DISCRETE MATHEMATICS

Strong orientations without even directed circuits ${ }^{1}$

A.M.H. Gerards ${ }^{\text {a,* }}$, F.B. Shepherd ${ }^{\text {b }}$
${ }^{\text {a }}$ CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands
${ }^{\mathrm{b}}$ Bell Labs, 600 Mountain Ave, Murray Hill. NJ 07974, USA

Received 10 June 1996; revised 26 August 1997; accepted 20 October 1997

Abstract

We characterize the graphs for which all 2-connected non-bipartite subgraphs have a strongly connected orientation in which each directed circuit has an odd number of edges. We also give a polynomial-time algorithm to find such an orientation in these graphs. Moreover, we give an algorithm that given any orientation of such a graph, determines if it has an even directed circuit.

The proofs of these results are based on a constructive characterization of these graphs. (c) 1998 Elsevier Science B.V. All rights reserved

AMS classification: $05 \mathrm{C} 20 ; 05 \mathrm{C} 75$
Keywords: Orientation; Strong connectivity; Signed graphs

1. Introduction

A directed graph $D=(V(D), A(D))$ is strongly connected if between any ordered pair of nodes (u, v) there exists a directed $u v$-path in D. A strongly connected directed graph without directed circuits with an even number of arcs is called strong odd. An orientation of an undirected graph $G=(V(G), E(G))$ is a directed graph D obtained from G by replacing each edge in G by a directed edge (arc). In this paper we prove the following result:

Theorem 1. Let G be a 2-connected non-bipartite graph. If G contains neither an odd-K4 nor an odd chain as a subgraph, then G has a strong odd orientation.

Here, an odd- K_{4} is an undirected graph as depicted in Fig. 1(a). A string is a graph H for which there exist subgraphs H_{1}, \ldots, H_{k}, with $k \geqslant 2$, such that $E\left(H_{1}\right), \ldots, E\left(H_{k}\right)$

[^0]

Fig. 1. Dashed and dotted lines denote pairwise openly disjoint paths. Dashed lines correspond to paths with at least one edge, whereas dotted lines may have length 0 . The word odd in a face indicates that the length of the bounding circuit is odd.
partition $E(H)$ and such that for $i \neq j$,

$$
\left|V\left(H_{i}\right) \cap V\left(H_{j}\right)\right|= \begin{cases}2 & \text { if } k=2, \\ 1 & \text { if } k \neq 2 \text { and }|i-j|=1(\bmod k), \\ 0 & \text { else } .\end{cases}
$$

H_{1}, \ldots, H_{k} are the beads of the string. If $k>2, h_{i, i+1}$ denotes the unique node in $V\left(H_{i}\right) \cap V\left(H_{i+1}\right)$ (indices modulo k). If $k=2, h_{1,2}$ and $h_{2,1}$ denote the two nodes in $V\left(H_{1}\right) \cap V\left(H_{2}\right)$. The nodes $h_{1,2}, \ldots, h_{k, 1}$ are called the links of the string. A chain is a string in which each bead is a path or an odd circuit. An m-chain is a chain in which exactly m beads are odd circuits. A full (m-)chain is an (m-)chain in which all beads are odd circuits. An odd (even) chain is a full m-chain with m odd (even). Fig. 1(b) exhibits a 3-chain. Unless stated otherwise, by subgraph of G we do not mean just induced subgraph but any graph H with $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
It can be easily checked that odd- K_{4} 's and odd chains have no strong odd orientation; hence, Theorem 1 can also be stated as:

Let G be an undirected graph. Then each 2-connected non-bipartite subgraph of G has a strong odd orientation if and only if G contains neither an odd- K_{4} nor an odd chain as a subgraph.

Fig. 2 illustrates that graphs containing an odd- K_{4} may have strong odd orientations. In Theorem 1, non-bipartiteness is essential since strongly connected orientations of bipartite graphs always will have even directed circuits. 2-connectedness is almost essential; it can be replaced by: G is connected and each block (=maximal 2-connected subgraph) of G is non-bipartite.

Our proof of Theorem 1 consists of two major phases. First, in Section 3, we derive strong odd orientations for three special types of graphs with no odd- K_{4} and no odd chain. In the second phase, in Section 4, we make use of a constructive characterization of graphs with no odd- K_{4} and no odd chains (Theorem 7 and Corollary 8 in Section 4),

Fig. 2. A strong odd orientation of a graph with an odd- K_{4} (depicted in bold).
which says that these graphs can be decomposed into graphs of the three special types. In both phases we make use several times of a small orientation lemma (Lemma 3 in Section 2).
For technical reasons we prove the result in a bit wider context than that of ordinary undirected graphs; namely that of signed graphs (cf. Section 2). Not because this yields a stronger result - essentially it does not - but rather to facilitate stating the arguments.

The results of these paper are motivated by the following computational problem proposed by Bang-Jensen [2]:
(1) Given a graph, find a strong odd orientation of it.

We have no clue, as to the complexity of this problem. We do not even know if it is equivalent with the related well-known even circuit problem:
(2) Given an oriented graph, does it contain an even directed circuit?

The proof of Theorem 1, however, yields the following result:
Theorem 2. Both (1) and (2) are solvable in polynomial time for graphs with no odd-K4 and no odd chain.

Note that, by Corollary 8 , graphs with no odd $-K_{4}$ and no odd chain are recognizable in polynomial-time. We conclude this section with a short overview of related results.

1.1. Results on the even circuit problem

The complexity of even circuit problem (2) is a well-known open problem ${ }^{2}$ although it has been shown that the problem of determining whether a specified arc is contained in an even directed circuit is NP-hard (Klee, Ladner and Manber [9]; Thomassen [15]).

[^1]On the other hand, Thomassen [15] has given a polynomial-time algorithm for the even circuit problem in directed planar graphs. Moreover, Galluccio and Loebl [3] have given an algorithm to determine whether all directed circuits in a directed planar graph are of length $p \bmod q$ for arbitrary $0 \leqslant p<q$. In the case of undirected graphs, a polynomial time algorithm has been given to determine whether all circuits in a graph are of length $p \bmod q$ (Arkin, Papadimitriou and Yannakakis [1]). Note that forbidding odd directed circuits instead of even ones, yields a trivial problem: a graph has a strongly connected orientation without odd directed circuits if and only if it is bipartite.

The even cycle problem is polynomially equivalent with any of the following problems: recognizing even graphs, i.e. directed graphs for which every subdivision contains an even directed circuit (Seymour and Thomassen [14]); recognizing bipartite graphs with Pfaffian orientations (Vazirani and Yannakakis [18]); recognizing those minimally non-bipartite hypergraphs that have as many edges as vertices (Seymour [13]); and the following problem: given a $0,1 n \times n$ matrix A, is there a $-1,0,1 n \times n$ matrix B such that $\operatorname{perm}(A)=\operatorname{det}(B)$ (Vazirani and Yannakakis [18]). Seymour and Thomassen [14] gave an NP-characterization of even graphs. Vazirani and Yannakakis [18] show that for any graph the problems of finding a Pfaffian orientation and of checking whether a given orientation is Pfaffian are equivalent. Little [11] fully characterized the class of Pfaffian bipartite graphs in terms of forbidden subconfigurations. The class includes bipartite graphs with no subdivision of K_{33} (Little [10]), so in particular planar bipartite graphs (Kasteleyn [8]). We mention that the problem of determining whether the permanent and determinant of a matrix are equal is NP-hard (Valiant [17]).

1.2. Other orientation results for graphs with no odd- K_{4} 's

There are two other orientation results in which odd- K_{4} 's play a role. The first one is: An undirected graph contains no odd- K_{4} and no 3 -chain if and only if it has an orientation such that on each circuit the number of forwardly oriented edges differs at most one from the number of backwardly oriented edges (Gerards [6]). The other is: Each undirected graph with no odd- K_{4} and no 3 -chain can be oriented such that on each circuit the number of forwardly oriented edges minus the number of backwardly oriented edges is a multiple of the length of a shortest odd circuit in the graph (Gerards [4]). (The existence of such an orientation is equivalent with the existence of an adjacency preserving map from the vertices of the graph to the vertices of a shortest odd circuit in that graph.)

2. Preliminaries

2.1. An orientation lemma

In proving Theorem 1 we will use several times the following easy fact. A one node cutset $\{v\}$ lies between s and t if the graph $G-v$ (obtained by deleting v) has exactly two components, one containing s and one containing t.

Lemma 3. Let G be an undirected graph and let $s, t \in V(G)$ such that all one node cutsets lie between s and t. Then G has an acyclic orientation such that each node in G is on a directed st-path in D.

Proof. First suppose that G has a one node cutset $\{v\}$. Let V_{s} be the node set of the component of $G-v$ containing s and V_{t} the node set of the component containing t. Now applying induction to the subgraph of G induced by $V_{s} \cup\{v\}$ with v instead of t and to $V_{t} \cup\{v\}$ with v instead of s, we obtain the desired orientation for G, s and t.

So, we may assume G to be 2 -connected. Let \tilde{G} be a maximal 2 -connected subgraph of G containing s and t, for which such an orientation, \tilde{D} say, exists. This is well defined as G is 2 -connected and hence contains a circuit through s and t. If $\tilde{G}=G$ we are done, so suppose this is not the case. Number the nodes of \tilde{G} such the tail of each arc in \tilde{D} has a lower number than the head of that arc. Let R be a $u v$-path in G with $V(R) \cap V(\tilde{G})=\{u, v\}$ and $E(R) \cap E(\tilde{G})=\emptyset(R$ exists as G is 2 -connected). Without loss of generality u received the lower number. Orient the edges on R so that R becomes a directed $u v$-path. Clearly, the directed graph obtained is 2 -connected, acyclic and has each node on a directed st-path. But it is larger than \tilde{G} - contradiction!

2.2. Signed graphs

A signed graph is a pair (G, Σ), where $G=(V(G), E(G))$ is an undirected graph and Σ is a subset of $E(G)$. Edges in Σ are called odd, the other edges are called even. A collection of edges or a subgraph is called odd (even) if it contains an odd number of odd edges. We call a signed graph (G, Σ) bipartite if there exists a set $U \subseteq V(G)$ such that $\Sigma=\delta(U):=\{u v \in E(G) \mid u \in U, v \in V(G) \backslash U\}$. Obviously, a signed graph is bipartite if and only if it has no odd circuits. Note that ($G, E(G)$) is bipartite if and only if G is a bipartite graph in the usual sense. We say that a signed graph (H, Θ) is contained in (G, Σ) if $V(H) \subseteq V(G), E(H) \subseteq E(G)$ and $\Theta=\Sigma \cap E(H)$.

A strong odd orientation of a signed graph (G, Σ) is a strongly connected orientation of G in which no directed circuit is an even circuit in (G, Σ). It is easy to see that Theorem 1 is equivalent to:
(3) Let (G, Σ) be a non-bipartite signed graph with $G 2$-connected. If (G, Σ) contains neither an odd- K_{4} nor an odd chain, then (G, Σ) has a strong odd orientation.

Here, odd- K_{4} and odd chain are defined similarly as in case of ordinary graphs, with the understanding that in case of signed graphs 'odd' refers not to the cardinality of an edge set but to the number of odd edges contained in it. Similarly, we extend the notions of string and of full, m-, and even chains to signed graphs.

Clearly, the strong oddness of orientations does not depend as much on Σ, the collection of odd edges, as on the collection of odd circuits. If (G, Σ) is a signed graph, and $\tilde{\Sigma} \subseteq E(G)$, then (G, Σ) and ($G, \tilde{\Sigma}$) have exactly the same odd circuits if and only if ($G, \Sigma \triangle \tilde{\Sigma}$) is bipartite or, equivalently, if and only if $\tilde{\Sigma}=\Sigma \triangle \delta(U)$ for some $U \subseteq V(G)$. We call the replacement of Σ by $\tilde{\Sigma}=\Sigma \triangle \delta(U)$ a re-signing on U.

3. Special cases

We first show the result for three subclasses of signed graphs with no odd- K_{4} and no odd chain, namely 'almost bipartite signed graphs', 'planar signed graphs with exactly two odd faces' and chains that are not odd. As we shall see in Section 4, these special classes generate the general case.

3.1. Almost bipartite graphs

A signed graph is called almost bipartite, if it contains a node, called a block node, that is in each odd circuit. Deleting a block node yields a bipartite signed graph.

Lemma 4. Let (G, Σ) be an almost bipartite signed graph. If G is 2 -connected and (G, Σ) is non-bipartite, then (G, Σ) has a strong odd orientation.

Proof. Let u be a block node of (G, Σ). Re-sign such that Σ becomes a subset of $\delta(u)$. Construct a new graph G^{\prime} by splitting u into two new nodes s and t, where odd edges in $\delta(u)$ now become adjacent to s and even edges in $\delta(u)$ to t. As (G, Σ) is non-bipartite neither $\delta(s)$ nor $\delta(t)$ is empty. Moreover, as G is 2 -connected, all one node cutsets of G^{\prime} lie between s and t. Applying Lemma 3 to G^{\prime}, yields an orientation of G^{\prime} that induces a strong odd orientation of (G, Σ).

3.2. Planar with two odd faces

Lemma 5. Let (G, Σ) be a signed graph. If G is 2-connected, planar, and can be embedded in the plane such that exactly two of its faces are bounded by odd circuits in (G, Σ), then (G, Σ) has a strong odd orientation.

Proof. Let G^{*} be the planar dual of G and s and t be the nodes of G^{*} corresponding to the two faces of G bounded by odd circuits. As G is 2 -connected so is G^{*}. Hence, by Lemma 3 there exists an acyclic orientation D^{*} of G^{*} such that each node is on a directed st-path in D^{*}. Take as orientation D of G, the directed dual of D^{*} by using the right-hand rule.

Because, D^{*} is acyclic, D has no directed cuts, hence D is strongly connected. If C is a directed circuit in D then it corresponds in D^{*} to a directed cut. This implies that s and t lie in the plane on different sides of C. Hence, exactly one of the faces inside C is bounded by an odd circuit. As C is the symmetric difference of the boundaries of the faces inside C, circuit C is odd. So, D is a strong odd orientation of G.

3.3. Chains

Lemma 6. Even chains have a strong odd orientation, and so do non-bipartite chains that are not full.

Proof. Let C be an odd circuit with non-empty intersection with all the beads. Orient the edges on C such that C becomes a directed circuit. Orient the other edges in G such that all non-bipartite beads, which are odd circuits, become directed circuits. Clearly, this yields a strongly connected orientation. The only possible directed circuits are C, the odd-circuits forming the non-bipartite beads, and possibly $C^{\prime}:=G \backslash C$ (if it forms a circuit). So, the orientation is odd unless C^{\prime} is an even circuit in (G, Σ). However, if C^{\prime} is a circuit, then (G, Σ) is a full chain; if, moreover, $\left|C^{\prime} \cap \Sigma\right|$ is even, then $|\Sigma|$ is odd, so (G, Σ) is an odd chain.

4. Proof of Theorem 1

As announced we will prove Theorem 1 by proving (3). If (G, Σ) contains $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ with $E\left(G_{1}\right) \cup E\left(G_{2}\right)=E(G), E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$, and $V\left(G_{1}\right) \cup V\left(G_{2}\right)=$ $V(G)$, then we write $(G, \Sigma)=\left(G_{1}, \Sigma_{1}\right) \oplus_{U}\left(G_{2}, \Sigma_{2}\right)$, where $U:=V\left(G_{1}\right) \cap V\left(G_{2}\right)$. In proving Theorem 1 we make use of the following decomposition theorem.

Theorem 7 (Gerards et al. [7], cf. Gerards [5, Theorems 3.2.3 and 3.2.5]). Let (G, Σ) be a signed graph containing no odd-K4. If G is 2 -connected then one of the following holds:
(4) (G, Σ) is almost bipartite or can be embedded in the plane such that exactly two of its faces are bounded by odd circuits.
(5) (G, Σ) is - up to re-signing - one of the two signed graphs in Fig. 3.
(6) $(G, \Sigma)=\left(G_{1}, \Sigma_{1}\right) \oplus_{U}\left(G_{2}, \Sigma_{2}\right)$ such that one of the following holds:
(a) $|U|=2,\left(G_{2}, \Sigma_{2}\right)$ is bipartite and $\left|E\left(G_{2}\right)\right| \geqslant 2$;
(b) $|U|=2$ and $\left|E\left(G_{1}\right)\right|,\left|E\left(G_{2}\right)\right| \geqslant 3$;
(c) $|U|=3,\left(G_{2}, \Sigma_{2}\right)$ is bipartite, $\left|E\left(G_{2}\right)\right| \geqslant 4$ and (G, Σ) contains no 3-chain.

Since in this paper we are considering a proper subclass of signed graphs with no odd- K_{4}, namely those with no odd chain, we need a slight refinement of Theorem 7.

Corollary 8. Let (G, Σ) be a signed graph containing no odd-K4. If G is 2-connected then one of the following holds:
(7) (G, Σ) is almost bipartite or can be embedded in the plane such that exactly two of its faces are bounded by odd circuits.
(8) (G, Σ) is - up to re-signing - the signed graph in Fig. 3(a).
(9) $(G, \Sigma)=\left(G_{1}, \Sigma_{1}\right) \oplus_{U}\left(G_{2}, \Sigma_{2}\right)$ such that one of the following holds:
(a) $|U|=2,\left(G_{2}, \Sigma_{2}\right)$ is bipartite and $\left|E\left(G_{2}\right)\right| \geqslant 2$;
(b) $|U|=3,\left(G_{2}, \Sigma_{2}\right)$ is bipartite, $\left|E\left(G_{2}\right)\right| \geqslant 4$ and (G, Σ) contains no 3-chain.
(10) G is a string, with beads H_{1}, \ldots, H_{k} and links $h_{1,2}, \ldots, h_{k, 1}$ such that the following hold for each $i=1, \ldots, k$:
(a) If H_{i} is non-bipartite in (G, Σ), there exists an odd circuit in H_{i} containing both $h_{i-1, i}$ and $h_{i, i+1}$.

Fig. 3. Bold edges are odd, thin edges are even; in (a) arrows indicate a strong odd orientation.
(b) If H_{i} is bipartite in (G, Σ), it consists of a single edge between $h_{i-1, i}$ and $h_{i, i+1}$.

Moreover, if $k=2$ both H_{1} and H_{2} have at least 3 edges.
Proof. Let (G, Σ) be a signed graph with no odd- K_{4}. Assume (7)-(9) do not hold. Then, by Theorem 7, (6b) applies, or (G, Σ) is the graph in Fig. 3(b). Hence, G is a string with at least two non-bipartite beads. Let the beads H_{1}, \ldots, H_{k} be chosen such that k is as large as possible. Because (9a) does not hold, (10b) follows. So it remains to prove (10a). From maximality of k and 2 -connectedness of G we easily get:
(11) If H_{i} is non-bipartite, then there exists an odd circuit C in H_{i} and two (possibly zero-length) node-disjoint paths P_{1}, P_{2} (in H_{i}) from $\left\{h_{i-1, i}, h_{i, i+1}\right\}$ to $V(C)$.

From now, take $i=1$. In H_{1}, choose C, P_{1} and P_{2} as in (11) such that $\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right|$ is as short as possible; assume $\left|E\left(P_{1}\right)\right| \geqslant\left|E\left(P_{2}\right)\right|$. We prove that P_{1} has length 0 , which proves (10a). So assume P_{1} has positive length. Moreover, assume that P_{1} goes from $h_{k, 1}$ to $u \in V(C)$. Because of the maximality of k, H_{1} is 2 -connected. Hence, it contains a $v w$-path P with $v \in V\left(P_{1}\right) \backslash\{u\}$ and $w \in\left(V(C) \cup V\left(P_{2}\right)\right) \backslash\{u\}$ that is internally nodedisjoint with $V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup V(C)$. As C is odd, the union of P_{1}, P_{2}, P and C contains an odd circuit C_{1} containing v. By the choice of C, P_{1} and P_{2} we get that $V\left(C_{1}\right) \cap V\left(P_{2}\right)=\emptyset$. Hence, we are in the situation as depicted by Fig. 4. Since there are at least two non-bipartite beads, at least one of H_{2}, \ldots, H_{k} is non-bipartite. Hence, by (11), there exists an odd $h_{1,2} h_{k, 1}$-path Q_{1} and an even $h_{1,2} h_{k, 1}$-path Q_{2} that are internally node disjoint with H_{1} (so lie in $H_{2} \cup \cdots \cup H_{k}$). But this implies that either Q_{1} or Q_{2} closes an odd- K_{4} with P_{1}, P_{2}, C and C_{1} - contradiction!

Proof of Theorem 1

(12) Assuming (3) wrong, let (G, Σ) be a counterexample with $|E(G)|$ as small as possible.

Fig. 4. The shaded areas indicate the beads. Dashed and dotted lines denote pairwise openly disjoint paths. Dashed lines correspond to paths with at least one edge, whereas dotted lines may have length 0 . The word odd in a face indicates that the length of the bounding circuit is odd.

By Lemmas 4, 5 and 6 and Theorem 7 and because the orientation in Fig. 3(a) is strong odd, (G, Σ) satisfies (9) or (11), but is not a chain. We consider three cases.

Case 1: (G, Σ) satisfies (9b) but not $(9$ a).
Let $(G, \Sigma)=\left(G_{1}, \Sigma_{1}\right) \oplus_{\left\{u_{1}, u_{2}, u_{3}\right\}}\left(G_{2}, \Sigma_{2}\right)$ with $\left(G_{2}, \Sigma_{2}\right)$ bipartite and $\left|E\left(G_{2}\right)\right| \geqslant 4$. Assume that we have chosen (G_{1}, Σ_{1}) and (G_{2}, Σ_{2}) such that $\left|E\left(G_{2}\right)\right|$ is as small as possible. We may assume - by re-signing - that $\Sigma_{2}=\emptyset$. Let ($\tilde{G}_{1}, \Sigma_{1}$) be obtained by adding to (G_{1}, Σ_{1}) three new even edges: $e_{1}=u_{1} u_{2}, e_{2}=u_{2} u_{3}$ and $e_{3}=u_{1} u_{3}$. As (9a) does not apply for (G, Σ), (G_{2}, Σ_{2}) contains a circuit C (even, of course) with at least three nodes, and three node-disjoint paths from $\left\{u_{1}, u_{2}, u_{3}\right\}$ to C. From this it can be proved that if ($\tilde{G}_{1}, \Sigma_{1}$) would contain an odd- K_{4}, then so would (G, Σ), and if ($\tilde{G}_{1}, \Sigma_{1}$) would contain an odd chain then (G, Σ) would contain a 3 -chain or an oddK_{4}; we leave the details to the reader. Moreover, $\left(\tilde{G}_{1}, \Sigma_{1}\right)$ inherits 2 -connectedness and non-bipartiteness from (G, Σ). Hence, ($\tilde{G}_{1}, \Sigma_{1}$) has a strong odd orientation \tilde{D}_{1}. In \tilde{D}_{1}, the circuit $\left\{e_{1}, e_{2}, e_{3}\right\}$ is not directed (it is even in $\left(\tilde{G}_{1}, \Sigma_{1}\right)$). So we may assume by renumbering the indices in $\left\{u_{1}, u_{2}, u_{3}\right\}$ - that $\overrightarrow{u_{1} u_{2}}, \overrightarrow{u_{2}} \vec{u}_{3}, \vec{u}_{1} \vec{u}_{3} \in A\left(\tilde{D}_{1}\right)$. Let D_{1} be the orientation of G_{1} obtained from \tilde{D}_{1} by deleting $\vec{u}_{1} \vec{u}_{2}, \vec{u}_{2} \vec{u}_{3}$ and $\vec{u}_{1} \vec{u}_{3}$.

Claim 1. G_{2} is the graph in Fig. 5.
Proof of Claim 1. If G_{2} has a one node cutset u that does not lie between u_{1} and u_{3}, then it separates u_{2} from u_{1} and u_{3}. So in that case the claim follows because (9a) does not hold and G_{2} was chosen such that it has a minimal number of edges.

Fig. 5.

Hence we may assume that in G_{2} each one node cutset lies between u_{1} and u_{3}. Apply Lemma 3 to G_{2} with $s:=u_{1}$ and $t:=u_{3}$; call the resulting orientation D_{2}. It is not hard to see that the orientation D of G obtained by taking the union of D_{1} and D_{2} is strongly connected and that none of its directed circuits is even in (G, Σ). This contradicts (12).

We define two orientations $D^{u u_{2}}$ and $D^{u_{2} u}$ in (G, Σ). In both the edges in $E\left(G_{1}\right)$ are oriented as in D_{1} and the edges in $E\left(G_{2}\right) \backslash\left\{u u_{2}\right\}$ are oriented as: $\overrightarrow{u_{1} u}, \overrightarrow{u u_{3}}$ and $\vec{u}_{1} \vec{u}_{3}$. In $D^{u u_{2}}, u u_{2}$ is oriented from u to u_{2} and in $D^{u_{2} u}$ from u_{2} to u. We will show that either $D^{u u_{2}}$ or $D^{u_{2} u}$ is strong odd, contradicting (12).

Claim 2. Both $D^{u u_{2}}$ and $D^{u_{2} u}$ have no even directed circuits.

Proof of Claim 2. Suppose C is an even directed circuit in $D^{u u_{2}}$ or $D^{u_{2} u_{2}}$. As $\left(\tilde{G}_{1}, \Sigma_{1}\right)$ comes from (G, Σ) by contracting the even edge $u_{2} u$ and because \tilde{D}_{1} has no even directed circuits, C is not a circuit in \tilde{G}_{1}. Hence, in G, C contains the nodes u and u_{2} but not the edge $u u_{2}$. So it contains $\overrightarrow{u_{1} u}$ and $\overrightarrow{u u_{3}}$. Replacing in C these two arcs by $\vec{u}_{1} \vec{u}_{3}$ yields an even directed circuit in \tilde{D}_{1} - contradiction!

Claim 3. Either $D^{u u_{2}}$ or $D^{u_{2} u}$ is strongly connected.

Proof of Claim 3. It is easy to see that if in D_{1} there is a directed $u_{3} u_{2}$-path, $D^{u_{2} u}$ is strongly connected. (Because \tilde{D}_{1} is strongly connected.) Similarly, if in D_{1} there is a directed $u_{2} u_{1}$-path, then $D^{u u_{2}}$ is strongly connected.

Hence, we may assume that neither u_{1} nor u_{3} is in the strongly connected component W of D_{1} containing u_{2}. Let $v w$ be an edge in G_{1}, with $v \in W$ and $w \notin W$. (This edge exists as G_{1} is connected.) If $\overrightarrow{v w} \in A\left(D_{1}\right)$, then there exists a directed $w u_{1}$-path in D_{1}, hence also a directed $u_{2} u_{1}$-path (as v is in W). So $D^{u u_{2}}$ is strongly connected. On the other hand, if $\overrightarrow{w v} \in A\left(D_{1}\right)$, then there exists a directed $u_{3} w$-path in D_{1}, hence also a directed $u_{3} u_{1}$-path. So in that case, $D^{u_{2} u}$ is strongly connected.

Hence, Case 1 cannot hold.
Case 2: (G, Σ) satisfies (9 a).
Let $(G, \Sigma)=\left(G_{1}, \Sigma_{1}\right) \oplus_{\left\{u_{1}, u_{2}\right\}}\left(G_{2}, \Sigma_{2}\right)$ with $\left(G_{2}, \Sigma_{2}\right)$ bipartite and $\left|E\left(G_{2}\right)\right| \geqslant 2$. From this we have a contradiction against (12). As the proof is just a simplified version of the proof in Case 1 we omit it.

Case 3: (G, Σ) satisfies (10).
Let H_{1}, \ldots, H_{k} be the beads of G, satisfying the conditions in (10). As (G, Σ) contains no odd chain, k is even or one of the beads is bipartite. Assume the numbering of the beads is such that H_{k} has the maximum number of edges. Define $G_{1}:=H_{1} \cup \cdots \cup H_{k-1}, \Sigma_{1}:=\Sigma \cap E\left(G_{1}\right), G_{2}:=H_{k}, \Sigma_{2}:=\Sigma \cap E\left(G_{2}\right), u_{1}:=h_{k-1, k}$ and $u_{2}:=h_{k, 1}$. Then $(G, \Sigma)=\left(G_{1}, \Sigma_{1}\right) \oplus_{\left\{u_{1}, u_{2}\right\}}\left(G_{2}, \Sigma_{2}\right)$; by Lemma $6,(G, \Sigma)$ is not a chain, so $\left|E\left(G_{1}\right)\right|,\left|E\left(G_{2}\right)\right| \geqslant 3$.
For $i=1,2$, we define ($\tilde{G}_{i}, \tilde{\Sigma}_{i}$) by adding to (G_{i}, Σ_{i}) two edges e_{i}^{0} and e_{i}^{1} from u_{1} to u_{2}, where e_{i}^{0} is even and e_{i}^{1} is odd (so $\tilde{\Sigma}_{i}:=\Sigma_{i} \cup\left\{e_{i}^{1}\right\}$). For $j=0,1,\left(\tilde{G}_{2}, \tilde{\Sigma}_{2}\right)^{j}$ is obtained from ($\tilde{G}_{2}, \tilde{\Sigma}_{2}$) by deleting e_{2}^{j}. From (10) (and the fact that $\left|E\left(G_{1}\right)\right| \geqslant 3$) we deduce:
(13) $\left(\tilde{G}_{1}, \tilde{\Sigma}_{1}\right),\left(\tilde{G}_{2}, \tilde{\Sigma}_{2}\right)^{0},\left(\tilde{G}_{2}, \tilde{\Sigma}_{2}\right)^{1}$ and $\left(\tilde{G}_{2}, \tilde{\Sigma}_{2}\right)$ are non-bipartite, 2-connected and contain no odd-K. K_{4}. Moreover, $\left(\tilde{G}_{1}, \tilde{\Sigma}_{1}\right),\left(\tilde{G}_{2}, \tilde{\Sigma}_{2}\right)^{0}$ and $\left(\tilde{G}_{2}, \tilde{\Sigma}_{2}\right)^{1}$ contain no odd chain. Finally, if all beads are non-bipartite, then also $\left(\tilde{G}_{2}, \tilde{\Sigma}_{2}\right)$ contains no odd chain.

Claim 4. For $i=1,2$, the circuit $\left\{e_{i}^{0}, e_{i}^{1}\right\}$ will be a directed circuit in each strong odd orientation \tilde{D}_{i} of $\left(\tilde{G}_{i}, \tilde{\Sigma}_{i}\right)$.

Proof of Claim 4. Let \tilde{D}_{1} be a counterexample. Assume, both e_{1}^{0} and e_{1}^{1} are directed from u_{1} to u_{2} in \tilde{D}_{1}. As \tilde{D}_{1} is strongly connected there exists a directed $u_{2} u_{1}$-path in \tilde{D}_{1}. This path closes a directed even circuit with one of e_{1}^{0} and e_{1}^{1} - contradiction!

Let \tilde{D}_{1} be a strong odd orientation of $\left(\tilde{G}_{1}, \tilde{\Sigma}_{1}\right)$. We may assume that e_{1}^{1} is directed from u_{1} to u_{2} and e_{1}^{0} from u_{2} to u_{1} (if not, reverse all orientations). Let D_{1} be the restriction of \tilde{D}_{1} to $E\left(G_{1}\right)$.

Claim 5. D_{1} contains a directed $u_{1} u_{2}$-path or a directed $u_{2} u_{1}$-path.

Proof of Claim 5. Let W be the set of nodes reachable in D_{1} by a directed path from u_{1}. If $u_{2} \in W$ we are done, so suppose this is not the case. Let $\overrightarrow{u v} \in A\left(D_{1}\right)$, with $u \notin W$ and $v \in W$ ($\overrightarrow{u v}$ exists as G_{1} is connected). As \tilde{D}_{1} is strongly connected, there exists in D_{1} a directed $u_{2} u$-path as well as a directed $v u_{1}$-path. Together with $\overrightarrow{u v}$ these paths close a directed $u_{2} u_{1}$-path in D_{1}.

We consider three cases.
Case 3A: D_{1} contains a directed path from u_{1} to u_{2} as well as a directed path from u_{2} to u_{1}.

This case is only possible if all the beads are non-bipartite. So, $\left(\tilde{G}_{2}, \tilde{\Sigma}_{2}\right)$ contains no odd- K_{4} and no odd chain. Let \tilde{D}_{2} be a strong odd orientation of ($\tilde{G}_{2}, \tilde{\Sigma}_{2}$), where e_{2}^{1} is oriented from u_{1} to u_{2} and e_{2}^{0} from u_{2} to u_{1}; let D_{2} be the restriction of \tilde{D}_{2} to $E\left(G_{2}\right)$. It is easy to see now that the union D of D_{1} and D_{2} is a strong odd orientation of (G, Σ) - contradiction!

Case 3B: D_{1} contains a directed path from u_{1} to u_{2} but none from u_{2} to u_{1}.
Whereas in Case 3 a our main concern was to prevent D to have directed even circuits, now we have to make sure that D becomes strongly connected. Note that the directed $u_{1} u_{2}$-path in D_{1} is odd.

Let \tilde{D}_{2} be a strong odd orientation of $\left(\tilde{G}_{2}, \tilde{\Sigma}_{2}\right)^{0}$ such that e_{2}^{1} is oriented from u_{1} to u_{2}. D_{2} is the restriction of \tilde{D}_{2} to $E\left(G_{2}\right)$ and D is the union of D_{1} and D_{2}. Again it is easy to check that D is a strong odd orientation of (G, Σ), yielding again a contradiction.

Case 3C: D_{1} contains a directed path from u_{2} to u_{1} but none from u_{1} to u_{2}.
It is not hard to see that this case can be reduced to Case 3 b .
We conclude that (12) leads in all cases to a contradiction. Hence, (3) and Theorem 1 are true.

5. Algorithms - Proof of Theorem 2

In this section we prove Theorem 2. All steps in the proof of Theorem 1 in Section 4 - including the proofs of Lemmas 4-6 in Section 3 - are algorithmic. So if the graph contains no odd $-K_{4}$ and no odd chain, then (1) is solvable in polynomial time.

A bit less obvious is the existence of a polynomial algorithm for solving (2) for orientations of graphs with no odd- K_{4} and no odd chain. It relies on the fact that the strong odd orientations derived in the previous section are, though not uniquely determined, more or less forced.

Lemma 9. There exists a polynomial-time algorithm to decide (2) in any directed graph that is an orientation of a graph with no odd- K_{4} 's and no odd chain.

Proof. Let (G, Σ) be a signed graph with no odd- K_{4} and no odd chain. Let D be an orientation of (G, Σ). We want to check whether D has a directed circuits that is even with respect to Σ. Clearly, we may restrict ourselves to the blocks of G and the strongly connected components of D. So assume $G 2$-connected and D strongly connected. We consider several cases.

Case 1: (G, Σ) is either almost bipartite, planar with two odd faces, the graph of Fig.3(a), or a chain.

If (G, Σ) is almost bipartite, let G^{\prime} be as in the proof of Lemma 4. It is easy to prove that D is strong odd if and only if the corresponding orientation of G^{\prime} is as in Lemma 3. Similarly, when (G, Σ) is planar with two odd faces, D is strong odd if and only if the dual directed graph D^{*} is as in Lemma 3 (see the proof of Lemma 5). So in both these cases we can check the existence of even directed circuits in polynomial time. When (G, Σ) is as in Fig. 3(a) we can just check all its circuits. If (G, Σ) is a chain, then all the beads are either paths or odd circuits. If one of these odd circuits is not directed, D cannot be strong odd (compare with Claim 4). If all these odd circuits are directed, there are at most two other directed circuits in D whose eveness can easily be checked (compare with the proof of Lemma 6).

If Case 1 does not hold we know that either (9) or (10) hold. In that case we will proceed recursively, by decomposing (G, Σ) as in the proof of Theorem 1. The only difference is that now the orientation is prescribed.

Case 2: $(G, \Sigma)=\left(G_{1}, \Sigma_{1}\right) \oplus_{U}\left(G_{2}, \Sigma_{2}\right)$ as in (9).
Re-sign (G, Σ) such that $\Sigma_{2}=\emptyset$. For $i=1,2, D_{i}$ denotes the restriction of D to $\left(G_{i}, \Sigma_{i}\right)$. If D_{2} contains a directed circuit, which is easily checked, D is not strong odd. If that is not the case, add for each pair of nodes $u, v \in U$ such that there exists a directed $u v$-path in D_{2}, an even edge $u v$ to $\left(G_{1}, \Sigma_{1}\right)$ and an arc $\overrightarrow{u v}$ to D_{1}. Let $\left(\tilde{G}_{1}, \tilde{\Sigma}_{1}\right)$ be the resulting signed graph and \tilde{D}_{1} be the resulting orientation. If $|U|=2,\left(\tilde{G}_{1}, \tilde{\Sigma}_{1}\right)$ contains no odd- K_{4} and no odd chain; moreover, \tilde{D}_{1} is strong odd if and only if D is strong odd. The same holds if $|U|=3$, provided that we know that (9a) does not hold.

So, if we decompose according to (9a) until this is no longer possible, and then according to (9b), we can deal with (9) in polynomial time.

Case 3: Cases 1 and 2 do not apply.
So (G, Σ) satisfies (10). Let H_{1}, \ldots, H_{k} be the beads of G, satisfying the conditions in (10). As (G, Σ) contains no odd chain, k is even or one of the beads is bipartite. In each H_{i}, search for a directed $h_{i-1, i} h_{i, i+1}$-path R_{i} and a directed $h_{i, i+1} h_{i-1, i}$-path L_{i} (indices modulo k). If R_{i} does not exist we set $R_{i}:=\emptyset$. We do the same with L_{i}.

Claim. If for some $i=1, \ldots, k, R_{i}$ and L_{i} are both non-empty and have the same parity with respect to Σ, D contains an even directed circuit.

Proof of Claim. Suppose the claim is false with $i=1$. Let y_{0}, \ldots, y_{m} be the nodes on $V\left(R_{1}\right) \cap V\left(L_{1}\right)$, numbered in the order in which they are visited when traversing R_{1} from $y_{0}=h_{k .1}$ to $y_{m}=h_{1,2}$.
(14) Traversing L_{1} from $h_{1,2}$ to $h_{k, 1}$ the nodes on $V\left(R_{1}\right) \cap V\left(L_{1}\right)$ are visited in the order: y_{m}, \ldots, y_{0}.

(a)

(b)

Fig. 6.
If not, R_{I} and L_{1} would contain a configuration as in Fig. 6(a). The dashed path is R_{1}, the dotted paths are parts of L_{1}. The circuits C_{1} and C_{2} in Fig. 6(a) are directed, hence odd. But this means that (G, Σ) contains a configuration as in Fig. 4. As in the proof of Corollary 8 this would yield the existence of an odd- K_{4} in (G, Σ). So (14) holds.
(15) There exist odd circuits $C_{1}, \ldots C_{m}$ and nodes x_{0}, \ldots, x_{m} in H_{1}, satisfying: m is even; $x_{0}=h_{k, 1} \in V\left(C_{1}\right)$ and $x_{m}=h_{1,2} \in V\left(C_{m}\right) ; V\left(C_{i}\right) \cap V\left(C_{i+1}\right)=\left\{x_{i}\right\}$ for $i=1, \ldots, m-1$ and $V\left(C_{i}\right) \cap V\left(C_{j}\right)=\emptyset$ for $|i-j|>1$ (see Fig. 6(b)).

Indeed, the circuits formed by R_{1} and L_{1} are directed, hence odd; so, by (14), they form such a collection. From now on the orientations do not play a role in the proof of this claim. Assume the odd circuits in (15) are chosen with m as small as possible. As H_{1} is non-bipartite it contains a circuit through $h_{k, 1}$ and $h_{1,2}$. So x_{1} is not a one node cutset in H_{1}. Hence, there exists a path P in H_{1} from some node $y \in V\left(C_{1}\right) \backslash\left\{x_{1}\right\}$ to some node $z \in\left(V\left(C_{2}\right) \cup \cdots \cup V\left(C_{m}\right)\right) \backslash\left\{x_{1}\right\}$, that is internally node-disjoint from C_{1}, \ldots, C_{m}. If $y \neq h_{k, 1}$ or $z \notin\left\{x_{2}, \ldots, x_{m}\right\}$, then using the oddness of the circuits C_{1}, \ldots, C_{m} we can again derive the existence of a configuration as in Fig. 4. As (G, Σ) has no odd- K_{4}, this is not possible. So $y=h_{k, 1}$ and $z=x_{j}$ with $j \in\{1, \ldots, m\}$. As we have chosen C_{1}, \ldots, C_{m} with m minimal, j is even. But this implies that (G, Σ) contains an odd chain. Its beads are: C_{1}, \ldots, C_{j}, together with an odd circuit consisting of: P; a path from x_{j} to x_{m} in $C_{j+1} \cup \cdots \cup C_{m}$; and an $x_{m} h_{k, 1}$-path Q of the appropriate parity in $H_{2} \cup \cdots \cup H_{k} . Q$ exists as at least one of H_{2}, \ldots, H_{k} is non-bipartite. As (G, Σ) has no odd chain this yields a final contradiction.

With this claim, the final part of the algorithm is straightforward. Assume the numbering of the beads is such that H_{k} has the maximum number of edges. Define $G_{1}:=H_{1} \cup \cdots \cup H_{k-1}, \Sigma_{1}:=\Sigma \cap E\left(G_{1}\right), G_{2}:=H_{k}, \Sigma_{2}:=\Sigma \cap E\left(G_{2}\right), u_{1}:=h_{k-1, k}$ and $u_{2}:=h_{k, 1}$. Then $(G, \Sigma)=\left(G_{1}, \Sigma_{1}\right) \oplus_{\left\{u_{1}, u_{2}\right\}}\left(G_{2}, \Sigma_{2}\right)$. As Case 1 does not apply, (G, Σ) is not a chain, so $\left|E\left(G_{1}\right)\right|,\left|E\left(G_{2}\right)\right| \geqslant 3$.

Define a new oriented signed graph $\left(\tilde{G}_{1}, \tilde{\Sigma}_{1}\right)$ as follows: Start with (G_{1}, Σ_{1}), with the arcs oriented as in D. If L_{k} is non-empty add to $\left(G_{1}, \Sigma_{1}\right)$ a directed arc from u_{1} to u_{2} with the same parity as L_{k}. If R_{k} is non-empty add a directed arc from u_{2} to u_{1} with the same parity as R_{k}. Call the resulting directed graph D_{1}. Similarly we define ($\tilde{G}_{2}, \tilde{\Sigma}_{2}$) and D_{2} (where the new arcs are only added if none of R_{1}, \ldots, R_{k-1}, resp. none of L_{1}, \ldots, L_{k-1} are empty). Obviously D is strong odd, if and only if D_{1} and D_{2} are strong odd. Moreover, $\left(\tilde{G}_{1}, \tilde{\Sigma}_{1}\right)$ and $\left(\tilde{G}_{2}, \tilde{\Sigma}_{2}\right)$ have no odd- K_{4} and no odd chain (compare with (13)).

References

[1] E.M. Arkin, C.H. Papadimitriou, M. Yannakakis, Modularity of cycles and paths in graphs, J. Assoc. Comput. Machinery 38 (1991) 255-274.
[2] J. Bang-Jensen, personal communication, 1992.
[3] A. Galluccio, M. Loebl, Cycles of prescribed modularity in planar digraphs, in: G. Rinaldi, L.A. Wolsey (Eds.), Proceedings of Integer Programming and Combinatorial Optimization, 1993.
[4] A.M.H. Gerards, Homomorphisms of graphs into odd cycles, J. Graph Theory 12 (1988) 73-83.
[5] A.M.H. Gerards, Graphs and polyhedra - binary spaces and cutting planes, CWI tracts, vol. 73, CWI, Amsterdam, 1990.
[6] A.M.H. Gerards, An orientation theorem for graphs, J. Combin. Theory Ser. B 62 (1994) 199-212.
[7] A.M.H. Gerards, L. Lovász, A. Schrijver, P.D. Seymour, C.-H. Shih, K. Truemper, Regular matroids from graphs, unpublished, 1984.
[8] P.W. Kasteleyn, Graph theory and crystal physics, in: F. Harary (Ed.), Graph theory and Theoretical Physics, Academic Press, New York, 1967, pp. 43-110.
[9] V. Klee, R. Ladner, R. Manber, Signsolvability revisited, Linear Algebra Appl. 59 (1984) 131-157.
[10] C.H.C. Little, An extension of Kasteleyn's method for enumerating the 1 -factors of planar graphs, in: D. Holton (Ed.), Combinatorial Mathematics, Proc. 2nd Australian Conf., Lecture Notes in Mathematics, vol. 403, Springer, Berlin, 1974, pp. 63-72.
[11] C.H.C. Little, A characterization of convertible (0,1)-matrices, J. Combin. Theory Ser. B 18 (1975) 187-208.
[12] W. McCuaig, Pólyàs permanent problem [manuscript] 1997.
[12A] N. Robertson, P.D. Seymour, R. Thomas, Permanents, Pfaffian orientations and even directed circuits [preprint], 1996.
[13] P.D. Seymour, On the two-colouring of hypergraphs, Quart. J. Math. Oxford Ser. (2) 25 (1974) 303-312.
[14] P. Seymour, C. Thomassen, Characterization of even directed graphs, J. Combin. Theory Ser. B 42 (1987) 36-45.
[15] C. Thomassen, Even cycles in directed graphs, European J. Combin. 6 (1985) 85-89.
[16] C. Thomassen, The even cycle problem for planar digraphs, Mat-Report 1989-17, Technical University of Denmark, 1989.
[17] L.G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979) 189-201.
[18] V. Vazirani, M. Yannakakis, Pfaffian orientations, $0-1$ permanents and even cycles in directed graphs, Discrete Appl. Math. 25 (1989) 179-190.

[^0]: ${ }^{1}$ This research was initiated at the Tagung Combinatorial Optimization in Oberwolfach January, 1993. It was partially supported by the project HCM-DONET nr. ERBCHRXCT930090 of the European Community and was carried out while the second author was at the Centre for Discrete and Applicable Mathematics of the London School of Economics.

 * Corresponding author. E-mail: bgerards@cwi.nl.

[^1]: ${ }^{2}$ Recently, this problem has been resolved: McCuaig [12] and, independently, Robertson, Seymour and Thomas [12A] derived a polynomial-time algorithm.

