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ABSTRACT
Video analysis tools can provide valuable datasets for a wide
range of applications, such as monitoring animal populations
for ecology research, while reducing human efforts for col-
lecting information. Transferring such technology to novel
application domains implies exposing non-expert users to
unfamiliar datasets and technical concepts. Existing data
analysis practices must adapt to the new data characteris-
tics and technical constraints. With such changes, uncer-
tainty is of major concern as it can yield misinterpretation
of data, or distrust and rejection of valid results. We present
a study of an interactive visualization of computer vision re-
sults and uncertainty. We evaluate the correctness of users’
interpretation of data, and their confidence in their interpre-
tation. We compare the impact of either data features (i.e.,
the true level of uncertainty) or visualization features on
user perception of uncertainty. Visualization features had a
similar impact on user responses than the data uncertainty
itself, thus biasing user awareness of uncertainty. We con-
clude with the opportunities (intuitive navigation in com-
plex unfamiliar data) and limitations (poor extrapolation
and memory loss) of our visualization design which inte-
grates simple graphs in coordinated multiple views. Our de-
sign and insights contribute to other cases where non-experts
need to familiarize with novel datasets and explore their un-
certainty.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Video

1. INTRODUCTION
The Fish4Knowledge project collected data from 9 under-

water cameras which continuously recorded coral reef fish
every day during 3 years. The collection, too large for man-
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ual analysis, was processed by computer vision tools. They
extracted fish occurrences from each species, which is a key
asset for studying population dynamics, food chains, repro-
duction and migration [3]. The video processing consists of
3 steps: storing video streams as 10-minute clips, detect-
ing fish against background objects and recognizing their
species. Each step introduces potential errors that may im-
pact data usage for scientific research. Previous user studies
highlighted the needs for understandable evaluation of video
analysis errors [3], and for handling the fragmentary process-
ing of video streams [4] (e.g., the fewer the videos, the fewer
the fish, and the more sensitivity to outliers). We devel-
oped a visualization interface for exploring the video data
and its uncertainties. We harness simplicity in our design so
as not to overwhelm users who are dealing with unfamiliar,
complex data. We investigate how our design supports infor-
mation seeking tasks related to fish abundance (e.g., What
is the size of fish populations?), sampling size (e.g., What is
the number of processed videos?), and reliability of species
recognition (e.g., Does the system over- or under-estimate
the population size for species X ?). Particular attention is
drawn to differentiating interaction design and layout design
(e.g., confusing interactions may be implemented on a clear
layout), and to supporting data complexity (e.g., a design
may be suitable for common trivial information, but not for
unfamiliar technical information). We set up an evaluation
framework inspired from the situation awareness domain,
for its treatment of uncertainty and information processing
issues. We recruited ecologists studying the ecosystem mon-
itored by our cameras. We analyzed the usability issues
they encountered, and the factors impacting the perception
of uncertainty. We conclude by discussing the strength and
weaknesses of our design, and the directions for future work.

2. RELATED WORK
Visualizing Uncertain Data - Visualization encodes

information into the visual dimensions offered by human
perception: color, size, value (e.g., transparency), texture,
orientation and shape (e.g., glyph) [6]. Multiple views can
be used for complex multidimensional visualization prob-
lems. [22] (discussing opportunities and risks of multiple
views) and [2, 18] (describing the types of analytic tasks)
highlight that locating pieces of information and character-
izing their relationships is a core cognitive task. Techniques
for uncertainty visualization represent uncertainty as extra
dimensions of canonical graphical representations [12, 17].
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Uncertainty Factor Description Stage

Uncertainty due to computer vision algorithms

Ground-Truth Quality Fish examples may be scarce, erroneous, or show odd fish appearances. 1
Fish Detection Error Some fish may be undetected, and non-fish objects may be detected as fish. 1
Species Recognition Error Some species may not be recognized, or confused with another. 1
Image Quality Degraded images (e.g., lighting, fuzziness) may impact computer vision errors. 1

Uncertainty due to in-situ system deployment

Field of View Observed ecosystems may be heterogeneous, and over- or under-represent species. 3
Fragmentary Processing Some videos may be unprocessed, missing, or unusable (e.g., encoding errors). 1
Duplicated Individuals Fish swimming back and forth are repeatedly recorded. Rates of duplication vary among species behaviour

(e.g., sheltering in coral head).
3

Sampling Coverage The numbers of videos may not provide statistically representative datasets. 1

Uncertainty due to both computer vision algorithms and deployment conditions

Biases Emerging from Noise Errors may be random (noise) or systematic (bias). Biases may emerge from a combination of factors
(Image Quality, Field of View, Duplicated Individuals, Computer Vision Errors).

3

Uncertainty in Specific
Output

Uncertainty in specific outputs may be extrapolated from errors measured in test conditions, compared to
the output characteristics (e.g., fewer low quality images yield fewer biases).

2

Table 1: Uncertainty factors arising at each information processing steps, identified along the design stages.

Uncertainty is itself multidimensional: it is of various types
and can be introduced at any information processing step
[7, 20]. A major challenge is to deal with the complexity of
uncertainty (e.g., propagation through information process-
ing steps) and visualization (e.g., cluttered display), espe-
cially for non-experts. [11] highlights three main issues for
non-expert users: translating questions into data attributes
(e.g., selecting datasets of interest), constructing visualiza-
tion (e.g., mapping data into visual templates) and inter-
preting the visualizations. The core strain is converting con-
cepts of different natures: those of users’ mental model, of
data attributes, or of visual features. [8] reports that non-
experts requested a reminder of data filters to be always dis-
played, and propagated to all views of dashboards, echoing
novices’ need for contextual information explaining the visu-
alized data [13]. Constraining dashboards to display views
of the same dataset (propagating the filters) limits the ex-
pressibility of multiple views, but increases usability as it
helps manipulating data attributes. Limiting expressibility
(e.g., each multiple view must display aspects of the same
species population) in favor of usability is reasonable for an
audience of non-expert users [19].

Situation Awareness - Endsley distinguishes 3 levels
in situation awareness related to information processing [9],
which echo visual analytical tasks (locate and associate in-
formation [2, 18, 22]): Perception of cues, occurring when
information is simply read, without further interpretation
or correlation; Comprehension, i.e., integrating multiple
pieces of information ; and Projection, i.e., forecasting el-
ements of an unknown situation (e.g., future events, inter-
pretations of uncertain data). Misinterpretations are fre-
quently caused by data overload, complex systems that are
poorly understood, and users’ limited working memory [23].
Memory-loss (forgetting already perceived information) is
yielded by delays between receiving information and using
it, e.g., due to intermediate interaction with the system, or
confusing layout. Working memory is crucial in novel sys-
tems such as ours, as users are not familiar with the com-
puter vision techniques and must combine, interpret and ap-
ply unusual information within the limits of their working
memory. Methods for evaluating Situation Awareness rely
on the usage of probes (i.e., predefined states of the system
in which users are emerged), and consider the types and the
levels of uncertainty in users’ knowledge of a situation [14,
15]. Probes were used to expose users to specific interface

layouts, prior to letting users interact with the system. It
allowed to distinctively evaluate our layout and interaction
designs.

3. INTERFACE DESIGN
Design Rationale - Prior studies identified two core user

information needs: i) counting fish from each species, and
for specific time periods and locations; and ii) estimating
the uncertainty of fish counts [3, 4]. Information related to
uncertainty concerns multiple factors (Table 1). This study
focuses on two factors: fragmentary processing (i.e., missing
videos) impacting the sample size, and species recognition
errors. Our design decisions targeted three key challenges.
C1: Users deal with unfamiliar data, they need to under-
stand the concepts of computer vision techniques, and their
implications for their data analysis tasks. It demands im-
portant, sometimes overwhelming cognitive efforts [3]. C2:
Users deal with uncertainty occurring at different informa-
tion processing steps (Table 1), yielding multidimensional
data. The resulting complexity is a major challenge. C3:
Users may have a variety of research goals which can not all
be addressed with a one-fits-all visualization. Specific data
analysis methods may be necessary to complete their tasks.
Our information layout and interactions are designed for
reducing complexity [C1, C2]. We use simple graphs and
handle multidimensionality with multiple views [C2]. We
target basic data analysis tasks (Retrieve, Filter, Determine
Range, Correlate Information [2]), and exclude advanced
data mining and statistical representations [C1,C3]. We ex-
pose uncertainty factors at each information processing step
[C2]. [22] rule of Diversity (separate kinds of information)
inspired the organization of information into 5 tabs. The
tabs reflect the sequence of information processing steps:
data collection (Video tab), data processing (Video Analy-
sis, Raw Data tabs), and data interpretation (Visualization,
Report tabs). They provide contextual information about
the video data, as recommended for non-expert users [13].
This study focuses only on the Visualization tab, which is
described in Fig. 1. A description of the remaining tabs can
be found in [5]. Our interaction design with on-demand wid-
get display follows the rule of Decomposition (create man-
ageable chunks). The rule of Complementarity (expose re-
lationships) led to designing i) linkage between views (e.g.,



main graph and widgets sharing the same Y axis metric1 and
data filters), and ii) interactions for accessing visualization
variants (e.g., the same visualization for varying datasets,
by changing the filters; or varying visualizations of the same
dataset, by changing the main graph in Zone A or open-
ing widgets). Users navigate through visualization variants
by swapping graph axes and types of graph. This ”swap-
ping” interaction mode genuinely synthesizes features from
ManyEyes [21] (swap axes) and Tableau [1] (swap graph
templates). It offers a large scope of possible data associa-
tions and comparisons, while limiting cluttered display and
information overload. This is desired in a context where
ecologists pursue a variety of research goals, while being un-
familiar with video data.

Usage Scenario - This section describes the interactions
we seek to evaluate, i.e., that supporting information seek-
ing tasks related to fish abundance, sampling size (i.e., the
number of video samples), and reliability of species recog-
nition. When visualizing the fish counts in Fig. 1-a, users
can wonder if abundance drops in weeks 35 and 45 are due
to missing videos. Using the Y Axis menu in Zone B, they
can display the numbers of videos from which fish counts
were extracted (Fig. 1-b). As no videos were processed for
Week 45, no insight can be drawn on fish abundance at this
period. Considering the high variability of video numbers,
visualizing average numbers of fish per video is preferable to
visualizing absolute fish counts. The Y Axis menu provides
this visualization (Fig. 1-c). Considering that the abun-
dance pattern is not due to varying numbers of videos, users
should question the reliability of species recognition. The
widget Certainty Score shows the quality of fish appearances
(Fig. 3). The more fish with high certainty scores, the more
reliable the species recognition. Users can use the certainty
scores to estimate potential biases due to species recogni-
tion errors. E.g., Fig. 5-7 compares recognition reliability
for species 1 and 2. Higher certainty scores are observed for
species 2, thus its recognition is likely to be more reliable
than for species 1. Similarly, users can compare the cer-
tainty scores for week 35 with other weeks. For comparing
relative fish abundance (i.e., species composition), users can
use the Species widget or select Stacked chart in the Chart
Type menu. For studying specific species, the Species widget
supports the exclusion of irrelevant species (Fig. 5-7).

Figure 3: Scores reflecting fish appearance quality.

4. EVALUATION
Experimental Setup - We recruited 10 users from the

marine ecology community in Taiwan. A 20 minute tutorial
introduced the interface and the concept of certainty score.
Users learned the interactions needed to perform the usage
scenario described in Section 3: i) display visualization vari-
ants with fish counts, video counts, or average number of fish
per video; ii) display variants using simple chart or stacked
chart; iii) use filter widgets to select datasets of interest; and

1We elicited this feature after conducting our experiment

F1 Perception Read one single information
F2 Comprehension Compare several information
F3 Projection Extrapolate from given information

U1 Acknowledment Only one answer is entirely true.
U2 Ambivalence Several answers are valid. Enough infor-

mation can inform user choice.
U3 Assumption Several answers are valid. Limited infor-

mation can inform user choice.

I1 No Interaction No UI manipulation is needed
I2 Exploration UI manipulations are needed

Table 2: Levels of complexity exposed to users.

iv) use filter widgets to compare fish distributions. They also
learned how to watch videos in the Video tab, since users
recurrently request to check the footage. We then conducted
an experiment inspired by situation awareness methods. We
exposed users to 3 probes (predefined states of the interface
with preselected filters and graph options), showing real data
extracted by our computer vision system, and asked a total
of 20 questions. Users indicated their confidence in their an-
swers using a 5-grade scale (Very Low, Low, Moderate, High
or Very High confidence). The questions dealt with various
complexity of Fact assessment (levels F1 to F3), Uncertainty
evaluation (levels U1 to U3), and Interaction with the in-
terface (levels I1 to I2). The levels are specified in Table 2
and their related questions in Table 3. Levels F1-3 refer
to levels of situation awareness postulated by Endsley [10].
Levels U1-3 and I1-2 were created for our use case. Dealing
with uncertainty (U2-3) implies dealing with complex facts
(F3), as assessing uncertainty requires extrapolation. Thus
all questions from levels U2 or U3 are also from level F3,
and task complexity is synthesised in 4 levels F1, F2, U2,
or U3. The questions were designed to draw attention on
the uncertainty factors: species recognition errors and frag-
mentary processing. The latter was particularly emphasized:
questions Q5 and Q11-13 ask for video counts before ques-
tions asking about fish abundance. Prior to Q5 users deal
with absolute fish count and later with average fish count
per 10-minute video samples, hence showing the effect frag-
mentary processing. Q13 explicitly examines the suitability
of sampling size for scientific research. Guiding users’ atten-
tion may artificially enhance their reactivity to uncertainty.
This was desired both a priori, as fragmentary processing
is an unfamiliar concept, and a posteriori, considering the
poor user reactivity to this uncertainty factor. Usability is-
sues and wrong answers were reported. Under uncertainty
(levels U2-3), answers such as ”I don’t know”were considered
as one of the possible valid answers. Our setup allowed to
observe: i) how users interact with the visualization when
seeking information (e.g., using widget overviews or main
graph); ii) which usability issues arise with layout or inter-
actions (e.g., before or after modifying a predefined state
of the interface); iii) how user confidence varies among the
levels of information complexity (levels F1-2 and U2-3); and
iv) how interaction complexity impacts user answers (lev-
els I1-2). Our small user group and the number of obser-
vations collected for each condition (levels F1-F3, U1-U3,
I1-I2) may not represent the general population of marine
ecologists. However, they are suitable for identifying major
usability issues, and the means to support user awareness of
uncertainty.

Experiment Results - The results are reported in Ta-
ble 4 and summarized in Fig. 8. Question Q13 was discarded
since answer correctness is ambiguous: the most precise an-
swer is ”It depends on research goals” as replied by one single



a) The Visualization tab, as shown for the first probe of the experiment, and needed for answering questions 1-4.

b) Visualization for answering questions 5 and 7. c) Visualization for answering questions 6 and 7.

The Visualization tab lays out information in 3 zones (Fig. 1-a). Zone A contains the main graph, which can be adapted to fit
user interests using options in Zone B. Users can specify what is represented by the axes of the main graph. E.g., while the Y
axis represents fish counts, the X axis can be swapped for weeks of the year, hours of the day or locations, to show various fish
distributions. Similarly, the Y axis can be swapped to video counts or average number of fish per video while keeping the same
X axis (Fig. 1-a and b). Swapping axes is the originality of this design. Users can gradually navigate through the dimensions
of the data. Users can also select other types of graph (e.g., stacked chart or boxplot) while keeping the settings of the X
and Y axes. E.g., fish counts can be stacked by species for studying species composition. Dedicated menus are displayed for
adapting further the visualizations, e.g., to stack fish counts by species or locations. Swapping both axes and types of graph
helps manipulating data attributes and visual representations which are major strains for non-experts [11]. Zone C contains
filter widgets for i) selecting datasets of interest, and ii) overviewing datasets over several dimensions. There are widgets for
each dimension of the data, namely: Year, Week of Year, Hour of Day of fish occurrence, Camera (i.e., location), Species,
Certainty Score, Software Version. Filter widgets are displayed on-demand. The selected filter values are highlighted in blue
and summarized just below Zone B. The filter summary is especially important for non-experts [8]. The widget histograms
display fish counts, hence showing fish distribution over several dimensions. The filters selected for the main graph are applied
to the dataset shown in widget histograms. E.g., in Fig. 1-a, the Zone A graph and the Zone C histograms all show a dataset
of fish detected by software D50-R52, occurring during 2011 at Camera 38, and belonging to all species, certainty scores,
weeks of year and hours of day. In this example, the Software widget shows a dataset from all software, keeping all other
applicable filters. After conducting our experiment, we concluded that widget histograms must display the same metric as
the main graph (i.e., same Y axis), to ensure high consistency between views as recommended by [8, 22].

Figure 1: Visualizations for exploring the impact of fragmentary processing.

Figure 2: Improved version of Zone B.



Question Complexity

Probe 1 (Fig. 1)

1 What is the number of fish for the week 12? F1 U1 I1
2 For which cameras are we counting the fish? F1 U1 I1
3 Which week of the year has the most fish? F2 U1 I1
4 At which period of the year can we observe the highest fish count? F3 U2 I2
5 How many videos were analyzed for the week 12? F1 U1 I2
6 What is the number of fish per video for the week 12? F1 U1 I2
7 What is the fish abundance for the week 45? F3 U2 I2
8 Which week of the year has the highest number of fish per video? F2 U1 I1
9 What is the period of the year for which the fish population is the most abundant? F3 U2 I1
10 Is it the same period of time for the camera 37? F3 U3 I2

Probe 2 (Fig. 4)

11 Is the number of video samples constant over hours of the day? F2 U1 I1
12 Is the number of video samples constant over weeks of the year? F2 U1 I2
13 Is the amount of video samples suitable for scientific research? F3 U3 I1
14 Which is the most abundant species in HoBiHu? F2 U1 I1
15 Which camera has the most abundant fish population from the species 2 (Chromis Margaritifer)? F3 U3 I2
16 Do fish from species Chromis Margaritifer generally have high certainty scores? F2 U1 I2
17 Is the abundance of species 2 (Chromis Margaritifer) lower than species 1 (Dascillus Reticulatus)? F2 U1 I1
18 Is it because the video analysis may not correctly detect the species 2 (Chromis Margaritifer) F3 U3 I2

Probe 3 (Fig. 6)

19 Is there a correlation in the occurrence of fish from species 9, 26 and 27 over weeks of the year? (considering the entire
dataset, for all time periods and all cameras)

F3 U3 I2

20 Is there a correlation in the occurrence of fish from species 9, 26 and 27 over hours of the day? F3 U3 I2

Table 3: The 20 questions asked to participants, and their levels of complexity.

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10
Level Err. Conf. Usa. Err. Conf. Usa. Err. Conf. Usa. Err. Conf. Usa. Err. Conf. Usa. Err. Conf. Usa. Err. Conf. Usa. Err. Conf. Usa. Err. Conf. Usa. Err. Conf. Usa.

Q1 F1 I1 5 3 5 5 5 5 5 5 4 5

Q2 F1 I1 5 5 5 5 5 5 5 4 4 5

Q3 F2 I1 5 5 X 5 5 5 5 5 5 4 5

Q4 U2 I1 3 4 5 5 4 3 4 W 5 3 4

Q5 F1 I2 4 4 5 5 W 5 W 4 W 3 W 2 4 3

Q6 F1 I2 4 4 X 4 4 5 4 4 1 X 4 5

Q7 U2 I2 W 5 W 5 W 4 W 5 W 5 W 3 X W 5 W 3 X W 2 W 5

Q8 F2 I1 5 5 5 5 5 5 5 W 5 X 4 5 X

Q9 U2 I1 3 4 5 5 5 4 5 4 X 4 4

Q10 U3 I1 4 W 4 X W 5 W 4 X W 5 X 5 5 4 W 4 X W 5 X

Q11 F2 I1 5 W 5 W 3 5 5 W 4 5 4 4 4

Q12 F2 I2 4 5 W 4 5 5 5 5 W 3 X 4 4

Q14 F2 I1 5 5 5 5 5 5 5 5 4 5

Q15 U3 I2 4 4 5 4 3 4 2 W 4 X 4 3

Q16 F2 I2 4 3 4 5 5 5 5 5 4 5

Q17 F2 I1 4 4 5 5 W 5 W 5 5 W 3 X 3 5

Q18 U3 I2 W 1 W 3 W 4 5 W 2 5 4 4 3 W 2

Q19 U3 I2 4 4 4 5 4 4 5 3 3 5

Q20 U3 I2 4 3 4 5 5 5 5 4 W 2 X W 2 X

Table 4: User responses, incl. invalid answers (Err.), user confidence (Conf.) and usability issues (Usa.).

Figure 4: The second probe of the experiment.

Figure 5: Visualizations for answering question 18.

Figure 6: The third probe of the experiment.

Figure 7: Visualizations for answering question 18.



user. We partitioned questions into groups representing task
complexity (F1, F2, U2, or U3), interaction complexity (I1
or I2), answers’ validity (Right or Wrong), and usability (Is-
sue or No issue). These groups contain distinct questions
and separate conditions involving uncertainty (U2-3) or not
(F1-2). Fig. 9 shows the confidence values per user and
group of questions (mean and 95%CI for each group).

Users were generally highly confident, even when answers
were wrong or uncertainty was high. Level 5 is often the
default answer, but some users consider level 4 as the de-
fault, making comparisons difficult, e.g., for User 4, level 4
is weak confidence while being the optimal confidence for
User 9. To compare user confidence over question groups,
we focused on confidence drifts (i.e., relative changes in con-
fidence) rather than absolute confidence levels. Confidence
drifts were computed for each user, e.g., 1) average a user’s
confidence for groups F1 and F2 distinctively; 2) subtract
the averages to get the user’s confidence drift; 3) repeat 1-2
for all users; 4) analyze confidence drifts over all users (e.g.,
median and inter-quartile range in Fig. 10). We analyzed
confidence drifts between question groups F1-F2, F2-U2,
U2-U3, I1-I2, R-W (Right or Wrong answers), NoIssue-
Us.Issue (occurrence of usability issues). As we focus on the
effect of either uncertainty itself or the user interface, we con-
sidered three additional question groups: Certain-Uncertain
(F1∪F2 against U2∪U3), CertainI1-CertainI2 (Certain∩I1
against Certain∩I2) and UncertainI1-UncertainI2 (Uncer-
tain∩I1 against Uncertain∩ I2). Fig. 10 shows the corre-
sponding confidence drifts.

Except for the groups F1-F2, increasing question complex-
ity yields a decrease in user confidence. It happens whether
complexity arises from the information (F2-U2, Certain-
Uncertain, Right-Wrong) or from the interface (I1-I2, Us.
Issue-NoIssue, CertainI1-CertainI2, UncertainI1-Uncertain
I2 ). However, the statistical significance of confidence drifts
is not verified. Using Welch t-test (compensating for the
unequal variance shown in Fig. 9), we tested the confidence
drifts of each user. E.g., for each user, aggregate confidence
measured for group F1 and F2 distinctively, and apply Welch
test. P-values are generally >.05 (Fig. 11). User confidence
is generally high with mostly the same value (e.g., level 5),
thus in general confidence levels are not significantly differ-
ent over question groups. However, two observations give
credence in concluding that uncertainty and interactivity
had similar effects on user confidence. O1: except for groups
F1-F2, confidence was lowered by questions’ complexity. If
the effect was random, confidence drifts would show as many
increases than decreases. O2: confidence drifts are the most
significant for the groups I1-I2, with the lowest variance and
p-values, and a median similar to that of the groups Certain-
Uncertain. We noticed that wrong answers and usability
issues had an important effect on user confidence (Fig. 9),
but are outlying conditions (low numbers of observations).
Further, wrong answers and usability issues often occurred
together (Fig. 8). We repeated the analysis on right answers
with no usability issue, and obtained similar observations
(O1-2). We conclude that either interacting with the vi-
sualization, or analysing uncertain data had similar effects
on user perception of uncertainty. This biases user aware-
ness of uncertainty. Low user confidence may not assess the
strength of their data interpretation, but may reflect diffi-
culties in locating information via the interface.

Figure 8: Proportion of answers in each condition.

Figure 9: Confidence levels per users and per groups
of questions.

Interpretation and Recommendations - User confidence
was generally high, even for wrong answers and uncertain in-
formation. Over-confidence may be due to cultural factors.
We expected skepticism from scientific users, but paradox-
ically they may feel obliged to express only sure answers.
It may also be due to the presence of observers during the
task, inducing a will to perform well (Hawthorne effect).
Taiwanese culture may reinforce the incentive for provid-
ing solid, valuable answers to not let interrogators helpless
(Taiwanese people were always extremely helpful with us as
visitors). We recommend that studies of user awareness of
uncertainty give strong incentives for users to express their
low confidence. The 5-grade likert scale may be reduce to a
2-grade (confident or not) or 4-grade scale.



Figure 10: Confidence drifts per question groups.

Figure 11: p-values from Welch t-tests (each point
represents a user).

Users overlooked uncertainty due to fragmentary processing.
No spontaneous Projection (F3) of possible video numbers
occurred: questions Q7, 10, 19, 20 did not show numbers of
videos, and users did not extrapolate the potential imbal-
ance in numbers of videos. Yet Perception (F1) and Com-
prehension (F2) of numbers of videos were correct (Q5, 11,
12). Hence no right answers were given to Q7. Otherwise
answers were fortuitously correct regardless of fragmentary
processing. Question formulation may be ambiguous, e.g.,
”What is the fish abundance?” may be interpreted as a need
for raw fish count. Widgets’ histograms displayed only raw
fish counts, thus it may seem the main metric for fish abun-
dance and eclipse the average fish counts per video. Frag-
mentary processing is similar to sampling size issues (e.g.,
not enough observations), a well-known concern in marine
ecology. Yet it is specific to computer vision, and not as-
similated by ecologists, e.g., they may expect video stream
processing to be continuous, rarely missing videos. Hence
we recommend that this uncertainty factor is always un-
covered. Raw fish counts can be harmful for studying fish
populations, and by default, should not be displayed. Aver-
age fish counts per video should be displayed together with
an indication of the sampling size (e.g., encoded as an extra
visual dimension like transparency). Terms closer to ecol-
ogy vocabulary may be preferable (e.g., sampling size rather
than numbers of videos).

No users spontaneously considered certainty scores, which
is an unfamiliar, complex concept. However, some users an-
ticipated uncertain factors we overlooked: issues with fields
of view, duplicated individuals and differentiating biases from

noise (Table 1). All uncertainty factors were not foreseen at
the first stage of the requirements analysis, neither by do-
main experts nor by system experts. They were uncovered at
each stage of the design process (Table 1, last column). User-
Centered Design had limitations for introducing this tech-
nology to a novel application domain. Requirements from
non-experts only would produce incoherent design as [16] no-
tifies. System experts were particularly needed for specifying
Uncertainty and Error Modeling [7]. However, they did not
identify nor quantify uncertainties beyond general-purpose
computer vision evaluation (e.g., heterogeneous Fields of
View, Duplicated Individuals). We recommend that user
needs regarding uncertainty management be iteratively in-
vestigated by a multidisciplinary team involving domain and
system experts, designers, and novices. For instance, it is
a coral ecologist, novice to fish ecology, who uncovered the
crucial issue with duplicated individuals.

The increase in confidence observed between F1 and F2
questions, although not statistically signifiant (p=.07, Welch
t-test), suggests an effect of the learning curve. Experienc-
ing and overcoming slightly higher complexity may induce a
sentiment of higher level of expertise. User confidence may
be reinforced, while the information they had dealt with do
not justify it. Similarly, interacting with the interface and
using unknown functionalities, may reduce user confidence
on a short-term basis. As they need to learn the interac-
tion features, users are not confident that their interactions,
and thus the obtained information, are correct. Thus we
highly recommend providing a tutorial and a brief memo
summarizing the uncertainty exploration steps needed for
valid data analysis. These should be easily accessible from
the user interface, for quick checks while interacting with
the data. It can help users building their confidence beyond
dealing with the interface and its interactivity.

Predefined filters of the 3rd probe were often overlooked,
most probably because users did not set them up them-
selves. However, it suggests potential attention tunneling
issues with the layout design. User attention may be di-
rected to more salient features of the interface, e.g., the
main graph, rather than the selected filters. In the next
version of the interface, filters were reinforced and included
in Zone B. It now describes both main graph and filters in
natural language (Fig. 2), and can serve as a title for the
main graph. The dimensions not used for filtering (e.g., all
years, all certainty scores) can saturate users’ working mem-
ory, and are no longer displayed. Users tried to click on the
filter summary, thus we added interactions for reseting the
filters (cross buttons). The interaction design for manipulat-
ing the widgets and main graph was welcome and easily un-
derstood (”It is very nice, I can display anything I want.”).
Participants used either histograms and main graph when
appropriate. It suggests that our interaction design is rea-
sonable, while our layout design raised most of the usability
issues.

We recommend that uncertainty is always salient in the
interface. It may complicate the layout design, yet it may
be the best tradeoff regarding the high risk of misinterpre-
tation. Our design of simple graphs in multiple views is
intuitive and quickly understood. But it may over-simplify
data exploration at the cost of concealing the uncertainties.
Over-simplification may enhance attention tunneling, mem-
ory loss and over-confidence.



5. CONCLUSION
We presented and evaluated an interactive visualization

for exploring multidimensional data containing multiple un-
certainty factors. It aims at limiting potential data overload
and interface cluttering, while facilitating the exploration
of data dimensions with flexible visualizations. It supports
preliminary data analyses for a wide range of potential usage
of the dataset, which may be achieved with specialized data
analysis techniques. Our design for preliminary data explo-
ration can help users to familiarize with novel datasets, and
identify issues and uncertainties that may impact further
data analyses. Our interaction design was found intuitive
and easy to understand, although the dataset was unfamil-
iar to users. Our design can contribute to similar use cases,
possibly within domains other than marine ecology. Our
evaluation method, inspired from the Situation Awareness
domain, can contribute to other evaluations of uncertainty
awareness, or to distinguish issues with either layout or in-
teraction design. Our main finding is that user confidence
is generally high, and subjectively influenced by the inter-
actions with the visualization: interaction complexity had
similar effects than uncertainty itself. Using simple graphs
with multiple views achieves high intuitiveness but may have
negative effects on user awareness of uncertainty. The sim-
plicity of the graphs and interactions may have contributed
to overconfidence through a sentiment of mastering the in-
terface and its information, which led to overlooking uncer-
tainty issues. Furthermore, uncertainty assessment requires
the visualization of several graphs within multiple views,
which may yield attention tunneling and memory loss, and
induce misinterpretations and unawareness of crucial infor-
mation on uncertainty.
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