
Exploring Query Execution Strategies
for JIT, Vectorization and SIMD

Tim Gubner
CWI

tim.gubner@cwi.nl

Peter Boncz
CWI

peter.boncz@cwi.nl

ABSTRACT
This paper partially explores the design space for efficient
query processors on future hardware that is rich in SIMD
capabilities. It departs from two well-known approaches:
(1) interpreted block-at-a-time execution (a.k.a. “vector-
ization”) and (2) “data-centric” JIT compilation, as in the
HyPer system. We argue that in between these two de-
sign points in terms of granularity of execution and unit of
compilation, there is a whole design space to be explored,
in particular when considering exploiting SIMD. We focus
on TPC-H Q1, providing implementation alternatives (“fla-
vors”) and benchmarking these on various architectures. In
doing so, we explain in detail considerations regarding oper-
ating on SQL data in compact types, and the system features
that could help using as compact data as possible. We also
discuss various implementations of aggregation, and propose
a new strategy called “in-register aggregation” that reduces
memory pressure but also allows to compute on more com-
pact, SIMD-friendly data types. The latter is related to an
in-depth discussion of detecting numeric overflows, where
we make a case for numeric overflow prevention, rather than
detection. Our evaluation shows positive results, confirming
that there is still a lot of design headroom.

1. INTRODUCTION
In the past decades, query processing architectures have

evolved from using the tuple-at-a-time iterator model to spe-
cialized analytical systems that use block-at-a-time execu-
tion, either producing entire materialized intermediate table
columns as in the case of MonetDB [3], or small columnar
fragments (“vectorized execution”) as in the case of Vec-
torWise [4]. Two important advantages of columnar and
block-at-a-time processing are: (1) reduced interpretation
overhead (interpretation decisions are made per block rather
than per individual tuple) and (2) enabling a direct mapping
onto SIMD instructions.1 Interpretation overhead in tuple-

1Sec 4.1 of [1] lists more advantages of vectorized execution
(e.g. adaptivity, algorithmic optimization, better profiling).

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
the authors.
Proceedings of ADMS 2017
.

at-a-time execution of analytical queries is typically more
than 90% of CPU work [4], hence block-at-a-time often de-
livers an order of magnitude better performance.

An alternative way to avoid interpretation overhead is
Just-In-Time (JIT) compilation of database query pipelines
into low-level instructions (e.g. LLVM intermediate code).
This approach was proposed and demonstrated in HyPer [9],
and has also been adopted in Spark SQL for data science
workloads. The data-centric compilation that HyPer pro-
poses, however, leads to tight tuple-at-a-time loops, which
means that so far these architectures do not exploit SIMD,
since for that typically multiple tuples need to be executed
on at the same time. JIT compilation is not only beneficial
for analytical queries but also transactional queries, and thus
better fits mixed workloads than vectorized execution. Also,
with high-level query languages blending in with user code
in frameworks such as Spark, JIT-compilation provides a
standing opportunity to compile and optimize together in a
single framework both user and database system operations.
A notable related project into this direction is Weld [11]
which offers a low-level DSL for data science workloads that
can be JIT-compiled onto multiple hardware platforms.

Overall, it seems that a mix of vectorization and JIT [14] is
needed, specifically because certain tasks, where processing
is data-dependent (e.g. fast data decompression) or where
adaptivity is important cannot be efficiently JIT-ted. HyPer
uses vectorized interpreted processing in its data scans, and
passes blocks of decompressed columns to its JIT-compiled
query pipelines [8], so it is already using a mix.

In the past two decades, SIMD instructions in common
x86 have evolved from 64-bit width (MMX) to the current
512-bit width (AVX-512). With MMX, the decision of com-
mon database architectures to ignore SIMD was logical, but
the gap between the standard (“scalar”) CPU instruction set
which operates at the 64-bit machine width and AVX-512
is now almost an order of magnitude and arguably should
not be ignored any longer. Admittedly, the database re-
search community has studied the potential of SIMD in-
structions in database operations (a non-exhaustive list is,
[12, 17]), but these typically focus on SIMD-izing particular
operations rather than looking at database architecture as
a whole. Arguably, in this time and age, we may have to
re-evaluate database architecture on a much broader level
in order to truly leverage modern processors with SIMD.

Many of the characteristics of SIMD are also found in
GPU and APU processors, which also flourish (only) if the
same set of instructions is to be applied on many indepen-
dent data items without divergence in control flow [5]. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301647322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aversion for divergent control flow is also found in FPGA
and ASIC implementations of query operators [16, 10].

In this paper we do not aim yet to propose a new ar-
chitecture for data processing on modern, heterogeneous,
computing architectures, but rather pursue the more mod-
est goal to explore parts of its design space in order to inform
future choices. Specifically, we think that columnar execu-
tion as in MonetDB and data-centric execution as in HyPer
can be seen as two designs at extreme points in terms of
the granularity dimension (full-table versus tuple-at-a-time)
as well as compilation (fully interpreted versus fully com-
piled). The question is what trade-offs lie in between. In
order to shed light on this question, we decide here to focus
on a restricted set of operations (we essentially exclude join)
and for this purpose focus on the well-known TPC-H query
1 (Q1, Figure 1). This query measures computational effi-
ciency of a database system and consists of an aggregation
with few groups and significant expression calculation. Join
optimization is not important as it contains no joins, nor is
indexing, since the selection predicate of Q1 selects > 95%
of the tuples.

Thus, in this paper we explore the execution options that
combining vectorization with JIT brings, specifically also
trying to use SIMD instructions, by generating many differ-
ent implementation variants and benchmarking these.

The main contributions of this paper are as follows:

• we show that there is a large design space for combined
vectorized and JIT compilation by illustration, in the
form of different implementation flavors [13] for Q1.

• we show that query executors on SIMD significantly
benefit from using compact data types and discuss de-
sign options for database storage that maximize op-
portunities for using thin data types. Specifically, this
involves both compact storage and associated statis-
tics, but also what policy is used for numeric overflow.

• we contribute a new adaptive “in-register” aggregation
strategy, that adaptively triggers in aggregations with
highly group locality (few neighbouring distinct groups
in the tuple stream).

In our experiments (among others on a Knights Landing
processor that support AVX512), we see that using compact
data types has become important for efficiency, as the fla-
vors using these consistently improve performance. Our ”in
register” aggregation, is the generic execution strategy that
performs best, showing that on modern architectures there
is still considerable headroom beyond the fastest system up
to date on this query (HyPer). Hence, we hope that this
paper will inspire future database query engine designers to
propose innovative vectorized query compilers.

The remaining paper is structured as follows: in the next
section we discuss TPC-H Q1 in detail, covering three as-
pects of its execution (operating on compact data types, the
perfect identity hash optimization and guarding against nu-
merical overflow in aggregates). In the following section,
we describe all the different implementation flavors we cre-
ated for Q1, including in Section 3.1 our new In-register
aggregation method, and in Section 3.2 our fully-vectorized
implementation of Q1 in AVX-512. In Section 4 we exper-
imentally evaluate our multiple Q1 implementation flavors
and compare them against each other. Section 5 discusses
future work and our conclusions.

SELECT
l_returnflag, l_linestatus,
count(*) AS count_order
sum(l_quantity) AS sum_qty,
avg(l_quantity) AS avg_qty,
avg(l_discount) AS avg_disc,
avg(l_extendedprice) AS avg_price,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice*(1-l_discount)) AS sum_disc_price,
sum(l_extendedprice*(1-l_discount)*(1+l_tax))

AS sum_charge,
FROM
lineitem

WHERE
l_shipdate <= date ’1998-12-01’ - interval ’90’ day

GROUP BY
l_returnflag, l_linestatus

ORDER BY
l_returnflag, l_linestatus

Figure 1: TPC-H Query 1 (Q1)

2. EXECUTING Q1, IN DETAIL
The case of Q1 was initially used [4] to motivate the Vec-

torWise system (then called MonetDB/X100 - we will use
”X100” here to shortly denote VectorWise-style query ex-
ecution). It showed the large interpretation overhead that
the then-common tuple-at-a-time iterator model was pos-
ing for analytical queries. The vectorized approach iterates
through the table at a vector-size of, typically, 1024 tuples.
For each operator in an expression (e.g. l tax+1), its execu-
tion interpreter calls a primitive function that accepts inputs
either as constants or a small array of the vector-size. The
primitive implementation typically is a simple loop without
dependencies that iterates through the vector (e.g. for(int

i=0; i<1024; i++) dst[i] = col[i]+1).
VectorWise also proposed “micro-adaptivity” [13], in which

different equivalent execution strategies inside an operator
are tried using a one-armed bandid approach, where the dif-
ferent strategies are sometimes explored and otherwise the
best alternative is exploited. Depending on the operator, one
can often find different ways of doing the same (e.g. eval-
uating a filter using if-then branches or with predication)
and different compilation options (different compiler, dif-
ferent optimization options, different target machines) that
also deliver equivalent “flavors” of doing the same thing. A
more complex example of micro-adaptivity is changing the
order of expensive conjunctive filter-predicates depending
on the observed selectivities. Relevant for l tax+1 is “full-
computation” [13], in which computation operations that
follow a filter operation can be executed without taking the
filter into account, i.e. are executed on all data, to get simple
sequential memory access and SIMD. In a vectorized system,
a filter typically results in a selection-vector (or bitmap),
that identifies the qualifying tuples in a batch. Subsequent
operations normally take this selection-vector into account
in order to execute subsequent operations only on a subset
of tuples. However, if the filter was not very selective, it
may be faster to compute on all values. This decision to
compute on all values or not can be made micro-adaptively,
based on observed performance (or using a heuristic based
on the selection percentage). Because in Q1, more than 95%
of the tuples survive the l shipdate predicate, and there are
multiple SIMD-friendly computations (such as l tax+1), this
optimization provides significant payoffs.

For aggregates (e.g. sum(l quantity), an aggregation table
is updated (e.g. for(int i=0; i<1024; i++) aggr[groupid[i]]

+= col[i]). Aggregation using such an array we call “Stan-
dard” aggregation here: it implies a load/compute/store
sequence for every aggregate function for every tuple. As
described in the sequel, the group-ID column is computed
before that, often using a hash-table.

Interestingly, the paper that (re-)popularized JIT for query
compilation, in the HyPer system [9] also used Q1 as its lead-
ing example, showing that a careful tuple-at-a-time compi-
lation procedure that fuses all non-blocking operators, can
produce a very tight loop for that pipeline consisting of effi-
cient LLVM instructions that clearly beats the VectorWise
approach. This paper confirms those results, however it in-
troduces a new aggregation strategy called “in-register” ag-
gregation that allows vectorized execution to claim back the
performance crown on Q1. One of the reasons this new ag-
gregation strategy is faster is that it allows to operate on
compact data types and is SIMD-friendly. Our point is not
to argue that vectorization is better than JIT compilation,
on the contrary. The idea of “in-register” aggregation could
also be applied with JIT (though we do not do so yet, here)
and is an example of the rich and still open design space of
query compilation, beyond just data-centric compilation.

2.1 Compact vs. Full data types
The database schema typically influences the data repre-

sentation chosen for query execution. For example in Q1,
we notice that column l tax is of SQL type decimal(15,2).
The more efficient, and often used, way of implementing
decimal(x,y) types in SQL is to represent them as integers
x.10y, where the system remembers y for each decimal ex-
pression. As such, we can deduce that l tax will fit into a
64-bit integer (log2(1015+2) < 64).

In terms of real data population, though, the actual value
domains are much more restricted:

• l tax only contains values (0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8), which represented as integers (value range
[0,80]) fit a single byte. Similarly, l discount only con-
tains values 0.0 and 0.09, so the integer range is even
more restricted: [0,9].

• l returnflag and l linestatus contain single-character
strings that range respectively between ’A’-’R’ and
’F’-’O’ (in Unicode, the code ranges are [65,82] and
[70,79]). It is possible to represent both as bytes.

• l extendedprice varies between [901.00,104949.50], so
its integer domain [90100,10494950] fits a 32-bit inte-
ger (it actually needs 24 bits).

• the expression (1+l tax) produces values in the domain
[1.0,1.8], which in the integer representation of dec-
imal(15,2) becomes [100,180]. This still fits a single
unsigned byte.

• (1-l discount)*(1+l tax) produces values in the do-
main [0.91,1.8], which in the integer representation of
decimal(15,2) becomes [91,180]. This still fits a sin-
gle unsigned byte. Arguably, to guarantee no loss of
precision and exact answers, in a multiplication the
return type could be decimal(30,4)2, which would lead
to [9100,18000], which still fits a two-byte short.

2Please note that this is not specified by the SQL stan-
dard. An alternate policy could be to deliver the maximum
precision of both * operands, i.e. decimal(15,2) again, or
decimal(30,2).

• following the latter, l extendedprice*(1-l discount)

produces integer values in the domain [8199100,
1049495000], fitting a 32-bit integer.

• l extendedprice*(1-l discount)*(1-l tax) produces in-
teger values in the domain [819910000,188909100000],
for which a 64-bit integer must be used.

We can see that the two additions and subtractions in Q1
can be done using single-byte logic. The three different mul-
tiplications (that remain after common-subexpression elim-
ination) should be done with 16-bit, 32-bit and 64-bit pre-
cision, respectively. The often-followed policy of using the
implementation type implied by the SQL type (i.e. 64-bit
integer due to decimal(15,2)) wastes SIMD effort. We can
calculate this as doing two (add/sub) plus three (mult) hence
5 operations on 64-bit = 320 bits, whereas doing two on 8-
bit, one on 16-bit, one on 32-bit and one 64-bits leads to
128-bit (3x less “SIMD-work”).

With that in mind, a natural question is: how can the
query compiler know about these column domains? Obvi-
ously, there are statistics that analytical database systems
already keep, for instance ZoneMaps (also called MinMax)
indexes specifically provide this information, not only for
whole table columns, but also for specific stretches.

A more critical variant of the question is how a system
can guarantee tight [Min,Max] bounds if the system can be
updated. A single (inserted) large value could hence force
all computation onto the widest possible integer type, which
seems a serious performance vulnerability given that real
data (unlike TPC-H) is noisy.

This paper does not aim to provide a definite answer
to that question, rather aims to instill research towards
achieving systems that both keep most of their data tightly
represented, yet can handle updates. We do observe that
columnar compressed systems typically handle updates out-
of-place, in C-store this is called Read-Store and Write-
Store [15]. VectorWise similarly performs updates in a dif-
ferential structure called Positional Delta Tree (PDT [6]).
HyPer stores its DataBlocks [8] for cold data in compressed
form, whereas hot data is stored uncompressed. Until now,
these systems move data periodically towards the compressed
format based on data hot-ness. However, it is envisionable
to do this not solely based on data temperature, but to also
let data distributions play a role. That is, one could let out-
liers stick around in the Write-Store longer, or move them
to an uncompressed block (HyPer terminology) such as not
to disrupt the tight [Min,Max] ranges that can be kept on
the compressed Read-Store.

One can alternatively see execution on compact data types
as a case of “compressed execution” [2]. The compression
schemes of VectorWise use “patching” [18], which means
that the compression scheme stores outliers in a separate lo-
cation, and they are decompressed in a separate “patching
phase”. One could envision systems where execution on a
range of tuples is split up in disjunct subsets of tuples that
within each subset have a homogeneous (compressed) repre-
sentation – which is very similar to patching. This way one
can JIT-generate specific code for each such specific subset.

2.2 Perfect Identity Hash Optimization
Continuing our in-detail observation of TPC-H Q1, we

note that after these calculations, data gets aggregated. This
means that GROUP BY expressions must be calculated

and transformed into group-IDs, where we assume these
IDs to be array indexes of an aggregation table that con-
tains the aggregate results (“Standard” aggregation). In
this query (where there are no interesting orders, as TPC-
H prohibits creating indexes on columns l returnflag and
l linestatus), most systems will use hash-based group-ID
calculation. However, exploiting the limited domain of these
columns, a specific optimization would represent their single-
character values as Unicode integer numbers. A single such
column could directly be used as the array-index group-ID,
leaving the non-occurring character slots in the aggrega-
tion table unused. This wastes memory, but as this mem-
ory is not touched this may be acceptable as the size of
the array is not large. The memory waste can be made
smaller by only reserving 1+Max-Min slots and subtract-
ing the Min value (groupID[i] = col[i]-Min). The advan-
tage of this is that no hash-table is needed at all, in fact
the identity hash is trivially a perfect hash. This perfect
identity hash optimization can also be applied with multi-
column group-by using addition and multiplication by the
domains: e.g. for two columns groupID[i] = (col1[i]-Min1)

+ (1+Max1-Min1)*(col2[i]-Min2).
In case of Q1, the GROUP BY columns happen to be all

representable in single-bytes, and the results of all compu-
tations as well (as (1+82-65) * (1+79-70) = 180). Therefore
the perfect identity hash optimization in Q1 provides fertile
ground for SIMD execution: seven AVX-512 instructions
(load,-,*,load,-,+,store) compute 64 group-IDs.3

2.3 Guarding against Overflow in Aggregates
Finally, we turn our attention to the task of calculating

the count() and sum() aggregates (avg() is a combination of
these two), specifically focusing on the problem of overflow
in sum(). A database query processor is required to produce
correct answers. It might occur that due to enormous data
sizes (very many, large values) a sum() result can no longer
be represented by the system. Rather than giving a wrong
answer in such a case, the system should give a runtime
error: it should check for numeric overflow.

Checking for overflow is an un-sexy database engine topic
that has received scant attention in literature. Many database
systems are implemented in C or C++ and these program-
ming languages do not expose the overflow flags that mod-
ern CPUs have for their scalar instructions. This means
that overflow-checking involves rather convoluted extra if-
then-else tests, where the if-branch must perform various
comparisons. This represents extra work that needs to be
executed for every addition in the sum(). Given the simple
work a sum() performs, this can impose significant overhead.

Interestingly, the use of the LLVM environment by HyPer
gives that system access to CPU overflow flags, as these are
exposed by LLVM. This significantly reduces the checking
overhead, but there still is a necessity to perform an if-then
based on the overflow flag, as an error needs to be raised
in case of overflow. An optimized method of guarding for
overflow is to continue execution but just OR the overflow
flag results of all operations together. Only at the end of
the query (or morsel) an error is raised if the flag got set.

3The astute reader will remark that SIMD instruction sets
provide no byte-granularity multiplication, however in case
of multiplication by a constant (as here) where we can
guarantee no overflow, multiplication instructions on wider
SIMD widths can be used to do the job.

This further reduces overhead, but due to the OR work some
overhead still remains.

In the previous sections, we discussed how SIMD-friendly
systems might be very aware of the domains of the columns
involved in (sum) expressions, in order to choose compact
representations for them. Such systems could in many cases
move from overflow-checking to overflow prevention. In fact,
for the simple additions, subtractions and multiplications
we discussed before, the knowledge about the domains not
only allowed us to choose compact data types, it also allows
to skip overflow checking altogether (as we know it cannot
occur). Please note that SIMD instruction sets, unlike scalar
CPU instruction sets, do not provide support for overflow
flags, generically, so overflow prevention is crucial for SIMD.

However, for (sum) aggregates, we cannot so easily avoid
overflow checking. If we would know a limit on the amount
of tuples that will be aggregated, we could obtain bounds on
the outcome of the aggregate function by multiplying this
limit with the Max and Min (if negative) statistic on the
aggregated expression. Often, a query pipeline can derive a
particular limit on the amount tuples that pass through it.
For instance, in HyPer, execution is morsel-driven, so the
outer-loop will only be taken as many times as the morsel
size. Also, the full table (partition) size is also such a bound,
however in case of joins and its worst case of Cartesian prod-
uct, multiple such bounds would need to be multiplied to get
a reliable limit.

Alternatively, the system might impose a maximum-tuple-
bound at a particular extreme value that will never occur in
practice (e.g. one US trillion or 240 tuples passing through a
single thread – it would take hours and the system could in
fact raise a runtime error if it would pass in reality). If we
take that approach to Q1, we can see that under the logic
of bounding the max-tuples-per-thread to 240:

• sum(l discount), sum(l quantity), sum(l extendedprice)

will fit a 64-bit integer.

• sum(l extendedprice*(1-l discount)*(1+l tax)), and
sum(l extendedprice*(1-l discount)) will need a 128-
bit integer.

Of course, if the decimal type of the summed expression
has a lot of precision and the actual values stem from a
wide range, then 128-bit integers might still not be enough
in terms of this limit. Even though systems often do not
support any decimal larger than what fits in a 128-bit in-
teger, queries with these characteristics should not simply
fail, because, in practice in many cases the result will fit
(after all, we are computing a worst-case bound). For this
cases, a system trying to apply overflow prevention in ag-
gregates does need to have a back-up solution that in fact
performs the (slower) overflow checking, using CPU overflow
flags or comparisons. One can argue whether operating on
128-bit integers is efficient, anyway. These data types are
supported by C/C++ compilers (int128 t), however mod-
ern CPUs do not support them natively, so every simple
calculation must be mapped to multiple 64-bit calculations
that get combined. Moreover, there is no SIMD support for
such 128-bit calculations at all.

In all, systems that support overflow prevention as an op-
timization for aggregate calculations are still faced with sig-
nificant cost for these primitives. This is one of the reasons
that HyPer could claim such a performance advantage over
VectorWise in Q1 in [9]. The “in-register” aggregation that

we will introduce in the sequel reduces memory access (by
aggregating in a register instead) but has as additional ad-
vantage that overflow prevention can be applied much more
aggressively. In fact, it allows to do almost all sum() cal-
culation on the 64-bit granularity which, in turn, is SIMD-
friendly.

3. OUR Q1 IMPLEMENTATION FLAVORS
The implemented flavors we created in standalone micro-

benchmark code reach from X100-inspired (using vector-
ized execution, similar to what VectorWise would do) over
HyPer-inspired (data-centric, tuple-at-a-time, similar to what
HyPer would do) to hand-written implementations in AVX-
512 4, as well as an implementation in Weld [11] 5. Our
flavors include variations in data types used, aggregation
storage layout (NSM /DSM denotes how the aggregates are
stored: row-wise resp. columnar), overflow checking/pre-
vention as well as variations of the aggregation algorithm.
Table 1 gives a quick overview over the Q1 flavors imple-
mented and benchmarked.

3.1 In-register aggregation
In the context of Q1, with few columns, the simple imple-

mentation with a thread-private aggregate table is used. As
described earlier, finding the aggregate slot (computing the
group-ID) can be done very fast using the perfect identity
hash optimization (otherwise, a hash-table could be used).
When SIMD-izing such aggregation, special care is needed to
avoid anomalies like lost updates in the aggregation table.
This could happen, because when multiple aggregates are
updated within a SIMD register, it is not guaranteed that
these (partial) aggregates belong to different groups. Thus,
a naive scatter to the aggregation table might lead to lost
updates. This issue can be addressed in multiple ways: (1)
the system might prevent conflicts, (2) conflicts are detected
and resolved (in register) before the aggregation table is up-
dated, or (3) the layout of the aggregation table is modified
in a way to allow for conflict-free updates.

As opposed to array-based aggregation we propose in-
register aggregation which prevents conflicts, and reduces
the amount of load/stores (scatter/gathers). It is based on
the idea that it is favorable to virtually reorder all active
vectors, via modification of the selection vector, such that
all tuples belonging to the same group appear consecutively.
Afterwards the (virtual) order can be exploited to aggregate
more efficiently.

Figure 2 depicts an example. The algorithms consists of
two phases: First, a – partial shuffle – is performed which
uses the group ids and the selection vector to build a new
permutation of the selection vector in which all the groups
are clustered. The algorithm consists of two steps: First,
we store the per-group consecutive positions. We use two
arrays. The first array maps the group-ID to a position in
the second array (indirection to minimize the active working
set). The second array stores the consecutive positions in
slots. Whenever a new group appears, we allocate vector-
size many slots in the second array (edge case: all tuples in a

4Source code can be found under https://bitbucket.org/
adms17/expl_comp_strat
5Our implementation uses the open source version of
Weld (https://www.github.com/weld-project/weld, ac-
cessed on July 11 2017). We had to extend Weld with 128-bit
integer arithmetic for this.

Figure 2: In-register aggregation with one col-
umn (col), index into aggregate table (group id) and
selection vector (sel)

stride belong to one group). Note that this allocation of slots
can fail in case of too many groups. Afterwards we build
the new selection vector by iterating over the groups and
copying the positions. In addition, this step also computes
the group boundaries (lim) and memorizes in which order
the groups appear (grp) which will be needed in the next
phase.

Using a lot of care, we were able to create an initial fast
scalar version of this shuffle that operates at just 6 cycles/-
tuple on Sandy Bridge.

Additionally it is possible to SIMD-ize partial shuffle us-
ing AVX-512. In our implementation we exploit the conflict
detection instruction (vpconflictd) which, in the 32-bit ver-
sion, takes a 16 (32-bit) integers as its input and produces
16 (32-bit) masks. For one element i it checks whether the
elements from 0th to (i − 1)th (previous elements in the
SIMD lane) are equal the element i. If this is the case for an
element k, then the k-th bit of mask i will be 1, otherwise it
will be 0. If done on the SIMD register full of group-IDs, it
is possible to determine how many tuples end up in the same
before the before a given tuple (number of 1 bits in mask
i.e. population count 6). Together with a per-group offset,
this produces unique indexes which are used to scatter out
the positions from the selection vector. The per-group off-
set is the current location where new positions into a group
will be written and is essentially an array of 16-bit indexes
indexed by the group-ID. Afterwards the per-group offsets
have to be updated by scattering the (unique) indexes back.
Note that in case of conflicts the highest SIMD lane [7]
wins, which - here - is the highest index. After the previ-
ous steps have been done for the whole selection vector, the
new selection vector will be built. This, per-group, copies
the stored positions into the resulting selection vector. On
Knights Landing our SIMD-ized partial shuffle was able to
operate at 9 cycles/tuple whereas the initial scalar version
runs at 13 cycles/tuple.

The second phase calculates the aggregates using ordered
aggregation (Algorithm 1). This aggregation algorithm ex-
ploits the fact that groups now appear in order. Hence, it
just aggregates the column values until the group boundary
is detected, then it updates the final aggregates in the table

6Sadly, in AVX-512 there is no instruction that calculates
the population count in parallel. Hence we implemented
a fast population count using a in-register lookup table
with 32-bit granularity, which in our specific case leads to 4
lookups done via vpermd.

Flavor name X100 HyPer Data types Overflow Layout Aggregation Comments
X100 Full NSM Standard X - Full Prevent NSM Standard
X100 Full DSM Standard X - Full Prevent DSM Standard
X100 Full NSM Standard Fused X - Full Prevent NSM Standard & fused
X100 Full NSM In-Reg X - Full Prevent NSM In-register
X100 Compact NSM Standard X - Compact Prevent NSM Standard
X100 Compact DSM Standard X - Compact Prevent DSM Standard
X100 Compact NSM Standard Fused X - Compact Prevent NSM Standard & fused
X100 Compact NSM In-Reg X - Compact Prevent NSM In-register
X100 Compact NSM In-Reg AVX-512 X - Compact Prevent NSM In-register Optimized for AVX-512
HyPer Full - X Full Detect (flag) NSM Standard
HyPer Full OverflowBranch - X Full Detect (branch) NSM Standard
HyPer Full NoOverflow - X Full Prevent NSM Standard
HyPer Compact - X Compact Detect (flag) NSM Standard
HyPer Compact OverflowBranch - X Compact Detect (branch) NSM Standard
HyPer Compact NoOverflow - X Compact Prevent NSM Standard
Weld - - Full Prevent NSM Standard
Handwritten AVX-512 - - Full Prevent NSM Standard (SIMD) Hand-written in AVX-512
Handwritten AVX-512 Only64BitAggr - - Full Prevent NSM Standard (SIMD) Hand-written in AVX-512

all aggregates in 64-bit arithmeticTable 1: Q1 flavors

using the partial aggregate. The depicted partial aggregates
array does not exist because the ordered aggregation directly
updates the aggregate in the aggregate table. Note that or-
dered aggregation can relatively easily be implemented using
SIMD.

Algorithm 1 Ordered aggregation

1: procedure aggr sum(sel[], col[], lim[], grp[], nrGroups)
2: g ← 0
3: k ← 0
4: while g < nrGroups do
5: sum← 0
6: while k < lim[g] do
7: sum← sum + col[sel[k]]
8: k ← k + 1
9: grpID ← grp[g]

10: table[grpID].sum← table[grpID].sum + sum
11: g ← g + 1

This method avoids read/write conflicts which would oth-
erwise occur on a per-tuple basis. Further, the type of the
partial aggregate can be restricted because we know that
the partial sum is computed maximally for the whole vec-
tor. The vector-size, say 1024, is a much tighter bound than
240. This means all partial aggregates in Q1 fit in a 64-bit
register. In case of Q1 this removes almost all expensive
128-bit arithmetic from the hot-path. The 128-bit additions
still have to be done, but only once per group, per vector.

We finally note that “in-register” aggregation is an adap-
tive way of handling aggregates. The partial shuffle is very
fast, but can fail, if there are too many distinct group values
in the vector (more than 64). In that case, normal vector-
ized aggregation primitives are used, and we use exponential
back-off to re-try with in-register aggregation much later.
Such micro-adaptive behavior is easy to integrate in vector-
ized query processors [13].

3.2 Q1 in AVX-512
The hand-written AVX-512 implementation utilizes over-

flow prevention and pushes 16 tuples-at-a-time through its
pipeline. Expressions are evaluated using AVX-512 instruc-
tions. The l shipdate selection is realized using bit-masks
created with AVX-512 comparisons and will later be used to
mask out tuples not satisfying the predicate.

The group-IDs are computed from l linestatus and
l returnflag. Both columns are 8-bit wide in this case (Full,
not Compact types). In order to later exploit the 32-bit

gather/scatter, we cast them to 16-bit, generate the group-
ID and then cast them to 32-bit to generate the final index
in the aggregate table.

A side effect of using SIMD is that write conflicts can oc-
cur even within a single thread. In order to achieve conflict-
free and parallel updates to the aggregate table, we allocate
eight consecutive slots for each aggregate, whereas eight is
the degree of data-parallelism that can be achieved in AVX-
512 with 64-bit values. The slots are used to maintain partial
aggregates that belong to the same group and each slot is
associated with exactly one SIMD lane. Thus gathers and
scatters from/to the i-th SIMD lane may only address the
i-th slot.

4. EVALUATION
For most experiments we used a dual socket machine with

two Intel Xeon E5-2650 v2 (Sandy Bridge) and 256 GiB
main memory running Fedora 24 with Linux kernel version
4.7.9 and GCC 6.3.1. In order to reduce interference with
NUMA effects the test process was bound to processor 0 (on
NUMA node 0) whereas all memory allocations were bound
to NUMA node 0.

4.1 Standard vs. in-register aggregation
To find out in which situations the in-register aggrega-

tion excels, we compare it against the standard array-based
aggregation on the - above mentioned - Sandy Bridge ma-
chine. The setup of the experiment is as follows: We used
a vectorized execution pipeline. For each column we load
a number of vectors and then aggregate each column into
a sum of each column’s values for each group. Each vector
consists of up to 1024 values and the size of the input is 108

tuples. We generate a uniformly distributed group-ID (key)
column. These group-IDs are spread across the aggregate
table in row-wise layout with a spreading factor of 1024. All
columns including the group-ID are 64-bit integers. The ag-
gregates are 128-bit integers and it is assumed that partial
aggregates fit into a 64-bit integers.

Figure 3 compares standard aggregation with in-register
aggregation in the block-at-a-time processing model i.e. for
n aggregates n aggregation primitives have to be called. It
can be seen that for a low number of aggregates both aggre-
gation strategies perform almost equal while with increasing
number of aggregates in the query, the standard aggregation
shows a worse performance mainly due to (1) with more ag-
gregates the cost of the partial shuffle is better amortized (2)

2 4 6 8 10

1,000

2,000

3,000

Number of aggregates

T
im

e
in

m
il
li
se

co
n

d
s

Standard, 4 groups Standard, 8 groups Standard, 16 groups

In-register, 4 groups In-register, 8 groups In-register, 16 groups

Figure 3: Standard vs. in-register aggregation, 128
bit aggregates

Standard aggregation touching the same cache lines contain-
ing the aggregates in the aggregate table many times and (3)
load/store conflicts when only a few entries (groups) in the
aggregate table are thrashed.

2 4 6 8 10

500

1,000

1,500

2,000

Number of aggregates

T
im

e
in

m
il
li
se

co
n

d
s

Fused standard, 8 groups Fused standard, 16 groups

In-register, 8 groups In-register, 16 groups

Fused in-register, 8 groups Fused in-register, 16 groups

Figure 4: Fused Standard vs. in-register aggrega-
tion, 128-bit aggregates

Problem (2) can be mitigated by fusing the aggregation
primitives together through merging them into one loop
that updates multiple aggregates (essentially “Loop Fusion”,
note that this typically requires JIT compilation, see [14],
as the combination of aggregates is only known at query
time). In Figure 4 the fused standard aggregation is com-
pared to the fused and non-fused in-register aggregation. In
our case Loop Fusion improves the standard aggregation’s
performance in comparison to in-register aggregation but
problems (1) and (3) (in case of few distinct group values)
still hold, which is the reason why in-register aggregation
out-performs the standard aggregation for more than 6 (8
groups) resp. 8 (16 groups) aggregates. Interestingly fus-
ing the in-register ordered aggregation primitives provides
hardly any benefit (≤ 6 aggregates) and can even be detri-
mental (> 6 aggregates).

4.2 Q1 flavors
Based on the promising results of Section 4.1 we imple-

mented multiple versions of Q1 in order to compare their
response times, single-threaded. Starting from 3 base imple-
mentation we derived different flavors: A vectorized X100-
alike implementation which processes a block-at-a-time and
prevents overflows, a HyPer-alike which processes a tuple-
at-a-time and checks for overflows and a hand-written AVX-
512 version which processes a block of 16 tuples at a time
and prevents overflow. Flavors include different methods
for overflow detection and prevention, different aggregation
techniques, varying aggregate table layout, as well as, dif-
ferent data representations.

We tested these flavors on two machines. One is the -
above mentioned - Sandy Bridge machine. Figure 5 visual-
izes the response times each flavor achieved. Refer to Ta-

ble 1 for a description of each flavor. It can be seen that the
vectorized approach together with in-register aggregation,
compact data types and overflow prevention (X100 Compact
NSM In-Reg) is able to outperform the other approaches. As
visualized this approach also beats the HyPer-alike imple-
mentations with and without overflow detection. Generally-
speaking, fusing the aggregate calculation into one primitive
improves the response time because the aggregates which
are accessed concurrently are often in the same cache-line.
Further, standard aggregation can be beaten by in-register
aggregation in Q1. NSM appears to be the better choice,
as aggregates are closer together in memory as compared to
DSM and compact data types tend to speed up vectorized
processing whereas - in Q1 - they slow down HyPer-alike
implementations.

X10
0

Full
N

SM
Sta

ndar
d

X10
0

Full
D

SM
Sta

ndar
d

X10
0

Full
N

SM
Sta

ndar
d

Fuse
d

X10
0

Full
N

SM
In

-R
eg

X10
0

Com
pac

t
N

SM
Sta

ndar
d

X10
0

Com
pac

t
D

SM
Sta

ndar
d

X10
0

Com
pac

t
N

SM
Sta

ndar
d

Fuse
d

X10
0

Com
pac

t
N

SM
In

-R
eg

H
yP

er
Full

H
yP

er
Full

O
ve

rfl
ow

Bra
nch

H
yP

er
Full

N
oO

ve
rfl

ow
W

el
d

H
yP

er
Com

pac
t

H
yP

er
Com

pac
t

O
ve

rfl
ow

Bra
nch

H
yP

er
Com

pac
t

N
oO

ve
rfl

ow

0

2,000

4,000

6,000

8,000

T
im

e
in

m
il
li
se

co
n

d
s

Figure 5: Different Q1 implementations on Sandy
Bridge using scale factor 100.

Additionally we evaluated our Q1 flavors on an Intel Xeon
Phi 7210 (Knights Landing) with 110 GB of main mem-
ory running Ubuntu 16.04 LTS using Linux Kernel 3.10.0
and GCC 5.3.1. The main memory is split into different
NUMA regions: Four regions à 24 GB represent the nor-
mal (DRAM) main memory whereas the other four NUMA
regions represent the accessible High-Bandwidth Memory
(HBM). We limited the scale factor to 75 because scale factor
100 would exceed the local (DRAM) main memory capacity
of a single NUMA node and would have caused interference
with High Bandwidth Memory and/or cross-node NUMA
traffic.

X10
0

Full
N

SM
Sta

ndar
d

X10
0

Full
D

SM
Sta

ndar
d

X10
0

Full
N

SM
Sta

ndar
d

Fuse
d

X10
0

Full
N

SM
In

-R
eg

X10
0

Com
pac

t
N

SM
Sta

ndar
d

X10
0

Com
pac

t
D

SM
Sta

ndar
d

X10
0

Com
pac

t
N

SM
Sta

ndar
d

Fuse
d

X10
0

Com
pac

t
N

SM
In

-R
eg

X10
0

Com
pac

t
N

SM
In

-R
eg

AVX-5
12

H
yP

er
Full

H
yP

er
Full

O
ve

rfl
ow

Bra
nch

H
yP

er
Full

N
oO

ve
rfl

ow
W

el
d

H
yP

er
Com

pac
t

H
yP

er
Com

pac
t

O
ve

rfl
ow

Bra
nch

H
yP

er
Com

pac
t

N
oO

ve
rfl

ow

H
an

dw
rit

te
n

AVX-5
12

H
an

dw
rit

te
n

AVX-5
12

O
nly

64
BitA

gg
r

0

1

2

3
·104

T
im

e
in

m
il
li
se

co
n

d
s

Figure 6: Different Q1 implementations on Knights
Landing using scale factor 75.

Figure 6 plots each flavor’s response time. In general it
shows a similar picture as with the Sandy Bridge machine

with one exception being the hand-written AVX-512 im-
plementation(s) which are the fastest of the flavors tested.
Also it can be seen that other implementations can be op-
timized using AVX-512 i.e. wider SIMD and more com-
plex operations are available as instructions. Additionally
it can be said that the HyPer implementation performs very
slowly, which is caused by overflow detection through GCC’s
builtins, whereas the implementation without overflow de-
tection performs better than the average.

5. CONCLUSIONS
We argued for redesigning database systems to allow us-

ing more compact data types during query evaluation then
naturally provided by the schema. This allows to max-
imize SIMD data parallelism and leads to more efficient
processing. Further, we presented in-register aggregation,
an efficient aggregation technique that can further exploit
the benefits of compact data types as partial aggregates
may use smaller types themselves and can be vectorized
easily. We compared multiple implementations of TPC-H
Q1 against each other (HyPer-inspired, X100-inspired and
a hand-written Q1) on different hardware. Our proposed
combination of vectorized execution, compact data types,
overflow prevention and in-register was able to outperform
flavors of HyPer-alikes and X100-alikes but not the hand-
optimized version of Q1 directly implemented in AVX-512.
Through the positive results we have shown that it is possi-
ble to improve upon the current state-of-art which confirms
it is still worth to explore the design space further. In future
work, we plan to further explore even more compact data
representations (compressed execution) and explore meth-
ods to fully take advantage of compact data representations
during query evaluation.

6. REFERENCES
[1] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos,

S. Madden, et al. The design and implementation of
modern column-oriented database systems.
Foundations and Trends R© in Databases, 5(3):197–280,
2013.

[2] D. Abadi, S. Madden, and M. Ferreira. Integrating
compression and execution in column-oriented
database systems. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’06, pages 671–682, New York, NY,
USA, 2006. ACM.

[3] P. A. Boncz, S. Manegold, and M. L. Kersten.
Database architecture optimized for the new
bottleneck: Memory access. In Proceedings of the 25th
International Conference on Very Large Data Bases,
VLDB ’99, pages 54–65, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[4] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-Pipelining Query Execution.
In CIDR, volume 5, pages 225–237, 2005.

[5] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and
G. Saake. Gpu-accelerated database systems: Survey
and open challenges. In Transactions on Large-Scale
Data-and Knowledge-Centered Systems XV, pages
1–35. Springer, 2014.

[6] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos,
and P. Boncz. Positional update handling in column

stores. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’10, pages 543–554, New York, NY, USA,
2010. ACM.

[7] Intel. Intel 64 and ia-32 architectures software
developer’s manual, September 2016. [Accessed on
June 28, 2017].

[8] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz,
T. Neumann, and A. Kemper. Data Blocks: Hybrid
OLTP and OLAP on compressed storage using both
vectorization and compilation. In Proceedings of the
2016 International Conference on Management of
Data, pages 311–326. ACM, 2016.

[9] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. Proceedings of the VLDB
Endowment, 4(9):539–550, 2011.

[10] Oracle. Oracle announces breakthrough processor and
systems design with sparc m7.
https://www.oracle.com/corporate/pressrelease/

sparc-m7-102615.html, October 2015. [Accessed on
June 12, 2017].

[11] S. Palkar, J. J. Thomas, A. Shanbhag, D. Narayanan,
H. Pirk, M. Schwarzkopf, S. Amarasinghe, M. Zaharia,
and S. InfoLab. Weld: A common runtime for high
performance data analytics. In Conference on
Innovative Data Systems Research (CIDR), 2017.

[12] O. Polychroniou, A. Raghavan, and K. A. Ross.
Rethinking SIMD vectorization for in-memory
databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 1493–1508, New York, NY, USA,
2015. ACM.

[13] B. Răducanu, P. Boncz, and M. Zukowski. Micro
adaptivity in Vectorwise. In Proceedings of the 2013
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 1231–1242,
New York, NY, USA, 2013. ACM.

[14] J. Sompolski, M. Zukowski, and P. Boncz.
Vectorization vs. compilation in query execution. In
Proceedings of the Seventh International Workshop on
Data Management on New Hardware, DaMoN ’11,
pages 33–40, New York, NY, USA, 2011. ACM.

[15] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik. C-store: A column-oriented dbms. In
Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, pages 553–564.
VLDB Endowment, 2005.

[16] G. Swart and S. Chavan. Hardware-software co-design
for data management. VLDB, 2016.

[17] J. Zhou and K. A. Ross. Implementing database
operations using simd instructions. In Proceedings of
the 2002 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’02, pages 145–156,
New York, NY, USA, 2002. ACM.

[18] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar ram-cpu cache compression. In
Proceedings of the 22Nd International Conference on
Data Engineering, ICDE ’06, pages 59–, Washington,
DC, USA, 2006. IEEE Computer Society.

APPENDIX
A. STANDARD VS. IN-REGISTER AGGRE-

GATION
Figure 9 and Figure 8 extend our micro-benchmarks from

Section 4.1 on a larger amount of groups.

2 4 6 8 10
0

2,000

4,000

6,000

Number of aggregates

T
im

e
in

m
il
li
se

co
n

d
s

Standard, 16 groups Standard, 32 groups

Standard, 64 groups Fused standard, 16 groups

Fused standard, 32 groups Fused standard, 64 groups

In-register, 16 groups In-register, 32 groups

In-register, 64 groups

Figure 7: Standard vs. in-register aggregation, 128-
bit aggregates, on Sandy Bridge

2 4 6 8 10

1,000

2,000

3,000

Number of aggregates

T
im

e
in

m
il
li
se

co
n

d
s

Fused standard, 32 groups Fused standard, 64 groups

In-register, 32 groups In-register, 64 groups

Fused in-register, 32 groups Fused in-register, 64 groups

Figure 8: Fused Standard vs. fused in-register ag-
gregation, 128-bit aggregates, on Sandy Bridge

Figure 9 extends the micro-benchmark with 64-bit inte-
gers as aggregates.

2 4 6 8 10
0

1,000

2,000

3,000

Number of aggregates

T
im

e
in

m
il
li
se

co
n

d
s

Standard, 4 groups Standard, 8 groups Standard, 16 groups

In-register, 4 groups In-register, 8 groups In-register, 16 groups

Figure 9: Standard aggregation vs. in-register, 64
bit aggregates, on Sandy Bridge

