v is odd, then G contains a bad-K4 if and only if [Gi]~ v contains 
a bad-K4 • ' 

- If [Gi, G2]u,v is even, then G contains a bad-K4 if and only if [Gi]~,v contains 
a bad-K4. 

- If [G1, G2]u,v is strong and G has no odd or even split, then G contains a 
bad-K4 'if and only if at least one of [G1]~'.~ and [G2 ];',~ contains a bad-K4. 

It follows from this lemma that given a graph G we can construct a polynomial
sized list L' ( G) of graphs with no splits such that G has a bad-K 4 if and only if at 
least one member of the list has a bad-K4 . Therefore, we may restrict ourselves to 
graphs with no split. It is easy to see that a graph with no split can be obtained from 
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a 3-connected graph H by replacing some edges in H by a path of length 2 or 3 or by 
a circuit of length 3 or 5. More precisely, a graph G has no split if and only if there 
exists a 3-connected graph Hand five sets P1 , P2 , P3 , C3 , and Cs partitioning E(H), 
such that G can be obtained from H as follows: for each edge uv E P2 U C3 u Cs add 
a path from u to v with 2 edges; moreover, for each edge uv E P3 U C5 add a path 
from u to v with 3 edges; finally, remove all the edges in P2 U P3 U Cs. We denote 
G by H(P1, P2, P3, C3, Cs). Note that, given G, it is easy to find Hand the proper 
partition of its edge set. 

So we see that a graph with no split only fails to be weakly 3-connected because 
it may have pairs of "parallel" legs. Clearly, from each such pair of legs a bad-K4 can 
use at most one leg. So if we would consider the list of graphs obtainable by dropping 
a leg from each pair of parallel ones, we do not gain or lose bad-K4 's. The nice thing 
about the graphs on this list is that they are weakly 3-connected; the bad thing is 
that there may be exponentially many of them. Fortunately there is an easy way out 
of this; we do not need to create the whole list. 

LEMMA 10. Let G = H(P1 , P2 , P3, C3, Cs) be a graph with no split. Then G 
contains a bad-K4 if and only if there exists a T3 c:;;; C3 and a Ts c:;;; Cs with ITs I+ ITs I ~ 
6, such that the graph H(P1 UT3 ,P2 U (C3 \ T3) U (Cs\ Ts),P3 UTs,0,0) contains a 
bad-K4. 

(In fact, this lemma remains correct if we replace IT3I + ITsl ~ 6 with IT3I + ITsl ~ 
3.) 

3. T-perfection. The main goal of this section is to prove Theorem 1, but we 
first show that bad-K4 's are not t-perfect. In the remainder of the paper, for a subset 
Sc:;;; V(G), we use xs to denote the incidence vector of Sin ffi.V(G). 

LEMMA 11. No bad-K4 is t-perfect. 
Proof. First, note that K 4 is not t-perfect, as the vector [i, i, i, il is in P(K4), 

but obviously not the convex combination of characteristic vectors of stable sets in 
K 4 . Next, note that each bad-K4 can be reduced to K 4 by repeated application 
of the following operation: take a node u and contract all the edges incident with 
u. However, this operation preserves t-perfection, which we easily obtain from the 
following: 

(14) Let G be a graph, u E V(G), and x E ffi.V(G) such that Xv = 1 - Xu for each 
neighbor v of u. Moreover, let G be obtained fro_:n G by contracting all the 
edges in 8(u) into a new node u, and let x E ffi.V(G) be defined by Xv:= Xv if 
v E V(G) \ u and x:;; := 1 - Xu· Then x is a vertex of P(G) if and only if i 
is a vertex of P(G). 

Hence no bad-K4 is t-perfect. D 
The proof of Theorem 1 uses the following lemma (the graphs [G;]~,v are defined 

in section 2.3). 
LEMMA 12. Let G be a graph with induced subgraphs G1 and G2 such that V(G) = 

V(G1) u V(G2 ) and E(G) = E(G1) U E(G2). . . 
(a) If V ( G 1 ) n V ( G2 ) induces a clique in G, then G is t-perf ect if and only if G i 

and G2 are t-perfect (Chvatal [4]). 
(b) If G is 2-connected, G2 is bipartite, and V(G1) n V(G2) = { u, v} with uv if. 

E(G), then if u and v are on the same side of the bipartition of G2'. G is 
t-perfect if and only if [G1];,,v is t-perfect; otherwise, G is t-perfect if and 
only if [G 1Jt,v is t-perfect (Sbihi and Uhry [10]). 



538 A. M. H. GERARDS AND F. B. SHEPHERD 

(c) If G is 2-connected, both G1 and G2 are nonbipartite, and V(G1) n V(G2) = 
{ u, v} with uv (j. E( G), then Gist-perfect if and only if [Gi];,,v, [C1]~,v' [G2J;,v, 
and [G2 ]~,v are t-perfect (Boulala and Uhry [2], Gerards [6]). 

In fact, the lemma above can be generalized beyond t-perfection: It has been 
proved by Chvatal [4]-for case (a)-and Barahona and Mahjoub [l]-for cases (b) 
and (c)-that one can obtain linear descriptions for the stable set polyhedron recur-
sively through decompositions as l_n Lemma 12. _ 

Proof of Theorem 1. Let G be a counterexample to the theorem with IE(G)I 
minimal. By Lemma 12 

(15) G is weakly 3-connected and each of its legs has at most 3 edges. 

Let x be a fractional vertex of P(G). An edge uv E E(G) is tight if Xu+ Xv = l; 
an odd circuit C is tight if LvEV(C) Xv = ~(IV(C)I - 1). We denote the collection of 
tight edges by T and the collection of tight odd circuits by C. 

(16) 0 < Xv < 1 for each v E V ( G). 

Indeed, if Xu = 0, then G \ { u} would be a smaller counterexample, and if x.u = 1, u 
has a neighbor v with Xv = 0. 

(17) x is the unique solution of the system 
Xu +xv 1 

~(IV(C)I - 1) 

(uv ET), 

(C EC), L Xu 

uEV(C) 

as otherwise x would not be a vertex of P(G). For V0 <;;:; V(G), we define T(Vo) := 

{uv E Tiu E Vo} and C(Vo) := {C E CIV(C) n Vo=/= 0}. 

(18) For each Vo<;; V(G): IT(Vo)I + IC(Vo)I >/Vol. 

If this were not true, the restriction of x to V( G) \ V0 would be a unique solution of 
the system 

L Xu 

uEV(C) 

1 

~(IV(C)I - 1) 

(uv ET\ T(Vo)), 

(C EC\ C(Vo)). 

So G\ Vo would be a smaller counterexample to Theorem 1. From (14), it also follows 
that 

(19) 8(v) ~ T for each v E V. 

CLAIM 15. If C is an odd circuit, then E( C) n T contains no matching of size 
~(IV(C)I - 1). If C is an even circuit and E(C) n T contains a perfect matching, 
then E(C) <;;:; T. 

Proof of Claim 15. Let M <;;:; E( C) n T be a matching with at least ~ (IV ( C) I - 1) 
edges. If C is even, then -21 IV(C)I = "' M(x + x ) = ~ (x- + x- ) < 

L,,uvE u v L..uvEE(C)\M u v -

~ IV~C)I; thus, w: have equality throughout, which implies that also edges in E( C) \ M 
are m T. If C is odd, then there is exactly one node u' E V ( C) that is incident 
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with none of the edges in M, so we have Xu 1 = LvEV(C) Xv - LuvEM(xu +Xv) :5 
~(IV(C)I - 1) - ~(IV(C)I - 1) = 0, which contradicts (16). 0 

CLAIM 16. Let u and v be two nodes on a circuit C EC and P be a uv-path that 
is internally node disjoint from C. IfTnE(P) contains a matching M covering each 
node in V(P) \ { u, v }, then the unique odd circuit in CUP using P is tight. 

Proof of Claim 16. Let Q1 and Q2 be the two uv-paths in C, and assume that 
PU Q1 is an odd circuit-C', say. Let N be the largest matching in E(Q2 ) with 
V(N)n{u, v} = V(M)n{ u, v }. Then LrEV(C') Xr = LrEV(C')\V(M) Xr+ LrsEM(xr+ 

Xs) = LrEV(C)\V(N) Xr + IMI 2'. LrEV(C)\V(N) Xr + LrsEN(Xr + Xs) - JNI + JMI = 
LrEV(C) Xr - INI + JMJ = ~(IV(C)J - 1) - JNJ + JMI = ~(IV(C')J - 1). Thus 
C' EC. 0 

A circuit Cina graph G is called separating if G has subgraphs G1 and G2, each 
properly containing C, such that V(G) = V(G1) U V(G2), E(G) = E(G1) U E(G2), 
V(C) = V(G1) n V(G2), and E(C) = E(G1) n E(G2). 

CLAIM 17. No circuit in C is separating. 
Proof of Claim 17. Let C EC be separating, and let G1 and G2 be as indicated 

just above this claim (with G = G). For i = 1, 2, let xi be the restriction of x to 
V(Gi)· As both G1 and G2 have no bad-K4and fewer edges than G, they are t
perfect. Therefore, there exists a K E N, stable sets S}, ... , S_k in G1, and stable sets 
Sf, ... , S'f< in G2 (with possible repetitions) such that 

(20) -1 1 ( ) d-2 1 ( ) x = - xs1 + ... + xs1 an x = - xs2 + ... + xs2 . K 1 K K 1 K 

Consequently, 

(21) 
. 1 

ISj n V(C)I = 2(1V(C)I - l)fori = 1, 2andj = 1, ... , K. 

For i = 1, 2 and uv E E ( C), we denote the number of stable sets Sj with u, v tj. Sj by 

O'i(uv). As, O"i(uv) = L~1 (1-ISjn{ u, v}I) = K -I::f=l x{u,v}XSj = K-Kx{.u,v}xi = 
K(l - x~ - x~) = K(l - xu - xv), we have that 

(22) 0" 1 (uv) = 0"2 (uv) for each uv E E(C). 

By (21) and (22), we can renumber the sets Sf, ... , S'k, such that 

(23) for all j = 1,. .. , K, S} n V(C) = SJ n V(C). 

Hence, each SJ U SJ is a stable set in G and 

(24) x = _!_ (xs 1us2 + · · · + Xs 1 us2 ), K 1 1 K K 

but this contradicts that x is a fractional vertex of P(G). 0 
As G is not t-perfect, it contains an odd-K4. So, by (15) and Theorem 2, G is an 

odd-P9 , a book or a clean pad. We will deal with these cases separately. 
CASE 1. G is an odd-P9 . 

By (15), Gisin fact the Petersen graph with a node removed; see Figure 13. Let 
83,6 = {u3 ,u6 ,u14 ,u25 }. By (17), there exists an edge uv ET with S3,s n {u,v} = 0 
or a C EC such that JS3 ,6 n V(C)I < (IV(C)l -1)/2. It is easy to check that the only 
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FIG. 14. Dotted curves indicated internally node disjoint even paths; they may have length zero. 

possibility for this to hold is that either u 1 u2 E Tor u5U4 E T. By symmetry, we also 
have u2 11 3 ET or u6 u5 ET and u3 u 4 ET or ueu1 ET. Again by symmetry, we may 
assume that u1u2 E T. Hence by Claim 15, u5u5 Ff. T and U3U4 tf; T. So 'IJ,5U1 E T 
and u2 u3 ET However, that contradicts Claim 15. 

CASE 2. G -is a book. 
Let h1 , h2 be the hinges of the book and c be the center. Let L1, ... , Ln be the 

trims of the book. By (15), the spine of G is a circuit of length 5--h1 k1ck2h2, say
and the legs of each Li have length two. Let h1 sipi be the first leg of Li and p~s~h2 
be the last leg of Li (going from h1 to h2 ; see Figure 14a). It is straightforward to 
check that 

(25) each nonseparating odd circuit in G is one of h1h2 ULi; h1sipi ck1 or h2s~p~ck2 
for some i = 1, ... ,n. 

CLAl!vl 18. If p E Li and cp E E(G), then IC(p)f 2 2. Hence p E {pl,p~}. 
Proof of Claim 18. Assume IC(p)I ::; l. Let s 1r 1p and pr2 s2 be the two legs of 

L, adjacent top; see Figure 14b. By (18), IT(r1 ,p,r2 )1 .:'.: 4 - IC(r1 ,p,r2)I 2 3. By 
(18) and (19), IT(ri)I = IT(r2)l = l. Hence cp ET. By (19), we may assume that 
pr1 Ff. T; hence r1s1 E T. But now the circuit cpr1s 1 or, if s 1 = h1 , the circuit 
cpr1 s1 k1 violates Claim 15. D 

CLA!l\! 19. For each i = 1, ... , n, Pi = p; =:pi (see Figure 14d). 
Proof of Claim 19. If not, Li has three legs; see Figure 14c. By (19), (18), and 

(25), IT(s')I = 1, so, by symmetry, we may assume that sip~ ET. By Claim 18, the 
circuit ck1h1 sip1 is tight, so by Claim 16, ck1 h1 sipl sip~ is tight as well. But it has a 
chord, contradicting Claim 17. D 

CLALM 20. ck1 , ck2 ET. 
Proof of Claim 20. Suppose ck2 rf. T. Let S .- { k1 , h2 } u {pi J l = i, .. ., n}. 
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By (17), there exists an edge uv ET with Sn {u,v} = 0 or an odd circuit C EC 
with IS n V(C)I < ~(IV(C)I - 1). Using (25), it is easy to check that this implies 
that h1si ET for some i = 1, ... , n. Fix such an i. By (19) and Claim 15 none of 
sipi,pic,pis~, and s~h2 is in T. By (18), IC(si,pi,s~)I ~ 4 - IT(si,pi,s~)I' = 3, so, 
ck2h2s2p' EC and sJ.h1h2s2p' EC. Hence Xc + Xk2 = X8~ + xhl' contradicting that 
si h1 is tight and ck2 is not. D 

Now, by (19), we may assume that cp1 rf. T. By Claims 20 and 15, T(sD = 
T(si) = 0. Hence IT(sLp\ s~)I + IC(sLp1, srn ::; 3, contradicting (18). 

CASE 3. G is a clean pad. 
A priori, the tight odd circuits might run quite wildly through G. However, 

this is not the case, as is shown by the following lemma, which can be understood 
independently of the present proof. 

LEMMA 13. Let C be a nonseparating odd circuit in a clean pad G. Then IE(C)n 
K(G)I = 1. 

Proof Let G be a counterexample with IE(G)I minimal. Let C be a nonseparating 
odd circuit in G with IE(C) n K(G)I =f. 1. As contracting all edges on E(C) n R(G) 
yields another counterexample, E(C) ~ K(G). Moreover, if e E K(G) \ E(C), then 
its end nodes lie in different components of R(G) \ V(C), as otherwise, G\ {e} would 
be a smaller counterexample. We first prove that 

(26) E(C) contains no pair of parallel chords. 

Indeed, suppose that it is false. Choose parallel chords f, g E E( C) that are distant 
in the pad G \ (K(G) \ E(C)). As C is nonseparating, there exist edges ef, e9 E 
K(G) \ E(C) with no end node in V(C) such that e1 x f and e9 x g. If e1llB and 
e9 llf, then G is not clean. Thus, we may assume e1 x g. As C is odd, not all edges 
on C can cross e f, so there exists an hll e f, but then, as f and g are distant in the 
pad G \ (K(G) \ E(C)), the chords ef, f, g, and h form a mesh. 

Let c0 , ... , c2k be the nodes of C, numbered in the order in which they lie around 
R(G). From (26) it then follows that the edges of C are CiCi+k (indices modulo 
2k + 1). Let P; be the e;ci+i-path on R(G) that contains no nodes of Cother than 
ci and ci+i, see Figure 14a. Let K; := {uv E K(G) \ E(C)lu E V(Pi)}; note that for 
each i = 0, ... , 2k, K; =f. 0. For each e E K(G) \ E(C) let Ge be the odd circuit in 
R( G) U { e} that uses the fewest nodes of V ( C). 

(27) If e, f E Ki, then V(Ce) n { C;, Ci+l} = V(Ct) n { Ci,Ci+i}· 

Indeed, if not, c;c;+k+1, c;+iCi+k+l, e, and f show that G is nonnesting or has a mesh, 
and hence is not clean. 

From (27), it is easy to see that there exists an i = 0, ... , 2k, such that V(Ce) 3 c; 
for all e E K; U K;_ 1. By circular symmetry, we may assume that k + 1 is such an 
i. Let f E K 0 . By the symmetry i ....... 2k + 2 - i (mod 2k + 1), we may assume 
that c1 E V(C1); hence fllcock+l and f x C1Ck+2· Let e E Kk+I· Then ellc1Ck+2 and 
ex c0ck+l· Hence c0ck+1,c1ck+2, e, and f form a mesh (see Figure 14b). D 

For each C E C, we denote the unique edge in E(C) n K(G) by k[C]. Our 
next task is to study the structure of the collection of tight edges and odd cir
cuits as a whole. The outcome will be summarized in (35), (36), and (37); for 
proving those we need to derive some claims. We define, for each e = 0, 1, · · ., 
Kt := {e E K(G)le is in f. tight odd circuits}, Kiight := KtnT, and K%ree := Kt \ T. 
By Lemma 13, Kt = 0 fore~ 3. Moreover, 

(28) K free _ 0 
0 - ' 
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(a) (b) 

FIG. 15. Dashed curves indicate internally node disjoint even paths of positive length. The 

closed curve on the outside is the rim. 

as deleting an edge in K6ree form G would yield a smaller non--t-perfect graph. 

CLAIM 21. Ifuv E K(G) nT, then uv is the only chord with end node u. 

Proof of Claim 21. Let uw be a second chord. Let P := vv' ... w'w be the 

vw-path on R(G) not containing u. If there exists a tight odd circuit using both v 

and w, then by Claim 16, there exists a tight odd circuit using vu and uw, but this 

contradicts Claim 17 or Lemma 13. Let Cw E C(w') and Cv E C(v'). By Claim 17, 

u rf_ V(Cw) U V(Cv), so k[Cw] crosses uw and k[Cv] crosses uv. Hence, uw, uv, k[Cw], 
and k[Cv] show that G has a mesh or is nonnesting-a contradiction! 0 

CLAIM 22. If uv E K ( G) n T, then uv is not a universal chord of G. 
Proof of Claim 22. Suppose that the claim is false. We construct a new graph 

G from G as follows. For each neighbor w of u, we introduce a new node w* and 

two new edges uw* and w*w and remove the original edge uw. Moreover, we define 

x E JRV(G) by Xw := Xw if w E V(G) \ {u}, Xw• :=Xu if w is a neighbor of u in G, 
and Xu:= 1- Xu. Then, by (14), x is a vertex of P(G). 

Let G' be obtained from G by contracting uv* and v*v into one new node, called 

v again. As Xu +xv• = 1 =Xv• +xv, we get from (14) that G' is not t-perfect. On the 

other hand, as uv is universal in G, each odd circuit in G' goes through v. However, 

Fonlupt and Uhry [5] have proved that graphs containing a node that lies on each odd 
circuit are t-perfect-a contradiction. 0 

As tight odd circuits have no chords, we have by Claim 21 and (28) that 

(29) l8(u) n K(G)I:::; 2 for all u E V(G) 

and 

(30) if e E K 2, then all other chords cross e. 

By (30) and Claim 22, 

(31) 

For each e E K(G) define Ye to be the total number of tight odd circuits and edges 
containing e. From Claims 21 and 22 and by (29) and (30), we see that 

(32) Ye:::; 2 for each u E U(G). 

eE8(u)nK(G) 
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Moreover, by (19), 

(33) IT(u)I :::; 1 for each u E W(G), 

and thus, by (17), 

(34) 

IV(G)I = IU(G)I + IW(G)I 
1 

> 2 L L Ye+ L IT(u)i 
uEU(G) eEo(u)nK(G) uEW(G) 

L Ye+ L IT(u)i 
eEK(G) uEW(G) 

= ICl+ITI 
> IV(G)I. 
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Thus, we have equality throughout, which implies that we have equality in (32) and 
(33). So we get 

(35) IT(u)i = 1 for each u E W(G); 

(36) each chord in Kiight U Kgree is node disjoint from all other chords; moreover, 
the edges in Kfee form node disjoint circuits; 

and, by Claim 22, 

(37) K~ight = 0_ 

As W(G) is a stable set, by (17), there exists an equation in (17) that does not hold 
for Xw(G). Case checking yields that this means that 

(38) 

CLAIM 23. Kfree f. 0. 
Proof of Claim 23. Suppose that Kfree = 0. Then, by (36), no two chords touch. 

By (38), there exists at least one tight chord, so, by Claim 22, there exists a pair 
of parallel chords. Choose e, f E K(G) parallel, such that the shortest path-Q, 
say-on R( G) that connects an end node of e with an end node of f is as short as 
possible. Let Ge E C(e) and C1 E C(f) (as e and fare parallel, these two odd circuits 
are unique). Let u E W(G) n V(Q) and C E C(u). (C exists by (18) and (35).) As 
u ff. V(Ce) U V(C1), e,f f. k[C], and by the choice of e and f, k[C] is not parallel 
to e nor to f. Therefore, as there are no touching chords, k[CJ crosses both e and f. 
As k[C] is tight, there exists an edge hllk[CJ. As h is not a chord of Ge nor of CJ, 
k[C], e, f, and h form a mesh-a contradiction! 0 

For each e E K 1 let C[e] be the unique tight odd circuit using e. 
CLAIM 24. Kfree contains no pair of parallel chords. 
Proof of Claim 24. Let Ji = u1 u2 and h = v1 v2 be two parallel chords in Kfree; 

see Figure 15. Let P be the u2v1-path on R(G) containing v2. By symmetry we may 
assume that P is nesting. Let u2w be the second edge in Kfee incident with u2. As 
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FIG. 17. Dashed curves indicate internally node disjoint even paths of positive length. The 
closed curve on the outside is the rim. 

P is nesting, w rf. P \ { v1}, but then either u1 u2 or v1 v2 is a chord of C[u2w], or u2w 
is a chord of C[u1 u2]-a contradiction! D 

Let r be a circuit in Kfree. Let uo, ... 'UN be the nodes of r in the order in which 
they lie around R(G). From Claim 24, it follows that N is even (2k, say) and that 
the edges in r are of the form uiui+k+l (indices modulo 2k + 1); see Figure l 7a. All 
chords not in r are parallel with at least one edge in r. Thus, by (28), (30), and 
Claim 24, we have that 

(39) K2 = 0 and Kfree = E(f). 

For i = 0, ... , 2k, let Pi be the UiU;+1-path on R(G) that is internally node disjoint 
from r. By (38), there exists an edge uv in Kiight. By symmetry we may assume 
that u E P1 and v E P1 U · · · U Pk+l· As C[u1uk+il has no chords, we have that 

(40) 

CLAIM 25. Each chord in Kiight has one end node in P 1 and one in Pk+I · 

Proof of Claim 25. Let xy E Kiight \ {uv}. As we proved for uv, we may assume 
that x E P; and y E P;+k· Hence, uvllu1uk+2 and xyllu;'Uk+i+l· If i were different 
from 1, then xy, uv,u1uk+2 and uiuk+i+l would form a mesh or show that G is 
nonnesting. Hence i = 1 and the claim follows. D 

CLAIM 26. IKiightl = l. 
Proof of Claim 26. Suppose not; then there are chords v1 v2 and w1 w2 in K{ight, 

such that u1 and W1 are both on P1 and share a common neighbor w on P 1, see 
Figure 17b. From (35) we may assume that v1w ET, but now the path v 2v 1ww1w2 
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and the circuit C[u2uk+2] satisfy the assumptions in Claim 16. Hence there exists a 
tight odd circuit using both v1 v2 and w1 w2, contradicting Claim 17 or Lemma 
13. D 

Hence P1 and Pk+l are paths of length 4. Let P1 = u1 w1 uw2u2 and P2 = 
Uk+1Wk+1VWk+2Uk+2i see Figure 17c. 

We have that w2u2 tf. T, as otherwise the path vuw2u2uk+2 and the circuit 
C[uouk+l] would satisfy the assumptions of Claim 16 and thus yield a tight odd circuit 
using three chords of G. By symmetry also u 1 w1 tf. T. Hence, by (35), uw1, uw2 ET. 
But as uv ET this contradicts (19). This completes the proof of Case 3 and thus of 
Theorem 1. D 
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