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ABSTRACT
Increasing single instruction multiple data (SIMD) capabilities in
modern hardware allows for compiling efficient data-parallel query
pipelines. This means GPU-alike challenges arise: control flow di-
vergence causes underutilization of vector-processing units. In this
paper, we present efficient algorithms for the AVX-512 architecture
to address this issue. These algorithms allow for fine-grained as-
signment of new tuples to idle SIMD lanes. Furthermore, we present
strategies for their integration with compiled query pipelines with-
out introducing inefficient memory materializations. We evaluate
our approach with a high-performance geospatial join query, which
shows performance improvements of up to 35%.
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1 INTRODUCTION
Integrating SIMD processing with database systems has been stud-
ied for more than a decade [21]. Several operations, such as selec-
tion [9, 16], join [1, 2, 7, 19], partitioning [14], sorting [4], CSV pars-
ing [12], regular expressionmatching [18], and (de-)compression [10,
16, 20] have been accelerated using the SIMD capabilities of the
x86 architectures. In more recent iterations of hardware evolu-
tion, SIMD instruction sets have become even more popular in
the field of database systems. Wider registers, higher degrees of
data-parallelism, and comprehensive support for integer data have
increased the interest in SIMD and led to the development of many
novel algorithms.
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Figure 1: During query processing, individual SIMD lanes
may (temporarily) become inactive due to different control
flows. The resulting underutilization of vector-processing
units causes performance degradations. We propose effi-
cient algorithms and strategies to fill these gaps.

SIMD is mostly used in interpreting database systems that use
the column-at-a-time or vector-at-a-time [3] execution model. Com-
piling database systems like HyPer [6] barely use it due to their
data-centric tuple-at-a-time execution model [13]. In such systems,
therefore, SIMD is primarily used in scan operators [9] and in string
processing [12].

With the increasing vector-processing capabilities for database
workloads in modern hardware, especially with the advent of the
AVX-512 instruction set, query compilers can now vectorize entire
query execution pipelines and benefit from the high degree of
data-parallelism [5]. With AVX-512, the width of vector registers
increased to 512 bit, allowing for processing of an entire cache line
in a single instruction. Depending on the bit-width of the attribute
values, up to 64 elements can be packed into a single register.

Vectorizing entire query pipelines raises new challenges. One
such challenge is keeping all SIMD lanes busy during query evalua-
tion. Efficient algorithms are required to counter underutilization
of vector-processing units (VPUs). In [11], this issue was addressed
by introducing (memory) materialization points immediately after
each vectorized operator. However, with respect to the more strict
definition of pipeline breakers given in [13], materialization points
can be considered pipeline breakers because tuples are evicted from
registers to slower (cache) memory. In this work, we present al-
gorithms and strategies that do not break pipelines. Further, our
approach can be applied at intra-operator level and not only at
operator boundaries.

https://doi.org/10.1145/3211922.3211928
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The remainder of this paper is organized as follows. In Section 2,
we describe the potential performance degradation caused by un-
derutilization in holistically vectorized pipelines. In Section 3, we
present efficient algorithms to counter underutilization, and in Sec-
tion 4, we present strategies for integrating these algorithms with
compiled query pipelines. Experimental evaluation of the proposed
algorithm is given in Section 5, and our conclusions are given in
Section 6.

2 VECTORIZED PIPELINES
The major difference between a scalar (i.e., non-vectorized) pipeline
and a vectorized pipeline is that in the latter, multiple tuples are
pushed through the pipeline at once. This impacts control flow
within the query pipeline. In a scalar pipeline, whenever the control
flow reaches any operator, it is guaranteed that there is exactly
one tuple to process (tuple-at-a-time). By contrast, in a vectorized
pipeline, there are several tuples to process. However, because the
control flow is not necessarily the same for all tuples, some SIMD
lanesmay become inactive when a conditional branch is taken. Such
a branch is only taken if at least one element satisfies the branch
condition. This implies that a vector of length n may contain up to
n − 1 inactive elements, as depicted in Figure 1.

Inactive elements typically result from filter operations. Tuples
that do not satisfy some given predicate are disqualified by set-
ting the corresponding SIMD lane as inactive, but the actual non-
qualifying values remain in the vector register. Nevertheless, the
control flow must enter the subsequent operator if at least one
element in the vector register qualifies. Thus, disqualified elements
cause underutilization in the subsequent operator(s).

Another source of inactive lanes are search operations, for exam-
ple, in pointer-based data structures such as trees and hash tables,
which typically occur in joins. Because some search operations may
be completed earlier than others, some SIMD lanes may become
(temporarily) inactive. This is an inherent problem when traversing
irregular pointer-based data structures in a SIMD fashion [17].

Generally, all conditional branches within the query pipeline are
potential sources of control flow divergence and, therefore, a source
of underutilization of VPUs. To avoid underutilization through
divergence we need to dynamically assign new tuples to idle SIMD
lanes, possibly at multiple “points of divergence” within the query
pipeline. We refer to this process as pipeline refill.

3 REFILL ALGORITHMS
In this section, we present our refill algorithms for AVX-5121, which
we later integrate into compiled query pipelines (cf., Section 4).
These algorithms essentially copy new elements to desired positions
in a destination register. In this context, these desired positions
are the lanes that contain inactive elements. The active lanes are
identified by a small bitmask (or simply mask), where the ith bit
corresponds to the ith SIMD lane. A SIMD lane is active if the cor-
responding bit is set, and vice versa. Thus, the bitwise complement
of the given mask refers to the inactive lanes and, therefore, to the
write positions of new elements. We distinguish between two cases

1We refer the reader to Appendix A.1 which briefly describes the key features of the
AVX-512 instruction set architecture (ISA) used in our algorithms.

active elements in destination

write mask

bitwise not
0 1 2 4 7

destination vector register
1 1 1 0 1 0 1 1

0 0 0 1 0 1 0 0

6 7 8 9

read position

......
data

8

expand load

memory

69
1

2

10 11 12 13

Figure 2: Refilling empty SIMD lanes from memory using
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Figure 3: In general, the associated tuple identifiers (TIDs)
of loaded values need to be carried along the query pipeline.
The TIDs are derived from the current read position and as-
signed to a TID vector register.

as follows: (i) where new elements are copied from a source memory
address and (ii) where elements are already in vector registers.

3.1 Memory to Register
Refilling from memory typically occurs in the table scan operator,
where contiguous elements are loaded from memory (assuming a
columnar storage layout). AVX-512 offers the convenient expand
load instruction that loads contiguous values from memory directly
into the desired SIMD lanes (cf., Figure 2). One mask instruction
(bitwise not) is required to determine thewritemask and one vector
instruction (expand load) to execute the actual load. Overall, the
simple case of refilling from memory is supported by AVX-512
directly out of the box.

Nevertheless, the table scan operator typically produces an ad-
ditional output vector containing the tuple identifiers (TIDs) of
the newly loaded attribute values. The TIDs are derived from the
current read position and are used, for example, to (lazily) load
attribute values of a different column later on or to reconstruct the
tuple order (cf., Figure 3).

3.2 Register to Register
Moving data between vector registers is more involved. In the most
general case we have a source and a destination register that con-
tain both active and inactive elements at random positions. The
goal is to move as many elements as possible from the source to the
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Figure 5: If not all elements could be moved from the source
to the destination register, the source mask needs to be up-
dated accordingly.

destination. This can be achieved using a single masked permute in-
struction. However, first, the permutation indices must be computed
based on the positions of active elements in the source and the
destination vector registers. This is illustrated in Figure 4, where,
as in the previous examples, the write mask refers to the inactive
lanes in the destination register. In total, three vector instructions
are required to compute the permutation indices and an additional
permutation mask. The latter is required in case the number of
active elements in the source is smaller than the number of empty
lanes in the destination vector.

Once the permutation indices are computed, elements can be
moved between registers accordingly. Notably, the algorithm can be

adapted to move elements directly instead of computing the permu-
tation indices first. However, if elements need to be moved between
more than one source/destination vector pair, the additional cost
of computing the permutation amortizes immediately with the sec-
ond pair. In practice, the permutation is typically applied multiple
times, for example, when multiple attributes are pushed through
the pipeline or to keep track of the TIDs.

In the general case there are no guarantees about the number of
(active) elements nor their positions within the vector register. For
example, the elements in the source may not be entirely consumed
or the destination vector may still contain inactive elements. Thus
it is necessary to update source and destination masks accordingly.
Updating the destinationmask is straightforward by using a bitwise
or with the previously computed permutation mask. Updating the
source mask is less obvious as illustrated in Figure 5. As the figure
shows, updating the source mask is as expensive as computing the
permutation. However, if it is guaranteed that all source elements
fit into the destination vector, this phase of the algorithm can be
skipped altogether.

Depending on the position of the elements, cheaper algorithms
can be used. Especially when the vectors are in a compressed state,
meaning that the active elements are stored contiguously, it is
considerably cheaper to prepare the permutation (compare Listing 2
and 3).

These two foundational SIMD algorithms cover the extreme
cases, that is, where (i) active elements are stored at random po-
sitions and (ii) active elements are stored contiguously. Based on
these cases, the algorithms can be easily adapted such that only
one vector needs to be compressed, which is useful when vector
registers are used as tiny buffers because those should always be in
a compressed state to achieve the best performance. In total, there
are four different algorithms. Each algorithm has two different fla-
vors: (i) where all elements from the source register are guaranteed
to fit into the destination register or (ii) where not all elements
can be moved and therefore elements remain in the source register.
Owing to space constraints, we do not show all variants here, but
have released the source code2 under the BSD license.

4 REFILL STRATEGIES
We discuss the integration of these refill algorithms in data-centric
compiled query pipelines. Such pipelines turn a query operator
pipeline into a for-loop, and the code generated by the various
operators is nested bottom-up in the body of such a loop [13].
Relational operators in this model generate code in two methods,
namely, consume() and produce(), which are called in a depth-first
traversal of the query tree: produce() code is generated before
generating the code for the children, and consume() afterwards.

The main idea of data-centric execution with SIMD is to insert
checks for each operator that control the number of tuples in play,
i.e. if-statements nesting the rest of the body. Such an if-statement
makes sure its body only gets executed if the SIMD registers are
sufficiently full. Generally speaking, operator code processes input
SIMD data computed by the outer operator and refills the registers
it works with and the ones it outputs.

We identify two base strategies for applying this refilling.

2Source code: https://github.com/harald-lang/simd_divergence

https://github.com/harald-lang/simd_divergence


DaMoN’18, June 11, 2018, Houston, TX, USA H. Lang et al.

Listing 1: Code skeleton of a buffering operator.
[...]
auto active_lane_cnt = popcount(mask);
if (active_lane_cnt + buffer_cnt < THRESHOLD

&& !flush_pipeline) {
[...] // Buffer the input.

}
else {
const auto bail_out_threshold = flush_pipeline ? 0

: THRESHOLD;
while (active_lane_cnt + buffer_cnt > bail_out_threshold) {
if (active_lane_cnt < THRESHOLD) {
[...] // Refill lanes with buffered elements.
}
//===---------------------------------===//
// The actual operator code and
// consume code of subsequent operators.
[...]
//===---------------------------------===//
active_lane_cnt = popcount(mask);

}
if (likely(active_lane_cnt != 0)) {
[...] // Buffer the remaining elements.

}
}
mask = 0; // All lanes empty (Consume Everything semantics).
[...]

4.1 Consume Everything
The Consume Everything strategy allocates additional vector regis-
ters that are used to buffer tuples. In the case of underutilization,
the operator defers processing of these tuples. This means the body
will not be executed in this iteration (if-condition not satisfied) but
instead (else) the active tuples will be moved to these buffer regis-
ters. It uses the refill algorithms from the previous section, both to
move data to the buffer and to emit buffered tuples into the unused
lanes in a subsequent iteration. Listing 1 shows the code skeleton as
it would be generated by a buffering operator. The important thing
to note here, is that all SIMD lanes are empty when the control flow
returns to the previous operator.

Compared to a scalar pipeline, this strategy only requires a minor
change to the push model: handling a special case when the pipeline
execution is about to terminate, flushing the buffer(s). The essence is
that buffering only takes place in SIMD registers and it specifically
does not cause extra in-memorymaterialization, which would break
the operator pipeline.

4.2 Partial Consume
As the name suggests, the second base strategy no longer expects
the consume() code to process the entire input. The consume code
can decide to defer execution by returning the control flow to the
previous operator and leave the active elements in the vector reg-
isters. Naturally, these register lanes must not be overridden or
modified by other operators in the next iteration. We refer to these
elements (or to their corresponding lanes) as being protected. An-
other way of looking at a protected lane is that the lane is owned by
a different operator. When an owning operator completes process-
ing a tuple, it transfers the ownership to the subsequent operator.
Alternatively, if the tuple is disqualified, it gives up ownership

to allow a tuple producing operator to assign a new tuple to the
corresponding lane.

Lane protection requires additional bookkeeping on a per opera-
tor basis. Each operator must be able to distinguish between tuples
that (i) have just arrived, (ii) have been protected by the operator
in an earlier iteration and (iii) tuples that have already advanced to
later stages in the pipeline.

4.3 Discussion and Implications
The two strategies are not mutually exclusive. Within a single
pipeline, both strategies can be applied to individual operators so
long as buffering operators are aware of protected lanes (mixed
strategy). Moreover, the query compiler might decide to not apply
any refill strategy to certain operators. Especially, when a sequence
of operators is quite cheap, divergence might be acceptable so long
as the costs for refill operations are not amortized. Naturally, this
is a physical query optimization problem, we leave for future work.
Nevertheless, we briefly discuss the advantages and disadvantages,
as this is the first work in which we present the basic principles of
vector-processing in compiled query pipelines.

As mentioned above, Consume Everything requires additional
registers which increases the register pressure and may lead to
spilling. Partial Consume allocates additional registers as well, but
these are restricted to (smaller) mask registers. Therefore, it is
unlikely to be affected by (potential) performance degradation due
to spilling.

The second major difference lies in the costs of refilling empty
lanes. In a pipeline that follows the Partial Consume strategy, the
very first operator, that is, the pipeline source, is responsible for
refilling empty lanes. If other operators experience underutilization,
they return the control flow to the previous operator while retain-
ing ownership of the active lanes. This cascades downward until
the source operator is reached. All operators between the source
and the operator that returned the control flow may be subject to
underutilization because all lanes in later stages are protected. The
costs of refilling, therefore, depend on the length of the pipeline and
the costs of the preceding operators. In general, the costs increase in
the later stages. Nevertheless, Partial Consume can improve query
performance if it is applied only to the very first operators. By con-
trast, the refilling costs of buffering operators do not depend on the
pipeline length. Instead, the crucial factor governing these costs is
the number of required buffer registers. The greater the number of
buffers, the greater the number of permute instructions that need to
be executed. Whereas the number of required buffers depends on (i)
the number of attributes passed along the pipeline and optionally
on (ii) the number of registers required to save the internal state of
the operator (e.g., a pointer to the current tree node).

5 EVALUATION
We evaluated our foundational algorithmic principle for SIMD lane
optimization in a modern database application scenario: geospa-
tial data processing. Specifically, we selected a high-performance
point-polygon join [8]. The geospatial join is more computationally
demanding than a traditional hash join and is therefore a candidate
for being SIMD optimized. It further can be parameterized with
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Figure 6: SIMD lane utilizationwhen joining 64 points with the NYC neighborhoods polygons. – In (a) no refilling is performed
to visualize the divergence. – (b) shows a Partial Consume throughout the entire pipeline with the minimum required utiliza-
tion set to 50%. Lanes colored in blue are protected. – (c) uses the Consume Everything strategy which performs refills when
the utilization falls below 75%. The blue lines indicate a write to buffer registers, black lines a read.

respect to precision, which influences divergence, thus allowing us
to evaluate our algorithms with different settings.

In this section we first briefly introduce the geospatial join and
its characteristics with respect to control flow divergence, as well
as the workloads/datasets used in our experiments.

5.1 Approximate Geospatial Join
Our approximate geospatial join [8] uses a quadtree-based hierar-
chical grid to approximate polygons. The grid cells are stored in a
specialized radix tree, where the cell size corresponds to the level
within the tree structure (larger cells are stored closer to the root
node and vice versa). During join processing we perform (prefix)
lookups on the radix tree. Each lookup is separated into two stages:
First, we check for a common prefix of the query point and the
indexed cells. The common prefix allows for fast filtering of query
points. If the query point does not share the common prefix, there
are no join partners. The actual tree traversal takes place in the
second stage. We traverse the tree starting at the root node until
we hit a leaf node (which contains a reference to the matching
polygon).

An important property of our approximate geospatial join oper-
ator is that it can be configured to guarantee a certain precision. In
the experiments, we used 60-, 15-, and 4-meter precision (as in [8]).
The higher the precision guarantee, the smaller are the cells at the
polygon boundaries, which in turn increases the total number of
cells and, more importantly, the height of the radix tree. In general,
the probability of control flow divergence during index lookups
increases with the tree height. Throughout our experiments the
tree height is ≤ 6.

5.2 Workloads
In our experiments, we join the boroughs, neighborhoods, and
census blocks polygons of New York City (NYC) with randomly
generated points, uniformly distributed within the bounding box of
the corresponding polygonal dataset. The datasets vary in terms of
the total number of polygons and complexity (w.r.t. the number of
vertices). A common characteristic of the three polygon sets is that
most of the polygons within each set have roughly the same size in
terms of covered area. Therefore, to demonstrate the effectiveness
of our algorithms, we add a fourth polygon set “Manhattan” with

Table 1: Polygon datasets

number of polygons avg. number of vertices

boroughs 5 662.2
neighborhoods 289 29.6
census 39184 12.5
manhattan 594 7.7

higher “divergence potential” where we mix neighborhoods and
census blocks. Specifically, we use smaller polygons in Manhattan.

Table 1 summarizes the relevant metrics of the polygon datasets,
and Table 3 summarizes the metrics of the corresponding radix tree,
including the probability distribution of the number of search steps
during the tree traversal.

5.3 Query Pipeline
The query pipeline of our experiments (point-polygon join) consists
of four stages:

(1) Scan point data (source)
(2) Prefix check
(3) Tree traversal
(4) Output point-polygon pairs (sink)

Stages (2) and (3) are subject to control flow divergence, with (3)
being significantly costlier than (2). For simplicity the produced
output (point-polygon pairs) is not further processed. We compile
the pipeline in four different flavors:

Divergent: Refers to the baseline pipeline without divergence
handling, thus the pipeline follows Consume Everything
semantics. The code of subsequent operators is executed if
at least one lane is active.

Partial: Partial Consume is applied to stages (2) and (3), which
also affects the scan operator because it needs to be aware
of protected lanes.

Buffered: Follows Consume Everything semantics with reg-
ister buffers in stage (3). We check the lane utilization after
each traversal step. The operator state is buffered whenever
the lane utilization falls below a certain threshold. For our
evaluation, we require at least 6 out of 8 SIMD lanes to be
active. Divergence in stage (2) is not handled at all.
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Table 2: Hardware platforms

Intel Intel
Knights Landing Skylake-X

model Phi 7210 i9-7900X
cores (SMT) 64 (x4) 10 (x2)
SIMD [bit] 2×512 2×512
max. clock rate [GHz] 1.3 4.5
L1 cache 64 KiB 32 KiB
L2 cache 1 MiB 1 MiB
L3 cache - 14 MiB

Mixed: Applies Partial Consume until stage (2) and buffering
in stage (3). As described in Section 4.3, lane protection in-
herently causes underutilization of SIMD lanes, but it may
perform better than buffering when installed closer to the
pipeline source.

Figure 6 illustrates the lane utilization for the different (base)
strategies employed herein. The indicator on top of each plot shows
the control flow within the query pipeline.

5.4 Results
All experiments are conducted on the Knights Landing (KNL) plat-
form using 128 threads and on the Skylake-X (SKX) using 10 threads.
Table 4 shows the performance baseline of our geospatial join with-
out divergence handling in units of million tuples per second. Fig-
ure 7 shows the relative performance of the Partial, Buffered, and
Mixed pipelines compared to the baseline.

As expected, application of Partial Consume to the entire pipeline,
exacerbates the divergence issue (cf., Section 4.3 and Figure 6b),
resulting in a 43% performance degradation on KNL and approxi-
mately 30% on SKX in the worst case. By contrast, the Buffered and
Mixed pipelines show no or just minor performance degradation
for slightly divergent workloads (up to 7% in worst case). With the
least divergent workload, boroughs with 60m precision, refilling
barely amortizes. Most searches in the radix tree terminate within
the first two search steps which makes the second stage quite cheap,
mitigating the performance impact of control flow divergence.

On KNL, we observe a correlation between the relative perfor-
mance speedups and the precision parameter of the geospatial join.
For all workloads, the Buffered pipeline shows the highest perfor-
mance improvements on KNL (up to 21%). By contrast on SKX, the
Mixed pipeline exhibits better performance in 7 out of 12 experi-
ments. The performance degradation of the Mixed pipeline over
Buffered on KNL can be explained with its limited out-of-order
execution capabilities. A pipeline refill introduces several branches
and leads to a more complex control flow. Multiple refills within
a single pipeline (i.e., stage 2 and 3) exacerbate this issue. More-
over, a partial consume issues (mostly) scalar instructions, which is
unfavorable for a SIMD-focused architecture like KNL.

The Buffered and Mixed pipelines achieve their best performance
under the Manhattan workload, which has the highest divergence
of all workloads, showing the high performance gain (up to 35% in
this case) that our approach can generate.

In summary, our results show that divergence handling can in-
crease query performance for divergent workloads substantially,
while only introducingminimal overhead for non-divergent pipelines.

6 CONCLUSIONS
We presented efficient refill algorithms for vector registers by using
the latest SIMD instruction set, AVX-512. In contrast to previous
work, we do not rely on predefined lookup tables nor do our al-
gorithms introduce costly memory materializations, which makes
them suitable for data-centric query compilation. We identified and
presented two basic strategies for applying refilling to compiled
query pipelines for preventing underutilization of VPUs. We evalu-
ated our approach by applying to a high-performance geospatial
join query that involved traversing an irregular pointer-based data
structure (a radix tree), showing that our strategies can efficiently
handle control flow divergence, while yielding up to 35% higher
throughput.
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Table 3: Metrics of radix tree

polygons boroughs neighborhoods census manhattan
precision [m] 60 15 4 60 15 4 60 15 4 60 15 4
# of cells [M] 0.08 1.27 20.7 0.11 0.79 13.2 6.08 6.52 34.6 0.14 0.19 1.36
tree size [MiB] 1.39 168 168 25.3 139 139 1162 1205 1205 21.1 29.3 29.3
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Table 4: Performance baseline [Mtps] (divergent pipeline)

polygons boroughs neighborhoods census manhattan
precision [m] 60 15 4 60 15 4 60 15 4 60 15 4
Knights Landing 5128 3399 3582 3414 2275 2304 856 814 955 4134 3559 3606
Skylake-X 1620 905 908 1002 762 689 382 373 372 1048 910 1049
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Figure 7: Performance speedups

Listing 2: Generic refill algorithm
struct fill_rr {
__mmask8 permutation_mask; __m512i permutation_idxs;
// Prepare the permutation.
fill_rr(__mmask8 src_mask, __mmask8 dst_mask) {
const __m512i src_idxs =

_mm512_mask_compress_epi64(ALL, src_mask, SEQUENCE);
const __mmask8 write_mask = _mm512_knot(dst_mask);
permutation_idxs =
_mm512_mask_expand_epi64(ALL, write_mask, src_idxs);

permutation_mask = _mm512_mask_cmpneq_epu64_mask(
write_mask, permutation_idxs, ALL);

}
// Move elements from 'src' to 'dst'.
void apply(const __m512i src, __m512i& dst) const {
dst = _mm512_mask_permutexvar_epi64(

dst, permutation_mask, permutation_idxs, src);
}
void update_src_mask(__mmask8& src_mask) const {
__mmask8 comp_mask = _pext_u32(~0u, permutation_mask);
__m512i a = _mm512_maskz_mov_epi64(comp_mask, ALL);
__m512i b = _mm512_maskz_expand_epi64(src_mask, a);
src_mask =
_mm512_mask_cmpeq_epu64_mask(src_mask, b, ZERO);

}
void update_dst_mask(__mmask8& dst_mask) const {
dst_mask = _mm512_kor(dst_mask, permutation_mask);

}
};

Listing 3: Refill algorithm for compressed vectors
struct fill_cc {
__mmask8 permutation_mask; __m512i permutation_idxs;
uint32_t cnt;
// Prepare the permutation.
fill_cc(const uint32_t src_cnt, const uint32_t dst_cnt) {
const auto src_empty_cnt = LANE_CNT - src_cnt;
const auto dst_empty_cnt = LANE_CNT - dst_cnt;
// Determine the number of elements to be moved.
cnt = std::min(src_cnt, dst_empty_cnt);
auto d = (dst_empty_cnt >= src_cnt) ? dst_cnt

: src_empty_cnt;
const __m512i d_vec = _mm512_set1_epi64(d);
// Note: No compress/expand instructions required.
permutation_idxs = _mm512_sub_epi64(SEQUENCE, d_vec);
permutation_mask = ((1u << cnt) - 1) << dst_cnt;
}
// Move elements from 'src' to 'dst'.
void apply(const __m512i src, __m512i& dst) const {
dst = _mm512_mask_permutexvar_epi64(

dst, permutation_mask, permutation_idxs, src);
}
void update_src_cnt(uint32_t& src_cnt) const {
src_cnt -= cnt;
}
void update_dst_cnt(uint32_t& dst_cnt) const {
dst_cnt += cnt;
}

};
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A APPENDIX
A.1 AVX-512 Instruction Set
In this section we briefly describe the key features of the AVX-512
instruction set that we use in our algorithms in Section 3.

Mask instructions:Almost all AVX-512 instructions support pred-
ication. These instructions allow to perform a vector operation only
on those vector components (or lanes) specified by a given bitmask,
where the ith bit in the bitmask corresponds to the ith lane. For
example an add instruction in its simplest form requires two (vec-
tor) operands and a destination register that receives the result. In
AVX-512 the add instruction exists in two additional flavors:

(1) Merge masking: The instruction takes two additional ar-
guments, a mask and a source register, for example, dst =

mask_add(src,mask,a,b). The addition is performed on the
vector components in a and b specified by the mask. The re-
maining elements, where the mask bits are 0, are copied from
src to dst at their corresponding positions.

(2) Zero masking: The functionality is basically the same as
that of merge masking, but instead of specifying an addi-
tional source vector, all elements in dst are set to zero if the
corresponding bit in the mask is not set. Zero masking is
therefore (logically) equivalent to merge masking with src

set to zero: maskz_add(mask,a,b) ≡ mask_add(
#»0 ,mask,a,b).

Thus, zero masking is a special case of merge masking.
Masked instructions can be used to prevent individual vector com-
ponents from being altered, e.g., x = mask_add(x,mask,a,b).

Typically, masks are created using comparison instructions and
stored in special mask registers, which is a significant improvement
over earlier SIMD instruction sets, in which thesemasks were stored
in vector registers.

Permute: The permute instruction shuffles elements within a vector
register according to a given index vector:

[d,a,d,b]︸      ︷︷      ︸
result vector

= permute( [3,0,3,1]︸      ︷︷      ︸
index vector

, [a,b,c,d]︸      ︷︷      ︸
input vector

).

Our register-to-register refill algorithms are designed around this
instruction (cf., the apply() functions in Listings 2 and 3).

It is noteworthy, that the permute instruction has already been
available in earlier instruction sets. But due to the doubled register
size, twice as many elements can now be processed at once. Fur-
ther, in our application, we achieve a four times higher throughput
compared to AVX2. The reason is, that a refill is basically a merge
operation of the content of two vector registers. In combination
with merge masking, refilling can be performed using a single in-
struction, whereas with AVX2 two instructions need to be issued
(permute + blend).

Compress / Expand: A refill requires cross-lane operations which
are inefficient in SSE/AVX architectures. Dynamically permuting
elements in SIMD registers used to be a tedious task that often
induced significant overheads, such as additional accesses into
predefined lookup tables [9, 11, 15]. The key instructions introduced
with AVX-512, to efficiently solve these type of problems, are called
compress and expand. Compress stores the active elements (indicated
by a bitmask) contiguously into a target register, and expand stores
the contiguous elements of an input at certain positions (specified
by a write mask) in a target register:

[a, d, 0, 0] = compress( 1001, [a, b, c, d] )

[0, a, 0, b] = expand( 0101, [a, b, c, d] )

Both instructions come in two flavors: (i) read/write from/to mem-
ory and (ii) directly operate on registers.

Details about the AVX-512 instruction set architecture can be
found in the Intel Intrinsics Guide 3.
3https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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