Tangles, tree-decompositions and grids in matroids ${ }^{\wedge}$

Jim Geelen ${ }^{\text {a }}$, Bert Gerards ${ }^{\text {b,c }}$, Geoff Whittle ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada
${ }^{\text {b }}$ Centrum Wiskunde \& Informatica, Amsterdam, The Netherlands
${ }^{\text {c }}$ Technische Universiteit Eindhoven, Eindhoven, The Netherlands
${ }^{\text {d }}$ School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

A R TICLE INFO

Article history:

Received 8 September 2004
Available online 8 April 2009

Keywords:

Branch-width
Tangles
Tree-decomposition
Matroids
Graph Minors

Abstract

A tangle in a matroid is an obstruction to small branch-width. In particular, the maximum order of a tangle is equal to the branch-width. We prove that: (i) there is a tree-decomposition of a matroid that "displays" all of the maximal tangles, and (ii) when M is representable over a finite field, each tangle of sufficiently large order "dominates" a large grid-minor. This extends results of Robertson and Seymour concerning Graph Minors.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Robertson and Seymour [6] introduced branch-width for graphs and showed that this parameter is characterized by "tangles". Robertson and Seymour also stated that their results extend to matroids [6, p. 190]; the details were later given by Dharmatilake [1] (see, also, [3]). Here we use the definitions given in [3]; we defer these definitions until Section 3. For the purpose of this introduction, a tangle of order θ in M can be thought of as a " θ-connected component" of M. We prove the following two results.

1.1. Each matroid has a tree-decomposition that "displays" all its maximal tangles.

This will be made precise in Theorem 9.1, which extends a result in Graph Minors X [6, (10.3)].

[^0]Theorem 1.2. For each finite field \mathbb{F} and positive integer k there exists an integer θ such that, if M is an \mathbb{F}-representable matroid and \mathcal{T} is a tangle in M of order θ, then \mathcal{T} dominates a minor N that is isomorphic to the cycle matroid of a k by k grid.

The proof is given in Section 7. Theorem 1.2 extends a result of Robertson, Seymour, and Thomas [8, (2.3)]. The term "dominates" is used specifically with respect to grid-minors and is defined in Section 7. To prove Theorem 1.2 we will use the main result of [4] which says that an \mathbb{F}-representable matroid with huge branch-width contains a large grid-minor.

These results are technical, but the motivation is to, hopefully, use them in extending the Graph Minors Structure Theorem [7]. For example, for certain fixed binary matroids N, we are interested in the class of binary matroids that do not contain an N-minor. Typically we choose N to be a highly structured matroid, such as: the cycle matroid of a grid, the cycle matroid of a complete graph, or a projective geometry. In such cases N has a unique maximal tangle \mathcal{T}_{N}. Now, if N is a minor of some binary matroid M, then the tangle \mathcal{T}_{N} "induces" a tangle \mathcal{T}_{M} in M. Any tangle in M that contains \mathcal{T}_{M} is said to "dominate" N. Now 1.1 shows that the maximal tangles in M are composed in a treelike way. This tree structure essentially localizes each maximal tangle in M and shows how M is composed from these local parts. So, to determine the structure of binary matroids with no N -minor, it suffices to determine the local structure of each maximal tangle in M that does not dominate an N-minor. Unfortunately the local structure of tangles that do not dominate N is complicated. This is partly overcome by considering only tangles whose order is much larger than the order of \mathcal{T}_{N}. By Theorem 1.2, each such tangle dominates a huge grid. Supposing that our tangle does not dominate an N-minor, the hope then is that this huge grid-minor will impose local structure on M.

2. Connectivity and branch-width

We assume that the reader is familiar with matroid theory; we use the notation of Oxley [5].
Let λ be a function that assigns an integer value to each subset of a finite set E. We call λ symmetric if $\lambda(X)=\lambda(E-X)$ for all $X \subseteq E$. We call λ submodular if $\lambda(X)+\lambda(Y) \geqslant \lambda(X \cap Y)+\lambda(X \cup Y)$ for all $X, Y \subseteq E$. If λ is integer-valued, symmetric, and submodular, then we call λ a connectivity function on E. A connectivity system is a pair $K=(E, \lambda)$ where λ is a connectivity function on E. A partition (A, B) of $E(K)$ is called a separation of order $\lambda_{K}(A)$.

For a matroid M and $X \subseteq E(M)$, we let $\lambda_{M}(X)=r_{M}(X)+r_{M}(E(M)-X)-r(M)+1$. It is straightforward to prove that $K_{M}=\left(E(M), \lambda_{M}\right)$ is a connectivity system. For a graph G and $X \subseteq E(G)$, we let $\lambda_{G}(X)$ denote the number of vertices of G that are incident with both an edge of X and an edge of $E(G)-X$. It is also straightforward to prove that $K_{G}=\left(E(G), \lambda_{G}\right)$ is a connectivity system. Moreover, if G is connected we have for each $X \subseteq E(G)$ that $\lambda_{M(G)}(X) \leqslant \lambda_{G}(X)$.

Branch-width plays only a minor role in this paper, but we include a definition for completeness. Let K be a connectivity system. A tree is cubic if its internal vertices all have degree 3 . A branchdecomposition of K is a cubic tree T whose leaves are labeled by elements of $E(K)$ such that each element in $E(K)$ labels exactly one leaf of T and each leaf of T receives at most one label from $E(K)$. If T^{\prime} is a subgraph of T and $X \subseteq E(K)$ is the set of labels of T^{\prime}, then we say that T^{\prime} displays X. The width of an edge e of T is defined to be $\lambda_{K}(X)$ where X is the set displayed by one of the components of $T-\{e\}$. The width of T is the maximum among the widths of its edges. The branch-width of K is the minimum among the widths of all branch-decompositions of K.

The branch-width of a matroid M is the branch-width of its connectivity system $K_{M}=\left(E(M), \lambda_{M}\right)$.
We remark that there are some trivial graphs G, such as trees, for which K_{G} and $K_{M(G)}$ have different branch-width. It is, however, conjectured that, if G has a circuit of length at least 2, then K_{G} and $K_{M(G)}$ have the same branch-width. In Section 6 we prove that this is at least true for n by n grids.

3. Tangles

In this section we review results and definitions from [3].
Let K be a connectivity system. A tangle in K of order θ is a collection \mathcal{T} of subsets of $E(K)$ such that:
(T1) For each $B \in \mathcal{T}, \lambda_{K}(B)<\theta$.
(T2) For each separation (A, B) of order less than θ, \mathcal{T} contains either A or B.
(T3) If $A, B, C \in \mathcal{T}$, then $A \cup B \cup C \neq E(K)$.
(T4) For each $e \in E(K), E(K)-\{e\} \notin \mathcal{T}$.
It is proved in [3, Lemma 3.1] that, to verify that \mathcal{T} is a tangle, we may replace ($T 3$) by the following weaker conditions:
(T3a) If $B \in \mathcal{T}, A \subseteq B$, and $\lambda_{K}(A)<\theta$, then $A \in \mathcal{T}$.
(T3b) If $\left(A_{1}, A_{2}, A_{3}\right)$ is a partition of $E(K)$, then \mathcal{T} does not contain all three of A_{1}, A_{2}, and A_{3}.
Note that throughout this text partitions may have empty members; in particular, ($T 3 b$) also says that no two members of \mathcal{T} partition $E(K)$.

The following slight variation of [6, (3.5)] was proved in [3, Theorem 3.2].

Theorem 3.1. Let K be a connectivity system. Then, the maximum order of a tangle in K is equal to the branchwidth of K.

A tangle in a matroid M is a tangle in its connectivity system K_{M}. The following fact is used in the proof of 7.3.1.

Lemma 3.2. Let \mathcal{T} be a tangle of order θ at least 3 in a matroid M. Then each subset of $E(M)$ with rank less than $\theta-1$ is in \mathcal{T}.

Proof. Let X be a smallest possible subset in $E(M)$ that is not in \mathcal{T}. As $\theta \geqslant 3$ it follows from (T2) and (T4) that singletons are in \mathcal{T}. So X can be partitioned into two smaller sets. By the choice of X these two sets are in \mathcal{T}. Hence by ($T 3$), $E(M)-X$ is not in \mathcal{T}. Thus by (T2), $\lambda_{M}(X) \geqslant \theta$. Note that, for any $Y \subseteq E(M)$, the rank of Y is at least $\lambda_{M}(Y)-1$. So X has rank at least $\theta-1$; as required.

Let \mathcal{T} be a tangle of order θ in matroid M. For $X \subseteq E(M)$, if X is a subset of a set in \mathcal{T}, then we let

$$
\phi_{\mathcal{T}}(X)=\min \left(\lambda_{M}(A)-1: X \subseteq A \in \mathcal{T}\right)
$$

otherwise we let $\phi_{\mathcal{T}}(X)=\theta-1$. The following result was proved in [3, Lemma 4.3].
Lemma 3.3. Let M be a matroid and let \mathcal{T} be a tangle in M of order θ. Then $\phi_{\mathcal{T}}$ is the rank-function of a matroid of rank $\theta-1$.

This matroid is referred to as the tangle matroid of \mathcal{T}.

4. New tangles from old

In this section we look at different constructions for tangles. Let \mathcal{T} be a tangle of order θ in a connectivity system K and let $\theta^{\prime} \leqslant \theta$. Now let \mathcal{T}^{\prime} be the collection of all sets $A \in \mathcal{T}$ with $\lambda_{K}(A)<\theta^{\prime}$. It is straightforward to verify that:

Lemma 4.1. \mathcal{T}^{\prime} is a tangle in K of order θ^{\prime}.

We say that \mathcal{T}^{\prime} is the truncation of \mathcal{T} to order θ^{\prime}. Note that if \mathcal{T}^{\prime} and \mathcal{T} are tangles in K, then \mathcal{T}^{\prime} is a truncation of \mathcal{T} if and only if $\mathcal{T}^{\prime} \subseteq \mathcal{T}$.

Let $K=(E, \lambda)$ be a connectivity system and let $X \subseteq E$. We let $K \circ X=\left((E-X) \cup\left\{e_{X}\right\}, \lambda^{\prime}\right)$ where, for each $A \subseteq E-X, \lambda^{\prime}(A)=\lambda(A)$ and $\lambda^{\prime}\left(A \cup\left\{e_{X}\right\}\right)=\lambda(A \cup X)$. It is straightforward to verify that:

Lemma 4.2. If K is a connectivity system and $X \subseteq E(K)$, then $K \circ X$ is a connectivity system.
We can also obtain a tangle in $K \circ X$ from a tangle in K.
Lemma 4.3. Let \mathcal{T} be a tangle of order θ in the connectivity system K and let $X \in \mathcal{T}$. Now let \mathcal{T}^{\prime} be the collection of subsets of $E(K \circ X)$ such that, for $A \subseteq E(K)-X, A \in \mathcal{T}^{\prime}$ if and only if $A \in \mathcal{T}$; and $A \cup\left\{e_{X}\right\} \in \mathcal{T}^{\prime}$ if and only if $A \cup X \in \mathcal{T}$. Then \mathcal{T}^{\prime} is a tangle of order θ in $K \circ X$.

Proof. Each of the conditions (T1)-(T4) for \mathcal{T}^{\prime} to be a tangle follows directly from the corresponding condition for \mathcal{T}.

A set X of elements in a connectivity system K is called titanic if each partition $\left(A_{1}, A_{2}, A_{3}\right)$ of X satisfies $\lambda_{K}\left(A_{i}\right) \geqslant \lambda_{K}(X)$ for at least one $i=1,2,3$.

The following result is a partial converse of Lemma 4.3; it generalizes a result in Graph Minors $\mathrm{X}[6,(8.3)]$.

Lemma 4.4. Let K be a connectivity system, let $X \subseteq E(K)$ be titanic with $\lambda_{K}(X)<\theta$, and let \mathcal{T}^{\prime} be a tangle of order θ in $K \circ X$. Now let \mathcal{T} be the collection of all $A \subseteq E(K)$ such that $\lambda_{K}(A)<\theta$ and either $A-X \in \mathcal{T}^{\prime}$ or $(A-X) \cup\left\{e_{X}\right\} \in \mathcal{T}^{\prime}$. Then \mathcal{T} is a tangle of order θ in K.

Proof. Let $Y=E(K)-X$ and $L=K \circ X$. Note that $\lambda_{L}\left(\left\{e_{X}\right\}\right)=\lambda_{L}(Y)=\lambda_{K}(Y)=\lambda_{K}(X)<\theta$, so $\left\{e_{X}\right\} \in \mathcal{T}^{\prime}$. By definition, \mathcal{T} satisfies (T1).

We next prove that \mathcal{T} satisfies (T2). Consider a separation (A, B) of order less than θ in K. Since X is titanic in K, either $\lambda_{K}(X \cap A) \geqslant \lambda_{K}(X)$ or $\lambda_{K}(X \cap B) \geqslant \lambda_{K}(X)$. By symmetry between A and B, we may assume that $\lambda_{K}(X \cap A) \geqslant \lambda_{K}(X)$. Then, by submodularity and symmetry of λ_{K}, we see that $\lambda_{L}(Y \cap B)=\lambda_{K}(Y \cap B)=\lambda_{K}(A \cup X) \leqslant \lambda_{K}(A)+\lambda_{K}(X)-\lambda_{K}(A \cap X) \leqslant \lambda_{K}(A)<\theta$. Therefore, as \mathcal{T}^{\prime} satisfies (T2), one of $Y \cap B=B-X$ or $(Y \cap A) \cup\left\{e_{X}\right\}=(A-X) \cup\left\{e_{X}\right\}$ is in \mathcal{T}^{\prime}. Thus, \mathcal{T} contains B or A, as required. So \mathcal{T} satisfies (T2).

Next consider (T3a). Let $B \in \mathcal{T}$ and $A \subseteq B$ with $\lambda_{K}(A)<\theta$. Then, by definition, $B-X$ is contained in a set in \mathcal{T}^{\prime}. Since $A \subseteq B$, the union of $(E(K)-A)-X, B-X$ and $\left\{e_{X}\right\}$ is $E(L)$. As $\left\{e_{X}\right\}$ in \mathcal{T}^{\prime} and as \mathcal{T}^{\prime} satisfies (T3), this implies that $(E(K)-A)-X$ is not contained in a set of \mathcal{T}^{\prime}. So, $E(K)-A \notin \mathcal{T}$. As $\lambda_{K}(A)<\theta$ and as \mathcal{T} does satisfy ($T 2$) this implies that $A \in \mathcal{T}$, as required. So \mathcal{T} satisfies (T3a).

We next prove by contradiction that \mathcal{T} satisfies ($T 3 b$). Let A_{1}, A_{2}, and A_{3} be members of \mathcal{T} that partition $E(K)$. Then each of $A_{1}-X, A_{2}-X$ and $A_{3}-X$ is contained in a set in \mathcal{T}^{\prime}. So, since $E(L)$ cannot be covered by three sets in \mathcal{T}^{\prime}, none of the sets $\left(A_{1} \cap Y\right) \cup\left\{e_{X}\right\},\left(A_{2} \cap Y\right) \cup\left\{e_{X}\right\}$, or $\left(A_{3} \cap Y\right) \cup\left\{e_{X}\right\}$ is in \mathcal{T}^{\prime}. Thus \mathcal{T}^{\prime} contains each of $A_{1} \cap Y, A_{2} \cap Y$, and $A_{3} \cap Y$. Since $A_{1} \cap Y$ and $\left\{e_{X}\right\}$ lie in $\mathcal{T}^{\prime}, \mathcal{T}^{\prime}$ does not contain $Y-A_{1}$. Now since \mathcal{T}^{\prime} contains neither $Y-A_{1}$ nor $\left(A_{1} \cap Y\right) \cup\left\{e_{X}\right\}$, we have $\lambda_{K}\left(Y-A_{1}\right)=\lambda_{L}\left(Y-A_{1}\right) \geqslant \theta>\lambda_{K}\left(A_{1}\right)$. So, by submodularity and symmetry of λ_{K}, we get that $\lambda_{K}\left(X \cap A_{1}\right) \leqslant \lambda_{K}(X)+\lambda_{K}\left(A_{1}\right)-\lambda_{K}\left(X \cup A_{1}\right)=\lambda_{K}(X)+\lambda_{K}\left(A_{1}\right)-\lambda_{K}\left(Y-A_{1}\right)<\lambda_{K}(X)$. Similarly $\lambda_{K}\left(X \cap A_{2}\right)<\lambda_{K}(X)$ and $\lambda_{K}\left(X \cap A_{2}\right)<\lambda_{K}(X)$. However this contradicts the fact that X is titanic. Thus \mathcal{T} satisfies (T3b) and, hence, \mathcal{T} is a tangle of order θ in K.

Finally we prove by contradiction that \mathcal{T} satisfies (T4). Suppose $e \in E(K)$ with $E(K)-\{e\} \in \mathcal{T}$. Then at least one of $E(L)-\left\{e, e_{X}\right\}=E(K)-\{e\}-X$ or $E(L)-\{e\}=(E(K)-\{e\}-X) \cup\left\{e_{X}\right\}$ is in \mathcal{T}^{\prime}. As \mathcal{T}^{\prime} satisfies (T4), this means $E(L)-\left\{e, e_{X}\right\} \in \mathcal{T}^{\prime}$ and $e \in E(L)-\left\{e_{X}\right\}$. Now we have, as $E(K)-\{e\} \in \mathcal{T}$, that $\lambda_{L}(\{e\})=\lambda_{K}(\{e\})=\lambda_{K}(E(K)-\{e\})<\theta$. So, as \mathcal{T}^{\prime} satisfies (T4), the singleton $\{e\}$ is in \mathcal{T}^{\prime}. But since also $\left\{e_{X}\right\}$ and $E(L)-\left\{e, e_{X}\right\}$ are in \mathcal{T}^{\prime}, this contradicts that \mathcal{T}^{\prime} satisfies (T3). So \mathcal{T} does indeed satisfy (T4).

5. Minors and tangles

Let N be a minor of M and let \mathcal{T}_{N} be a tangle in N of order θ. Now let \mathcal{T}_{M} be the collection of all sets $A \subseteq E(M)$ where $\lambda_{M}(A)<\theta$ and $A \cap E(N) \in \mathcal{T}_{N}$. The following result is an immediate consequence of definitions.

Lemma 5.1. \mathcal{T}_{M} is a tangle in M of order θ.

We say that \mathcal{T}_{M} is the tangle in M induced by \mathcal{T}_{N}.
Let $f: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$be a function and $m \in \mathbb{Z}_{+}$. A matroid M is called (m, f)-connected if whenever (A, B) is a separation of order ℓ where $\ell<m$ we have either $|A| \leqslant f(\ell)$ or $|B| \leqslant f(\ell)$.

Let $g(n)=\left(6^{n-1}-1\right) / 5$. Note that $g(1)=0$ and $g(n)=6 g(n-1)+1$ for all $n>1$. The main result in this section is the following.

Theorem 5.2. Let \mathcal{T} be a tangle of order θ in a matroid M. Then there exists a (θ, g)-connected minor N of M and a tangle \mathcal{T}^{\prime} of order θ in N such that \mathcal{T} is the tangle in M induced by \mathcal{T}^{\prime}.

We will use the following result from [2, Lemma 3.1].
Lemma 5.3. Let $f: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$be a nondecreasing function. If e is an element of an (m, f)-connected matroid M, then $M \backslash e$ or M / e is $(m, 2 f)$-connected.
5.4. Proof of Theorem 5.2. The proof is by induction on $|E(M)|$ with θ fixed; the root of this induction lies in the (θ, g)-connected matroids. Let \mathcal{T} be a tangle of order θ in a matroid M and assume M is not (θ, g)-connected. Choose $m \in\{1, \ldots, \theta-1\}$ as small as possible such that M is not $(m+1, g)$ connected. Then there exists a separation (A, B) of order m with $|A|,|B|>g(m)$. By symmetry we may assume that $A \in \mathcal{T}$. Now let $e \in A$. By Lemma 5.3 and duality, we may assume that M / e is ($m, 2 g$)-connected.
5.4.1. $A-\{e\}$ is titanic in M / e.

Subproof. When $m=1$ this is vacuously true. Suppose that $m>1$ and consider any partition $\left(A_{1}, A_{2}, A_{3}\right)$ of $A-\{e\}$. Since $|A|>g(m)=6 g(m-1)+1$, we have $\left|A_{i}\right|>2 g(m-1)$ for some $i \in\{1,2,3\}$. Then, since M / e is $(m, 2 g)$-connected, $\lambda_{M / e}\left(A_{i}\right) \geqslant m \geqslant \lambda_{M / e}(A-\{e\})$. Hence $A-\{e\}$ is indeed titanic in M / e.
5.4.2. For each $X \subseteq B, \lambda_{M}(X)=\lambda_{M / e}(X)$.

Subproof. Since M / e is $(m, 2 g)$-connected, $\lambda_{M}(B)=\lambda_{M / e}(B)$. Hence $e \notin \mathrm{cl}_{M}(B)$. Therefore, for each $X \subseteq B, e \notin \mathrm{cl}_{M}(X)$. So $\lambda_{M}(X)=\lambda_{M / e}(X)$; as required.
5.4.3. For each $X \subseteq E(M)$ with $\lambda_{M}(X)<\theta$ we have that $X \in \mathcal{T}$ if and only if $X-A \in \mathcal{T}$ or $X \cup A \in \mathcal{T}$.

Subproof. Let $X \subseteq E(M)$ with $\lambda_{M}(X)<\theta$. First assume that $X-A \in \mathcal{T}$ or $X \cup A \in \mathcal{T}$. Then, as $A \in \mathcal{T}$, it follows from (T3) that $E(M)-X \notin \mathcal{T}$. Hence $X \in \mathcal{T}$.

For the reverse implication assume now that $X \in \mathcal{T}$. By 5.4.2, $\lambda_{M}(A)=\lambda_{M}(B)=\lambda_{M / e}(B-\{e\})=$ $\lambda_{M / e}(A-\{e\})$. So as A is titanic in M / e either $\lambda_{M}(A-X) \geqslant \lambda_{M / e}(A-X) \geqslant \lambda_{M}(A)$ or $\lambda_{M}(A \cup X) \geqslant$ $\lambda_{M / e}(A \cup X) \geqslant \lambda_{M}(A)$. If $\lambda_{M}(A-X) \geqslant \lambda_{M}(A)$, then by symmetry and submodularity of λ_{M} we have that $\lambda_{M}(X-A)=\lambda_{M}(X \cap B) \leqslant \lambda_{M}(X)+\lambda_{M}(B)-\lambda_{M}(X \cup B)=\lambda_{M}(X)+\lambda_{M}(A)-\lambda_{M}(A-X) \leqslant$ $\lambda_{M}(X)<\theta$. Hence, if $\lambda_{M}(A-X) \geqslant \lambda_{M}(A)$ then it follows from (T3a) that $X-A \in \mathcal{T}$. If $\lambda_{M}(A \cap X) \geqslant$ $\lambda_{M}(A)$, then, again by submodularity, $\lambda_{M}(A \cup X) \leqslant \lambda_{M}(X)+\lambda_{M}(A)-\lambda_{M}(A \cap X) \leqslant \lambda_{M}(X)<\theta$. So by (T2) either $A \cup X \in \mathcal{T}$ or $B-X \in \mathcal{T}$. However, as $A \in \mathcal{T}$ and $X \in \mathcal{T}$ it follows from (T3) that $B-X \notin \mathcal{T}$. So $A \cup X \in \mathcal{T}$. We conclude that if $X \in \mathcal{T}$ then $X-A \in \mathcal{T}$ or $X \cup A \in \mathcal{T}$.

Let \mathcal{I}_{1} be the tangle in $K_{M} \circ A$ of order θ obtained from \mathcal{T} via Lemma 4.3. By 5.4.2, there is a natural isomorphism between $K_{M} \circ A$ and $K_{M / e} \circ(A-\{e\})$; let \mathcal{T}_{2} be the tangle in $K_{M / e} \circ(A-\{e\})$ of order θ that is obtained from \mathcal{T}_{1} via this isomorphism. In both $K_{M} \circ A$ and $K_{M / e} \circ(A-\{e\})$ denote the element that is not in B by e^{\prime}.

Let \mathcal{T}_{3} be the tangle in M / e of order θ that is obtained from \mathcal{T}_{2} via Lemma 4.4. Finally let \mathcal{T}_{4} be the tangle in M that is induced by \mathcal{T}_{3}.
5.4.4. $\mathcal{T}=\mathcal{T}_{4}$.

Subproof. Let (X, Y) be a separation of M of order less than θ with $e \in Y$. Then each of the following sequence of equivalences follows directly from definitions:

$$
\begin{aligned}
X \in \mathcal{T}_{4} & \Longleftrightarrow X \in \mathcal{T}_{3} \\
& \Longleftrightarrow X-(A-\{e\}) \in \mathcal{T}_{2} \quad \text { or }(X-(A-\{e\})) \cup\left\{e^{\prime}\right\} \in \mathcal{T}_{2} \\
& \Longleftrightarrow X-A \in \mathcal{T}_{1} \quad \text { or } \quad(X-A) \cup\left\{e^{\prime}\right\} \in \mathcal{T}_{1} \\
& \Longleftrightarrow X-A \in \mathcal{T} \text { or } X \cup A \in \mathcal{T} .
\end{aligned}
$$

So by 5.4.3, $X \in \mathcal{T}_{4}$ if and only if $X \in \mathcal{T}$; as required.
The result now follows easily by applying induction to the tangle \mathcal{T}_{3} in M / e.

6. A tangle in a grid

An n by n grid is a graph G_{n} with vertex set $V=\{(i, j): i, j \in\{1, \ldots, n\}\}$ where vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are adjacent if and only if either $i=i^{\prime}$ and $\left|j-j^{\prime}\right|=1$, or $j=j^{\prime}$ and $\left|i-i^{\prime}\right|=1$.

The goal of this section is to prove the existence of a natural tangle of order n in $M\left(G_{n}\right)$. For $i \in\{1, \ldots, n\}$ let P_{i} denote the path in G_{n} on vertices $(i, 1), \ldots,(i, n)$ and let Q_{i} denote the path in G_{n} on vertices $(1, i), \ldots,(n, i)$. Now we let \mathcal{T}_{n} denote the collection of all subsets $A \subseteq E\left(G_{n}\right)$ such that $\lambda_{M\left(G_{n}\right)}(A)<n$ and A does not contain any $E\left(P_{i}\right)$ for $i \in\{1, \ldots, n\}$. We will prove, for $n \geqslant 3$:

Lemma 6.1. \mathcal{T}_{n} is a tangle in $M\left(G_{n}\right)$ of order n.
A similar result was proved by Kleitman and Saks; see [6, (7.3)]. They considered tangles in $K_{G_{n}}$, whereas we consider tangles in $K_{M\left(G_{n}\right)}$. Our proof follows that of Kleitman and Saks; we need some preliminary results on connectivity.

Let X and Y be disjoint subsets of $E(M)$, we define $\kappa_{M}(X, Y)=\min \left(\lambda_{M}(A): X \subseteq A \subseteq E(M)-Y\right)$. The following result, due to Tutte [9], is an extension of Menger's Theorem.

Theorem 6.2 (Tutte's Linking Theorem). If S and T are disjoint sets of elements in a matroid M, then there exists a minor N of M such that $E(N)=S \cup T$ and $\lambda_{N}(S)=\kappa_{M}(S, T)$.

The following result was proved in [4].
Lemma 6.3. Let S and T be disjoint sets of elements of a matroid M. Then there exist sets $S_{1} \subseteq S$ and $T_{1} \subseteq T$ such that $\left|S_{1}\right|+1=\left|T_{1}\right|+1=\kappa_{M}\left(S_{1}, T_{1}\right)=\kappa_{M}(S, T)$.

In order to prove Lemma 6.1, we first need to establish that certain sets of edges in a grid are "highly connected".

Lemma 6.4. Let $i \in\{1, \ldots, n\}$ and, for each $j \in\{1, \ldots, n\}-\{i\}$, let e_{j} and f_{j} be disjoint edges of P_{j}. Now let $X=\left\{e_{j}: j \in\{1, \ldots, n\}-\{i\}\right\}$ and let $Y=\left\{f_{j}: j \in\{1, \ldots, n\}-\{i\}\right\}$. Then $\kappa_{M\left(G_{n}\right)}(X, Y)=n$.

Proof. Let $D=E\left(Q_{2}\right) \cup \cdots \cup E\left(Q_{n-1}\right)$ and let $C=E\left(Q_{1}\right) \cup E\left(Q_{n}\right) \cup\left(\left(E\left(P_{1}\right) \cup \cdots \cup E\left(P_{n}\right)\right)-(X \cup Y)\right)$. Now let $H=G_{n} \backslash D / C$. Note that $H[X]$ and $H[Y]$ are disjoint spanning trees of H. Therefore $n=$ $\lambda_{M(H)}(X)=\kappa_{M(H)}(X, Y) \leqslant \kappa_{M\left(G_{n}\right)}(X, Y) \leqslant|X|+1=n$. Thus $\kappa_{M\left(G_{n}\right)}(X, Y)=n$, as required.

The proofs of the following two results are similar to that of Lemma 6.4; we leave these to the reader.

Lemma 6.5. Let $i, j \in\{1, \ldots, n\}$. Then $\kappa_{M\left(G_{n}\right)}\left(P_{i}, Q_{j}\right)=n$. Also, if $i \neq j$, then $\kappa_{M\left(G_{n}\right)}\left(P_{i}, P_{j}\right)=n$ and $\kappa_{M\left(G_{n}\right)}\left(Q_{i}, Q_{j}\right)=n$.

Lemma 6.6. Let $X \subseteq E\left(P_{1}\right) \cup E\left(P_{n}\right)$ with $|X| \geqslant n-1$ and let $j \in\{1, \ldots, n\}$. Then $\kappa_{M\left(G_{n}\right)}\left(X, Q_{j}\right)=n$.
We call a set $A \subseteq E\left(G_{n}\right)$ small if $\lambda_{M\left(G_{n}\right)}(A)<n$ and A does not contain any of $E\left(P_{1}\right), \ldots, E\left(P_{n}\right)$ or $E\left(Q_{1}\right), \ldots, E\left(Q_{n}\right)$.

Lemma 6.7. Let (A, B) be a separation of $M\left(G_{n}\right)$ of order less than n. Then one of A and B is small. Moreover, if B is small, then A contains one of $E\left(P_{1}\right), \ldots, E\left(P_{n}\right)$ and one of $E\left(Q_{1}\right), \ldots, E\left(Q_{n}\right)$.

Proof. By Lemma 6.4, either A or B must contain one of $E\left(P_{1}\right), \ldots, E\left(P_{n}\right)$. Then, by symmetry, either A or B must contain one of $E\left(Q_{1}\right), \ldots, E\left(Q_{n}\right)$. However, by Lemma 6.5, A and B cannot both contain one of $E\left(P_{1}\right), \ldots, E\left(P_{n}\right), E\left(Q_{1}\right), \ldots, E\left(Q_{n}\right)$.

Note that \mathcal{I}_{n} trivially satisfies conditions (T1), (T3a), and (T4). By Lemma 6.7, \mathcal{I}_{n} also satisfies (T2). Thus in order to complete the proof of Lemma 6.1, we need only verify (T3b); this is achieved by the following result.

Lemma 6.8. For $n \geqslant 3, E\left(G_{n}\right)$ cannot be partitioned into three small sets.
Proof. The proof is by induction on n. The case $n=3$ is trivial; suppose then that $n \geqslant 4$ and that the result holds for G_{n-1}. Now assume (A_{1}, A_{2}, A_{3}) is a partition of $E\left(G_{n}\right)$ into three small sets.

By symmetry we may assume that Q_{n} meets A_{1} and A_{2}. (That is, $A_{1} \cap E\left(Q_{n}\right)$ and $A_{2} \cap E\left(Q_{n}\right)$ are nonempty.) By Lemma 6.7, there is a path Q_{j} disjoint from A_{1}. Note that $\kappa_{M\left(G_{n}\right)}\left(A_{1} \cap\left(E\left(P_{1}\right) \cup\right.\right.$ $\left.\left.E\left(P_{n}\right)\right), Q_{j}\right) \leqslant \lambda_{M\left(G_{n}\right)}\left(A_{1}\right)<n$. Then, by Lemma 6.6, $\left|A_{1} \cap\left(E\left(P_{1}\right) \cup E\left(P_{n}\right)\right)\right|<n-1$. Similarly $\mid A_{2} \cap$ $\left(E\left(P_{1}\right) \cup E\left(P_{n}\right)\right) \mid<n-1$. Therefore either P_{1} or P_{n} meets A_{3}; by symmetry, we may assume that P_{n} meets A_{3}. Therefore $E\left(P_{n}\right) \cup E\left(Q_{n}\right)$ meets each of A_{1}, A_{2}, and A_{3}.

Note that $G_{n-1}=G_{n}-\left(V\left(P_{n}\right) \cup V\left(Q_{n}\right)\right)$. For each $i \in\{1,2,3\}$, let $A_{i}^{\prime}=E\left(G_{n-1}\right) \cap A_{i}$.
6.8.1. There exists $k \in\{1,2,3\}$ such that $\lambda_{M\left(G_{n-1}\right)}\left(A_{k}^{\prime}\right) \geqslant n-1$.

Subproof. By the induction hypothesis, there exists $k \in\{1,2,3\}$ such that A_{k}^{\prime} is not small in G_{n-1}. Suppose that $\lambda_{M\left(G_{n-1}\right)}\left(A_{k}^{\prime}\right)<n-1$. Then A_{k}^{\prime} contains one of $E\left(P_{1}\right) \cap E\left(G_{n-1}\right), \ldots, E\left(P_{n-1}\right) \cap E\left(G_{n-1}\right)$ or one of $E\left(Q_{1}\right) \cap E\left(G_{n-1}\right), \ldots, E\left(Q_{n-1}\right) \cap E\left(G_{n-1}\right)$. By Lemma 6.7, A_{k} avoids some path P_{i} and some path Q_{j}. Since $E\left(P_{n}\right) \cup E\left(Q_{n}\right)$ meets each of A_{1}, A_{2}, and A_{3}, either $i \neq n$ or $j \neq n$. Thus A_{k}^{\prime} avoids one of $E\left(P_{1}\right) \cap E\left(G_{n-1}\right), \ldots, E\left(P_{n-1}\right) \cap E\left(G_{n-1}\right)$ or one of $E\left(Q_{1}\right) \cap E\left(G_{n-1}\right), \ldots, E\left(Q_{n-1}\right) \cap E\left(G_{n-1}\right)$. So, applying Lemma 6.7 to G_{n-1}, we contradict the assumption that $\lambda_{M\left(G_{n-1}\right)}\left(A_{k}^{\prime}\right)<n-1$.

By Lemma 6.3, there exist $S \subseteq A_{k}^{\prime}$ and $T \subseteq E\left(G_{n-1}\right)-A_{k}^{\prime}$ such that $|S|+1=|T|+1=$ $\kappa_{M\left(G_{n-1}\right)}(S, T) \geqslant n-1$. Now, by Tutte's Linking Theorem, there exists a minor H of G_{n-1} such that $E(H)=S \cup T$ and $\lambda_{M(H)}(S) \geqslant n$. Suppose that $H=G_{n-1} \backslash D / C$; we may choose D and C such that D does not contain a cut of G_{n}. Thus H is connected and S and T are disjoint spanning trees of H; thus $|V(H)| \geqslant n-1$. Now let $H^{\prime}=G_{n} \backslash D / H$. Vertices $(1, n)$ and $(n, 1)$ both have a neighbour in $V(H)$ in H^{\prime}. Note that there exist $e \in\left(E\left(P_{n}\right) \cup E\left(Q_{n}\right)\right) \cap A_{k}$ and $f \in\left(E\left(P_{n}\right) \cup E\left(Q_{n}\right)\right)-A_{k}$. Now there exists a minor $H^{\prime \prime}$ of H^{\prime} such that $S \cup\{e\}$ and $T \cup\{f\}$ are disjoint spanning trees of $H^{\prime \prime}$. Thus $\lambda_{M\left(H^{\prime \prime}\right)}(S \cup\{f\}) \geqslant n$. However, this contradicts the fact that $\lambda_{M}\left(A_{k}\right)<n$.

7. A grid in a tangle

Let M be a matroid and let N be a minor of M that is isomorphic to the cycle matroid of the n by n grid. Now let \mathcal{T}_{N} be the tangle in N of order n given by Lemma 6.1 and let \mathcal{T}_{M} be the tangle in M of order n that is induced by \mathcal{T}_{N}. (We recall that the term "induced" was defined at the start of Section 5 and the term "truncation" was defined at the start of Section 4.) A tangle \mathcal{T} in M is said to dominate N if \mathcal{T}_{M} is a truncation of \mathcal{T}. In this section we prove Theorem 1.2. We need the following lemma. (We use the "tangle matroid" which is defined at the end of Section 3.)

Lemma 7.1. Let \mathcal{T} be a tangle in a matroid M and let $M_{\mathcal{T}}$ be the tangle matroid of \mathcal{T}. Now let G_{n} be the n by n grid and suppose that $N=M\left(G_{n}\right)$ is a minor of M. Then \mathcal{T} dominates N if and only if each of the sets $E\left(P_{1}\right), \ldots, E\left(P_{n}\right)$ is independent in $M_{\mathcal{T}}$.

Proof. Note that, if \mathcal{T}^{\prime} is the truncation of \mathcal{T} to order n, then $M_{\mathcal{T}^{\prime}}$ is the truncation of $M_{\mathcal{T}}$ to rank $n-1$. Thus, by possibly truncating, we may assume that \mathcal{T} has order n. Now let \mathcal{T}_{n} be the tangle in N of order n given by Lemma 6.1 and let \mathcal{T}_{M} be the tangle in M of order n that is induced by \mathcal{T}_{N}. Thus \mathcal{T} dominates N if and only if $\mathcal{T}=\mathcal{T}_{M}$. Now $\mathcal{T} \neq \mathcal{T}_{M}$ if and only if there exists a set $A \in \mathcal{T}$ that contains one of $E\left(P_{1}\right), \ldots, E\left(P_{n}\right)$. On the other hand, $E\left(P_{i}\right)$ is independent in $M_{\mathcal{T}}$ if and only if there does not exist $A \in \mathcal{T}$ such that $E\left(P_{i}\right) \subseteq A$.

We also need the following result from [4].

Theorem 7.2. There exists an integer-valued function $f(k, q)$ such that for any positive integer k and primepower q, if M is a $G F(q)$-representable matroid with branch-width at least $f(k, q)$, then M contains a minor isomorphic to $M\left(G_{k}\right)$.

Note that, if M has a tangle of high order, then M has large branch-width and, hence by Theorem 7.2, M has a big grid as a minor. Unfortunately, this grid-minor need not be dominated by the tangle.
7.3. Proof of Theorem 1.2. Let $g(t)=\left(6^{t}-1\right) / 5$ for any integer $t \geqslant 0$. Let $n=g(k-1)+2$, let q be the order of \mathbb{F}, and let $\theta=f(n, q)$. Now let M be an \mathbb{F}-representable matroid and let \mathcal{T} be a tangle in M of order θ. By Theorem 5.2, there exists a (θ, g)-connected minor M_{1} of M and a tangle \mathcal{T}_{1} in M_{1} of order θ such that \mathcal{T} is the tangle in M that is induced by \mathcal{T}_{1}. By Theorems 3.1 and 7.2 , there exists a minor N of M_{1} that is isomorphic to $M\left(G_{n}\right)$. By possibly relabeling, we may assume that $N=M\left(G_{n}\right)$. Now let P_{1}, \ldots, P_{n} be the vertical paths in G_{n}, let $M_{\mathcal{T}_{1}}$ be the tangle matroid of \mathcal{T}_{1}, and let ϕ_{1} be the rank-function of $M_{\mathcal{T}_{1}}$.
7.3.1. $\phi_{1}\left(E\left(P_{i}\right)\right) \geqslant k-1$ for each $i \in\{1, \ldots, n\}$.

Subproof. Suppose to the contrary that $\phi_{1}\left(E\left(P_{i}\right)\right)<k-1$ for some i. Thus there exists $A \in \mathcal{T}_{1}$ such that $E\left(P_{i}\right) \subseteq A$ and $\lambda_{M_{1}}(A) \leqslant k-1$. By definition $|A| \geqslant\left|E\left(P_{i}\right)\right|=n-1>g(k-1)$. Therefore, since M_{1} is (θ, g)-connected, $\left|E\left(M_{1}\right)-A\right| \leqslant g(k-1)=n-2 \leqslant f(n, q)-2<\theta-1$. Moreover, as $k \geqslant 1$, we have that $\theta \geqslant 3$. Hence by Lemma 3.2, $E\left(M_{1}\right)-A \in \mathcal{T}_{1}$; contradicting (T3).

For each $i \in\{1, \ldots, k\}$, let A_{i} be an $M_{\mathcal{T}_{1}}$-independent subset of $E\left(P_{1+(i-1) k}\right)$ with $\left|A_{i}\right|=k-1$; as $k^{2}-k+1 \leqslant n$ these sets A_{i} exist. Now there exists a minor H of G_{n} such that H is isomorphic to G_{k} and such that A_{1}, \ldots, A_{k} are the edge-sets of the vertical paths in H. By Lemma 7.1, \mathcal{I}_{1} dominates H. Then, since \mathcal{T} is induced by $\mathcal{T}_{1}, \mathcal{T}$ also dominates H.

8. Tree-decompositions and laminar families

We begin by reviewing some elementary results on laminar families and tree-decompositions. Let E be a set. A partition of E into two sets is called a separation of E. Two separations (A_{1}, A_{2}) and (B_{1}, B_{2}) of a set E are said to cross if $A_{i} \cap B_{j} \neq \emptyset$ for each i and j in $\{1,2\}$. A collection \mathcal{S} of separations of E is laminar if no two separations in \mathcal{S} cross.

A tree-decomposition of E consists of a pair (T, \mathcal{P}) where T is a tree and $\mathcal{P}=\left(P_{v}: V \in V(T)\right)$ is a partition of E (where one or more of the P_{V} may be empty). For any $X \subseteq V(T)$, we let $\mathcal{P}[X]$ denote the set $\bigcup_{v \in X} P_{v}$. Now, for any $e \in E(T)$, the separation of E displayed by e is $\left(\mathcal{P}\left[V\left(T_{1}\right)\right], \mathcal{P}\left[V\left(T_{2}\right)\right]\right)$ where T_{1} and T_{2} are the two components of $T-e$. The following result is both easy and well known.

Lemma 8.1. If (T, \mathcal{P}) is a tree-decomposition of E, then the set of all separations displayed by (T, \mathcal{P}) is laminar.
Let (T, \mathcal{P}) be a tree-decomposition of E and let \mathcal{S} be a set of separations of E. We say that (T, \mathcal{P}) represents \mathcal{S} if \mathcal{S} is the set of separations displayed by (T, \mathcal{P}). The following converse to Lemma 8.1 is also well known.

Lemma 8.2. If \mathcal{S} is a laminar set of separations of E, then there is a tree-decomposition of E that represents \mathcal{S}.
Let K be a connectivity system. A set $X \subseteq E(K)$ is robust if for each proper partition $\left(X_{1}, X_{2}\right)$ of X either $\lambda_{K}\left(X_{1}\right)>\lambda_{K}(X)$ or $\lambda_{K}\left(X_{2}\right)>\lambda_{K}(X)$. (A partition is proper if all its members are nonempty.) A separation (X, Y) of K is robust if X and Y are both robust.

Lemma 8.3. Let K be a connectivity system and let \mathcal{S} be the set of all robust separations of K. Then \mathcal{S} is laminar.

Proof. Suppose that $\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right) \in \mathcal{S}$ cross. By symmetry, we may assume that $\lambda_{K}\left(A_{1}\right) \leqslant \lambda_{K}\left(B_{1}\right)$. As λ_{K} is symmetric, we may assume that $\lambda_{K}\left(A_{2} \cap B_{2}\right) \geqslant \lambda_{K}\left(A_{1} \cap B_{2}\right)$; otherwise swap A_{1} and A_{2}. Then, since B_{2} is robust, $\lambda_{K}\left(A_{2} \cap B_{2}\right)>\lambda_{K}\left(B_{2}\right)$. So symmetry and submodularity of λ_{K} yield $\lambda_{K}\left(A_{1} \cap B_{1}\right) \leqslant \lambda_{K}\left(A_{1}\right)+\lambda_{K}\left(B_{1}\right)-\lambda_{K}\left(A_{1} \cup B_{1}\right)=\lambda_{K}\left(A_{1}\right)+\lambda_{K}\left(B_{2}\right)-\lambda_{K}\left(A_{2} \cap B_{2}\right)<\lambda_{K}\left(A_{1}\right)$. So, since A_{1} is robust, $\lambda_{K}\left(A_{1} \cap B_{2}\right)>\lambda_{K}\left(A_{1}\right)$. Also, as $\lambda_{K}\left(B_{1}\right) \geqslant \lambda_{K}\left(A_{1}\right) \geqslant \lambda_{K}\left(A_{1} \cap B_{1}\right)$ and as B_{1} is robust, $\lambda_{K}\left(A_{2} \cap B_{1}\right)>\lambda_{K}\left(B_{1}\right)$. Combining the last two strict inequalities we get $\lambda_{K}\left(A_{1} \cap B_{2}\right)+\lambda_{K}\left(A_{2} \cap B_{1}\right)>$ $\lambda_{K}\left(A_{1}\right)+\lambda_{K}\left(B_{1}\right)=\lambda_{K}\left(A_{1}\right)+\lambda_{K}\left(B_{2}\right)$. As $\lambda_{K}\left(A_{2} \cap B_{1}\right)=\lambda_{K}\left(A_{1} \cup B_{2}\right)$, this contradicts submodularity.

9. Tree-representations of maximal tangles

The main result of this section is Theorem 9.1; when applied to the maximal tangles $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ of the matroid, those that are not truncations of others, it is the result alluded to in the introduction by 1.1.

If \mathcal{T}_{1} and \mathcal{T}_{2} are two tangles in a connectivity system K, neither of which is a truncation of the other, then there exists a distinguishing separation (X_{1}, X_{2}) with $X_{1} \in \mathcal{T}_{1}$ and $X_{2} \in \mathcal{T}_{2}$.

Theorem 9.1. Let K be a connectivity system and let $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ be tangles in K, none of which is a truncation of another. Then there exists a tree-decomposition (T, \mathcal{P}) of $E(K)$ such that $V(T)=\{1, \ldots, n\}$ and such that the following hold:
(i) For each $i \in V(T)$ and $e \in E(T)$ if T^{\prime} is the component of $T-e$ containing i then $\mathcal{P}\left[V\left(T^{\prime}\right)\right]$ is not in \mathcal{T}_{i}.
(ii) For each pair of distinct vertices i and j of T, there exists a minimum-order distinguishing separation for \mathcal{T}_{i} and \mathcal{T}_{j} that is displayed by T.

Let K and K^{\prime} be connectivity systems with $E(K)=E\left(K^{\prime}\right)$. We call K^{\prime} a tie-breaker for K if for each $X, Y \subseteq E(K)$:
(i) $\lambda_{K^{\prime}}(X) \neq \lambda_{K^{\prime}}(Y)$ unless $X=Y$ or $X=E(K)-Y$,
(ii) $\lambda_{K^{\prime}}(X)<\lambda_{K^{\prime}}(Y)$ if $\lambda_{K}(X)<\lambda_{K}(Y)$.

Lemma 9.2. Each connectivity system has a tie-breaker.

Proof. Let K be a connectivity system. We may assume that $E(K)=\{1, \ldots, n\}$. Now, for $X \subseteq$ $\{1, \ldots, n-1\}$, let $\lambda_{L}(X)=\sum_{i \in X} 2^{i}$ and let $\lambda_{L}(E(K)-X)=\lambda_{L}(X)$. We leave it to the reader to verify that $L=\left(E(K), \lambda_{L}\right)$ is indeed a connectivity system. Now, for each $X \subseteq E(K)$, we let $\lambda_{K^{\prime}}(X)=$ $2^{n} \lambda_{K}(X)+\lambda_{L}(X)$. It is easy to check that $K^{\prime}=\left(E(K), \lambda_{K^{\prime}}\right)$ has the desired properties.

It is evident that a tangle in a connectivity system K is a tangle in any tie-breaker for K.

Lemma 9.3. Let \mathcal{T}_{1} and \mathcal{T}_{2} be tangles in a connectivity system K that are incomparable by truncation, let K^{\prime} be a tie-breaker for K, and let $\left(X_{1}, X_{2}\right)$ be a distinguishing separation for \mathcal{T}_{1} and \mathcal{T}_{2} with minimum order in K^{\prime}. Then $\left(X_{1}, X_{2}\right)$ is a robust separation of K^{\prime}.

Proof. Suppose otherwise. Then, by symmetry, we may assume that there exists a proper partition (A, B) of X_{1} such that $\lambda_{K^{\prime}}(A) \leqslant \lambda_{K^{\prime}}\left(X_{1}\right)$ and $\lambda_{K^{\prime}}(B) \leqslant \lambda_{K^{\prime}}\left(X_{1}\right)$. Since K^{\prime} is a tie-breaker, $\lambda_{K^{\prime}}(A)<\lambda_{K^{\prime}}\left(X_{1}\right)$ and $\lambda_{K^{\prime}}(B)<\lambda_{K^{\prime}}\left(X_{1}\right)$. Condition (T3a) for \mathcal{T}_{1} implies that $A, B \in \mathcal{T}_{1}$. Then, by our choice of the distinguishing separation $\left(X_{1}, X_{2}\right), \mathcal{T}_{2}$ contains neither $E(K)-A$ nor $E(K)-B$. Then, by (T2), $A, B \in \mathcal{T}_{2}$. But then \mathcal{T}_{2} contains each of A, B, and X_{2}; contrary to (T3).

Proof of Theorem 9.1. Let K^{\prime} be a tie-breaker for K. As $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ are tangles in K^{\prime}, we may assume that $K=K^{\prime}$. For each $i, j \in\{1, \ldots, n\}$ with $i \neq j$ let $\left(X_{i j}, Y_{i j}\right)$ be the minimum-order separation of K distinguishing \mathcal{T}_{i} and \mathcal{T}_{j} (where we assume that $\left.X_{i j} \in \mathcal{T}_{i}\right)$. By Lemma 9.3, $\left(X_{i j}, Y_{i j}\right)$ is a robust separation of K. Now let \mathcal{S} be the collection of all of these distinguishing separations. By Lemma 8.3, \mathcal{S} is laminar. Then, by Lemma 8.2 , there is a tree-decomposition (T, \mathcal{P}) of $E(K)$ that represents \mathcal{S}. We may assume that if v is a vertex of T with degree 1 or 2 , then $P_{v} \neq \emptyset$ (since, otherwise, we could find a smaller tree-decomposition representing \mathcal{S}). This means that the edges of T display proper and distinct separations. It remains to show that there is a bijection between $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ and $V(T)$ satisfying the conclusion of Theorem 9.1.

For $i=\{1, \ldots, n\}$, consider the collection \mathcal{X}_{i} of nonempty subsets X of $V(T)$ such that $E(K)-$ $\mathcal{P}[X] \in \mathcal{T}_{i}$ and such that $(\mathcal{P}[X], E(K)-\mathcal{P}[X])$ is displayed by T. Each member of \mathcal{X}_{i} induces a subtree of T and by (T3) each two members of \mathcal{X}_{i} intersect. As any collection of pairwise intersecting subtrees of a tree has a common vertex, the members of \mathcal{X}_{i} have a nonempty intersection. Call that intersection V_{i}.

Note that by construction of V_{i} each edge of T that leaves V_{i} displays a separation (A, B) with $\mathcal{P}\left[V_{i}\right] \subseteq A$ and $B \in \mathcal{T}_{i}$. From this, (T2), (T3) and the fact that each separation in \mathcal{S} is displayed by T it is straightforward to see that to prove Theorem 9.1 it suffices to show that $\left(V_{1}, \ldots, V_{n}\right)$ is a partition of $V(T)$ into singletons.

The sets V_{1}, \ldots, V_{n} are pairwise disjoint as for each $i \neq j$ the set $\mathcal{P}\left[V_{i}\right]$ lies in $Y_{i j}$ and the set $\mathcal{P}\left[V_{j}\right]$ lies in $Y_{j i}=X_{i j}$.

It remains to prove that if w in $V(T)$ then $\{w\}=V_{i}$ for some i. Among the edges incident with w take the one that displays the separation, $\left(X_{i j}, Y_{i j}\right)$ say, of largest order. So that order is at most the order of \mathcal{T}_{i} and of \mathcal{T}_{j}. We may assume that $\mathcal{P}_{w} \subseteq Y_{i j}$. As no two edges of T display the same separation, all other edges incident with w display a separation of order less than those of \mathcal{T}_{i} and \mathcal{T}_{j}. By the definition of $\left(X_{i j}, Y_{i j}\right)$ these separations do not distinguish \mathcal{T}_{i} from \mathcal{T}_{j}. Combining that with (T3) for \mathcal{T}_{j}, we see that for each of these separations \mathcal{P}_{w} is not part of the side that is in \mathcal{T}_{i}. Hence $V_{i} \subseteq\{w\}$. As V_{i} is not empty, $\{w\}=V_{i}$ as claimed.

We conclude with a simple corollary to Theorem 9.1.
Corollary 9.4. An m-element connectivity system has at most $\frac{m-2}{2}$ maximal tangles.

Proof. Let K be an m-element connectivity system and let $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ be the maximal tangles in K. Now let (T, \mathcal{P}) be the tree-decomposition of $E(M)$ given by Theorem 9.1. Let v be a vertex of T of degree d_{v}. By (T3) and (T4), $d_{v}+\left|P_{v}\right| \geqslant 4$. Now $4 n \leqslant \sum_{i=1}^{n}\left(d_{i}+\left|P_{i}\right|\right)=2|E(T)|+|E(M)|=2(n-1)+m$. So $n \leqslant \frac{m-2}{2}$ as claimed.

Acknowledgments

We thank the referees for carefully reading this paper.

References

[1] J.S. Dharmatilake, A min-max theorem using matroid separations, in: Matroid Theory, Seattle, WA, 1995, in: Contemp. Math., vol. 197, Amer. Math. Soc., Providence, RI, 1996, pp. 333-342.
[2] J.F. Geelen, A.M.H. Gerards, N. Robertson, G.P. Whittle, On the excluded-minors for the matroids of branch-width k, J. Combin. Theory Ser. B 88 (2003) 261-265.
[3] J. Geelen, B. Gerards, N. Robertson, G. Whittle, Obstructions to branch-decomposition of matroids, J. Combin. Theory Ser. B 96 (2006) 560-570.
[4] J. Geelen, B. Gerards, G. Whittle, Excluding a planar graph from GF(q)-representable matroids, J. Combin. Theory Ser. B 97 (2007) 971-998.
[5] J.G. Oxley, Matroid Theory, Oxford Univ. Press, New York, 1992.
[6] N. Robertson, P.D. Seymour, Graph Minors. X. Obstructions to tree-decomposition, J. Combin. Theory Ser. B 52 (1991) 153190.
[7] N. Robertson, P.D. Seymour, Graph Minors. XVI. Excluding a non-planar graph, J. Combin. Theory Ser. B 89 (2003) 43-76.
[8] N. Robertson, P.D. Seymour, R. Thomas, Quickly excluding a planar graph, J. Combin. Theory Ser. B 62 (1994) 323-348.
[9] W.T. Tutte, Menger's theorem for matroids, J. Res. Nat. Bur. Standards, B. Math. Math. Phys. 69B (1965) 49-53.

[^0]: 4. This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Marsden Fund of New Zealand.

 E-mail address: jfgeelen@uwaterloo.ca (J. Geelen).
 0095-8956/\$ - see front matter © 2009 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jctb.2007.10.008

