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Abstract—Computer vision enables in-situ monitoring of an-
imal populations at a lower cost and with less ecosystem dis-
turbance than with human observers. However, computer vision
uncertainty may not be fully understood by end-users, and the
uncertainty assessments performed by technology experts may
not fully address end-user needs. This knowledge gap can yield
misinterpretations of computer vision data, and trust issues
impeding the transfer of valuable technologies. We bridge this
gap with a user-centered analysis of the uncertainty issues.
Key uncertainty factors, and their interactions, are identified
from the perspective of a core task in ecology research and
beyond: counting individuals from different classes. We highlight
factors for which uncertainty assessment methods are currently
unavailable. The remaining uncertainty assessment methods are
not interoperable. Hence it is currently difficult to assess the
combined results of multiple uncertainty factors, and their impact
on end-user counting tasks. We propose a framework for as-
sessing the multifactorial uncertainty propagation along the data
processing pipeline. It integrates methods from both computer
vision and ecology domains, and aims at supporting the statistical
analysis of abundance trends for population monitoring. Our
typology of uncertainty factors and our assessment methods were
drawn from interviews with marine ecology and computer vision
experts, and from prior work for a fish monitoring application.
Our findings contribute to enabling scientific research based on
computer vision.

I. INTRODUCTION

Computer vision technologies can support the study of a
variety of animal populations in their natural environment [1],
[2], [3], [4], [5]. However, the technical constraints of in-
situ video monitoring yield potential errors in the extracted
data. Multiple factors are at stake, such as misidentification
of animals, camera breakdowns, or encoding errors. Users
are aware that computer vision provides uncertain data, yet
they may not fully comprehend how it impacts the scientific
validity of their data analysis [6]. Users may misinterpret
computer vision output, or have uninformed confidence in
their interpretation. To address these issues, we investigate the
sources of uncertainty in in-situ video monitoring systems, and
the means to communicate their impact on end-user tasks.

Our study was performed in the context of the
Fish4Knowledge (F4K) project [7], an application of
computer vision to the in-situ monitoring of Taiwanese
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coral reef fish (Fig. 1). It used 9 static cameras, fixed
on the seabed at depths around 2 to 3 meters, to
continuously record underwater ecosystems for 3 years.

Fig. 1. Example video frame
from the F4K system

Marine ecologists needed to an-
alyze counts of fish for different
species, behaviors, time periods
or locations. Uncertainty issues
were first identified for this con-
text. We discuss them here from
a larger perspective including the
monitoring of other kinds of indi-
viduals. We specify a typology of
uncertainty factors, i.e., the tech-
nological or environmental com-
ponents yielding uncertainty. We
describe the interactions between uncertainty factors, in order
to identify i) how uncertainty propagates through the informa-
tion processing pipeline; and ii) how interoperable assessment
methods can describe uncertainty propagation. The goal of our
typology is to identify the set of uncertainty measurements that
needs to be communicated to end-users, in order to support
uncertainty-aware analyses of computer vision data.

Existing generic uncertainty typologies [8], [9], [10], [11]
can model our typology, which instantiates the case of com-
puter vision systems for in-situ monitoring of animal popula-
tions. Walker et al. (2003) caution against ”framing problems
such that the context fits the tacit values of the experts and/or
fits the tools, which experts can use to provide a solution to
the problem” [8]. Locations of uncertainty within the video
monitoring system [8] may lie beyond the set of uncertainty
factors addressed by a single domain of expertise. We thus
consulted multidisciplinary experts with different specialties
within the marine ecology and computer vision domains, and
considered potential sources of uncertainty at each step of
the information processing pipeline. Consistent with Pang et
al. (1997), our uncertainty factors can be mapped to a 3-
step pipeline of data collection (i.e., the in-situ deployment
of the system), data processing (i.e., the computer vision
algorithms) and data interpretation (i.e., the analysis of com-
puter vision outputs) [10]. Correa et al. (2009) further discuss
uncertainty propagation and aggregation along the processing
steps [11]. Our framework for specifying uncertainty prop-
agation integrates methods from both computer vision and
ecology domains. From this framework, we elicit a set of
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key uncertainty measurements supporting uncertainty-aware
analyses of population abundance, and identify unaddressed
problems requiring further research. Our approach contributes
to data science by making video monitoring systems meet the
scientific requirements with i) transparent uncertainty factors;
and ii) methods to take uncertainty into account in end-user
tasks.

II. BACKGROUND LITERATURE

Computer vision uncertainty - Computer vision uncer-
tainty is mainly evaluated using groundtruth datasets, which
consist of manually classified images (e.g., examples of an-
imals for each species). The groundtruth is split into two
distinct sets: one for training the algorithms, one for testing
their results. From the training set, algorithms construct a
model of the items to classify. It describes the features that
are representative of items’ visual appearance (e.g., shape,
color, texture). With the test set, the computer vision results
are compared to the manual classifications. The primary uncer-
tainty assessment is the number of misclassifications: items’
true class is known from the manual classification, and the
algorithms’ output class may give correct classifications (True
Positives TP, True Negatives TN) and misclassifications (False
Negatives FN, False Positives FP). Errors are encoded in
confusion matrices (Fig. 2) from which a variety of uncertainty
metrics can be derived. Derived metrics are mainly proportions
of TP, TN, FN and FP relative to total numbers of Positive or
Negative items, e.g., FP Rate, Precision, Recall [12], [13].
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Fig. 2. Typical confusion matrices for binary problems (left), e.g., detection
of individuals (TP, FN) and other objects (TN, FP), and multiclass problems
(right), e.g., recognition of multiple classes of species or behaviors.

Uncertainty can also be measured as the similarity be-
tween an item and the class model constructed from the
training set. Similarity measures can indicate that an item’s
appearance is, e.g., 71% similar to the model. The lower the
similarity, the higher the chance of misclassification. Similarity
measures can be computed using various methods depending
on the application context [14]. They can be available for
any classified item, including items for which no groundtruth
classification is available. Thus they can indicate uncertainty
when the groundtruth’s true class is unknown. They are often
used as a threshold for discarding low-similarity items likely
to be False Positives. They can also be used to infer error
probabilities depending on similarity measures, and correct
counts of individuals accordingly, e.g., Boom et al. [15].
However, their method requires similar class proportions in
test sets and end-results. This cannot be ensured in population
monitoring as the relative abundance of species and behaviors
may vary over time and location (e.g., due to migration or
reproduction cycles).

After detecting objects occurring in each video frame,
computer vision systems apply tracking algorithms to iden-
tify individuals and their trajectories across frames. Tracking

errors can occur between each pair of frames, and impact the
resulting counts of items per class: i) one single object may
not be linked from one frame to the other, and considered as
2 distinct objects (thus over-estimating counts of items); ii)
2 distinct objects may be erroneously linked and considered
as one single object (thus under-estimating counts of items);
or iii) the trajectories of adjacent objects may be confused
with one another (thus increasing the chances of misclassifying
species and behaviors). Evaluations of tracking errors compare
groundtruth trajectories with algorithm outputs. Palazzo et al.
(2012) propose 3 evaluation metrics reflecting i) the tracking
errors at each pair of frames (correct decision rate); ii) the
consistency of single trajectories which may contain images
from different objects (trajectory matching); and iii) the result-
ing counts of objects per class (correct counting rate TP

TP+FN
,

i.e., Recall) [16].

For computer vision systems applying a sequence of algo-
rithms (e.g., Fig. 3), uncertainty propagates over the informa-
tion processing pipeline. Each classifier’s uncertainty depends
on its internal parameters (e.g., for processing low-level image
features), training set and resulting class models, and input
set (e.g., a set of images to classify). Labels from previously
applied classifiers (e.g., bounding box with identified indi-
viduals and/or species) may be included in input sets as a
categorical attribute, with corresponding similarity measures
as a numerical attribute. In practice, misclassifications are
measured for the end-results of the whole processing pipeline,
or worse, for each classifier separately and potentially with
heterogeneous test sets. Crosetto et al. (2001) provide founda-
tions for evaluating uncertainty considering i) the algorithms’
pipeline as a black box; ii) algorithms’ parameters (threshold
on similarity measures); and iii) input sets of numerical
attributes with systematic errors (bias) and stochastic errors
(noise) [17]. Zhu et al. (2004) study uncertainty propagation
w.r.t. i) training sets with stochastic errors in one or several
numerical and categorical attributes; ii) training sets with
stochastic errors in the groundtruth class; iii) input sets with
stochastic errors in one or several numerical and categorical
attributes [18]. Senge et al. (2014) investigate uncertainty
propagation for ensemble classifiers, i.e., a pipeline of binary
classifiers providing multiclass classification as end-results
[19]. No prior work was found to address the uncertainty
propagation over pipelines including binary and multiclass
classifiers, and tracking algorithms; and with systematic errors
in the categorical attributes of input sets. The latter needs to be
considered to assess uncertainty propagation through imperfect
classifiers. For instance, in Fig. 3, Species Recognition may
systematically confuse specific species, and Behavior Recog-
nition may process input sets with systematic errors in the
species attribute.

In-situ video monitoring of populations - Automating the
recognition of animals is already challenging in controlled
environments [1], and more so in-situ. Video technologies
have been applied to ecosystem monitoring with a variety of
settings, e.g., for marine ecosystems: fields of view, lighting
[20], [21], baited or unbaited, and static or diver-operated
cameras [22], [23], manual or automated analysis [24], color
filters, lenses, and parameters of video analysis algorithms
[20]. These settings impact the uncertainty of computer vision
results, e.g., error magnitude can vary over lighting or field of
view. Error magnitude can also vary over species and species
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Fig. 3. Typical data processing pipeline for the video monitoring of animal populations (BPMN notation)

can be systematically confused, thus biasing the data [1].
Ecologists usually deal with uncertainty using sampling theory
and by applying repeated measurements and statistics (e.g.,
variance, ANOVA) [25], [26]. No well established guidelines
were found to integrate classification errors from computer
vision into standard statistical frameworks used for monitoring
population abundance. However, computer vision uncertainty
is likely to be accepted by ecologists [27] as i) coping with
uncertainty is part of their current practices; ii) computer vision
benefits overcome the technical issues; and iii) the technical
issues can be improved [1], [28].

III. CONTEXT OF APPLICATION

Typical use case for population monitoring - User infor-
mation needs were investigated for the Fish4Knowledge fish
monitoring system [27], [29]. Ecologists needed to study the
population dynamics, i.e., the evolution of population sizes,
and underlying phenomena such as reproduction, migration
and trophic systems (food chains). The primary information
need is to obtain counts of individuals over 5 dimensions
of interest: time period, location, species, behavior and body
size (Table II). For technical reasons, the project was not able
to deliver information on body size and behavior. However,
uncertainty issues with behavior recognition are included in
this paper and the complete workflow addressing these infor-
mation needs is shown in Fig. 3. Body size is excluded as it
requires other types of technology, such as stereoscopic vision.
Another key information need is to assess the computer vision
uncertainty and how it impacts the scientific validity of data
analysis and interpretation. We address this need by comple-
menting prior studies in [6], [27], [30] with 4 contributions:
i) a comparison of the potential biases of computer vision to
that of other data collection methods (Table III); ii) a refined
specification of 12 key uncertainty factors (Table IV) and their
interactions (Fig. 4); iii) novel methods for measuring errors
and biases (equations 2-8); and iv) a comprehensive framework
of uncertainty measurements (Fig. 6).

Typical framework of computer vision algorithms - Video
monitoring systems may apply different algorithms depending

on use cases, using different classification techniques (e.g.,
SVM, Bayes, GMM) and low-level feature extraction methods
(e.g., Fourier descriptor, Gabor filter, Histogram of Oriented
Gradients, Moment Invariants). However, for the vast majority
of use cases, algorithms perform 3 high-level tasks: binary
classification (e.g., Detect Individuals), multiclass classifica-
tion (e.g., Recognize Species) and tracking. We focus on a
typical computer vision framework with algorithms performing
these 3 tasks (Fig. 3). Our scope of algorithms excludes low-
level sub-processing algorithms that are not directly related
to our counting task. For instance, algorithms which Detect
Individuals use binary algorithms for classifying each pixel
as being within or outside an object contour (segmentation).
Imperfect segmentation influences uncertainty of higher-level
algorithms, but measuring segmentation errors does not con-
tribute to estimating errors in counts of individuals. However,
estimating sizes of areas (e.g., land coverage estimated from
satellite images) requires estimating segmentation errors. Our
method for estimating unbiased population abundances (e.g.,
equation 8) is, however, also applicable to estimating areas, as
counting pixels per class is conceptually similar to counting
individuals per class.

The use cases captured by our framework in Fig. 3
may have chosen alternative implementation strategies. For
instance, Recognize Species may be performed before Track
Individuals, and species labels may be used as input features
for Track Individuals. As shown in Section V, this alterna-
tive does not impact the uncertainty assessment methods we
propose. However, our methods rely on 2 assumptions on the
framework of computer vision algorithms: i) Video samples are
of equal duration, e.g., in Fish4knowledge, continuous video
streams are split into 10-minute samples, which simplifies the
uncertainty assessment; ii) Image quality is assessed for each
video sample, and classified into several categories. Image
quality could be measured with continuous values (e.g., blur
score), or be measured within each image (segmentation).
Opportunities of such approaches are worth being investigated
in future work. For the sake of simplicity, we assume that the
identification of image quality (e.g., Recognize Image Quality
in Fig. 3) yields no classification error.



TABLE I. KEY UNCERTAINTY FACTORS IN COMPUTER VISION SYSTEMS FOR POPULATION MONITORING.

Factor Description
Uncertainty due to computer vision algorithms
Groundtruth Quality Groundtruth items may be scarce, represent the wrong animals, odd animal appearances (i.e., odd feature distributions).
Object Detection Errors Some individuals may be undetected, and other objects may be detected as individuals of interest.
Tracking Errors Trajectories of individuals tracked over video frames may be split, merged or intertwined.
Species Recognition Errors Some species may not be recognized, or confused with another.
Behavior Recognition Errors Some behaviors may not be recognized, or confused with another.
Uncertainty due to in-situ system deployment
Field of View Cameras may observe heterogeneous ecosystems, and over- or under-represent species, behaviors or objects features. Fields of view may

be partially or totally occluded, and shift from their intended position.
Fragmentary Processing Some videos may be yet unprocessed, missing, or unusable (e.g., encoding errors).
Duplicated Individuals Individuals moving back and forth are repeatedly recorded. Rates of duplication vary among species behaviors and Fields of view.
Sampling Coverage The numbers of video samples may not suffice for software outputs to be statistically representative.
Uncertainty due to both computer vision algorithms and in-situ system deployment
Image Quality Lighting, water turbidity, contrast, resolution or fuzziness may impact the magnitude of computer vision errors.
Noise and Biases Computer Vision errors may be random (noise) or systematic (bias). Biases may emerge from a combinaison of factors (Image Quality,

Field of View, Duplicated Individuals, Object Detection Errors, Species & Behavior Recognition Errors).
Uncertainty in Specific Output Uncertainty in specific sets of Computer Vision output may be extrapolated from errors measured in test conditions, taking into account

the specific characteristics of output sets (e.g., fewer low-quality images).
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Fig. 4. Interactions of Uncertainty Factors

IV. UNCERTAINTY FACTORS

Considering the entire population monitoring system, po-
tential errors and biases are not only due to computer vi-
sion software (data processing in [10]). Uncertainty is also
introduced throughout the in-situ deployment of the system
(data collection). For example, some cameras may receive less
light, yielding poor image quality and more computer vision
errors. At the data interpretation stage, ecologists need to
consider uncertainty factors from both computer vision and
system deployment, as their interactions yield potential errors
and biases in the counts of individuals. Ecologists also need to
consider the characteristics of the data subsets under analysis,
as these impact the level of uncertainty (e.g., more low-quality
images compared to the overall dataset increases uncertainty).
Overall, 12 key uncertainty factors were identified along the
information processing pipeline, as summarized in Table IV.

Uncertainty due to computer vision algorithms - Com-
puter vision algorithms use groundtruth training sets to learn
to detect individuals, species or behaviors, but also to track in-
dividuals and to detect image quality. Groundtruth is typically

manually annotated by experts, but is often crowdsourced by
non-experts [31]. Groundtruth Quality is essential to control
the errors in computer vision results. Scarcity, unrepresentative
image quality or annotation errors in groundtruth sets may
yield error-prone computer vision software. Image Quality
impacts the appearance of objects, and thus the consistency
of visual features extracted by computer vision algorithms
and used to recognize animals, species and behaviors. The
Fish4Knowledge system was designed to classify image qual-
ity, and apply class-specific preprocessing parameters to extract
consistent fish features regardless of the original image quality.
To infer the impact of image quality on computer vision errors,
groundtruth evaluations must be performed using samples from
each image quality class. As the errors of each classifier impact
that of the next classifiers, groundtruth and image quality are
important components of uncertainty propagation.

Computer vision may result in 4 types of high-level errors.
Object Detection Errors concern the detection of individuals
in each video frame, i.e., undetected individuals (FN) and other
objects identified as individuals of interest (FP). Tracking



TABLE II. INFORMATION NEEDS & DATA COLLECTION METHODS [27]

Fish
Counts

Species
Recognition

Behavior
Recognition

Fish
Size

Research Topic
Population Dynamics mandatory mandatory optional important
Trophic Systems mandatory mandatory important important
Reproduction mandatory mandatory important important
Migration mandatory mandatory optional optional

Data Collection Method

Scientific Fishery + +/++1 - +
Commercial Fishery + + - +
Diving Observation + + ++ +
Manual Image Analysis + + + -/+ 2

Computer Vision + + -/+3 -/+ 2

The signs indicate whether data collection methods: - cannot supply the information,
+ can supply the information, ++ can supply the most precise information.
1 Fish dissection performed after scientific fishing is the most accurate.
technique for recognizing coral reef species that are visually similar.
2 Possible with stereoscopic vision, or calibrated distance camera-background.
3 The state-of-the-art does not fully address the wide scope of fish behavior variety.

TABLE III. BIASES WITH SPECIES & DATA COLLECTION METHODS

Type of ......
Species

Scientific
Fishery

Commercial
Fishery

Diving
Obs.

Manual.Img
Analysis

Computer .
Vision

Benthic -1 -1 = = =2

Sedentary - - = = =/+3

Schooling = = -/+ -/+ -/+3,4

Small -/=4 -/=5 -/=6 -/=6 -/=6

Shy - - -/=7 -/=8 -/=8

Cryptic - - = - -
Look-alike = = -/+ -/+ -/+
Rare = - = = -/=9

Nocturnal = = - -/= -/=10

Carni- or....
Herbivorous

-/=/+11 = = -/=/+11,12 -/=/+11,12

The signs indicate whether parts of ecosystems are likely to be + over-represented,
= neither under- nor over-represented, - under-represented.
1 Considering that the destructive use of trawl nets is not an option.
2 If cameras’ field of view target the seafloor.
3 Species often swimming in and out cameras’ field of view are over-estimated.
4 Fish in groups occlude each other and are under-estimated.
5 Large granularity of nets’ and fish traps’ mesh can let small fish slip through.
6 Small fish may not be visually detectable from a large distance.
7 Cloaking procedures can allow the observation of shy fish.
8 With handheld cameras, some species flee from divers.
9 Recognizing all rare species may not be possible due to lack of ground-truth.
10 Possible with night vision cameras.
11 Baits, if used, can attract either herbivorous or carnivorous species.
12 Cameras’ field of view may overestimate some species and underestimate others.

Errors concern the misidentification of individual trajectories
across multiple frames, i.e., split or merge individual trajecto-
ries, or intertwined trajectories of different individuals. Species
Recognition Errors are individuals recognized as a species
they do not actually belong to. Behavior Recognition Errors
are individuals recognized with a behavior they are not actually
exhibiting.

Uncertainty due to in-situ system deployment - This
source of uncertainty is usually not in the scope of evalua-
tions performed in computer vision research. Evaluations of
computer vision algorithms are intended to be valid for most
applications of the algorithms, and are abstracted from case-
specific application conditions. However, errors and biases in
computer vision outputs can be significantly influenced by i)
time-varying environmental conditions (e.g., lighting, turbidity,
biofouling) or camera features (e.g., lens, resolution) that lower
Image Quality; ii) the placement of cameras, i.e., the Field of
View can target specific habitats and under-represent species

living in other habitats, over-represent animal behaviors oc-
curring in these habitats, modify the chances of Duplicated
Individuals (e.g., targeting a feeding zone may increase the
number of individuals moving back and forth, thus in and out
the field of view), or modify the chances of obtaining low
Image Quality (e.g., in shade- or turbidity-prone locations);
iii) the numbers of cameras which may not provide sufficient
Sampling Coverage; and iv) computational issues with the
servers executing the computer vision algorithms, which can
yield Fragmentary Processing (e.g., missing videos).

Synthesizing uncertainty in specific outputs - Ecologists
are concerned with differentiating stochastic errors (random
noise) from systematic errors (bias). Noise and Biases arise
from a combinaison of factors yielding counts of individuals
that are systematically lower or higher than their true values
(i.e., compared to counts from groundtruth sets). The levels
of noise and bias observed for groundtruth sets may differ
from that of specific subsets of computer vision output. Hence
for deriving the Uncertainty in Specific Outputs from the
groundtruth evaluations, ecologists must account for the spe-
cific characteristics of data subsets. They need to assess i) the
proportion of Image Quality in groundtruth and output sets,
to infer the magnitude of errors in output sets given the error
magnitude measured for each image quality; ii) how Fields
of View impact the chances of Duplicated Individuals and
the completeness of Sampling Coverage, as these potentially
under- or over-estimate some species or behaviors (e.g., Ta-
ble III).

Interactions of uncertainty factors - The uncertainty fac-
tors interact with each other, yielding a complex scheme of
uncertainty propagation (Fig. 4). Computer vision algorithms
are impacted by the errors of the algorithms previously applied.
Object Detection Errors impact Tracking Errors as missing
individuals (FN) and other objects (FP) yield erroneous in-
terpretations of trajectories. Species Recognition Errors are
impacted by both Object Detection and Tracking Errors, as
FP objects may be attributed a species, and species recognition
suffers from intertwined trajectories merging individuals from
different species. Behavior Recognition Errors are impacted by
Species Recognition Errors as behavior features are species-
specific (e.g., one speed indicates hunting behavior for one
species, but is a neutral movement for another).

The Field of View impacts the kind of ecosystems observed
by each camera. It also impacts the chances of Duplicated
Individuals, e.g., observing coral heads is more likely to yield
overestimation of sedentary species than observing the open
sea. Hence the Field of View can over-estimate local species
and behaviors, and under-estimate others, thus influencing the
Noise and Biases. The depth of Field of View impacts the
size of the monitored areas, hence the Sampling Coverage.
It further impacts Image Quality as resolution and fuzziness
are poorer for the background than the foreground. In this
case, approaches classifying image quality within each frame
(segmentation) may be of interest. Image Quality is further
impacted by the Field of View as a camera may be placed
in area where low-lighting, turbidity or bio-fouling are more
likely to occur. Different classes of Image Quality can yield
different levels of Object Detection, Species Recognition and
Behavior Recognition Errors, and thus potential Noise and
Biases. Hence Groundtruth Quality depends on how image



samples are representative of the range of possible Image Qual-
ity. The groundtruth samples need to represent the possible
appearances of individuals (e.g., different angles), and contain
multiple samples of appearances to account for the statistical
variations of the low-level image features (e.g., variability
of color rendering or contours). Finally, the initial Sampling
Coverage of the cameras deployed over ecosystems can be
reduced by the Fragmentary Processing of the videos, i.e.,
due to unprocessed or missing videos.

V. UNCERTAINTY ASSESSMENT

For computer vision experts, the primary uncertainty as-
sessment methods are groundtruth evaluations, performed for
each algorithm or for the whole pipeline of algorithms (a
black box). End-users who are not familiar with computer
vision are likely to encounter difficulties in understanding
groundtruth evaluations, confusion matrices and their technical
concepts [27]. Derived uncertainty metrics (e.g., Precision,
Recall) may be misunderstood, and do not fully address all
uncertainty factors. When integrating computer vision data
into their scientific research, ecologists may not know i) how
misclassifications impact the counts of individuals in end-
results; and ii) how to combine their statistical methods with
measurements derived from confusion matrices. We address
these issues with assessment methods for uncertainties due to
computer vision algorithms and in-situ system deployment, the
related uncertainty propagation, and the resulting impact on
counts of individuals.

Assessing computer vision algorithms - Confusion ma-
trices need to be read both column- and row-wise, which is
tedious and error prone. Considering the Class Ck in Fig. 2,
if read row-wise the matrix indicates FP added to Ck. If read
column-wise, it indicates FN lost by Ck. Memorizing all cell
values, and their meaning, requires an important cognitive
effort. Users may forget cell values, or may read only columns
or rows hence omitting type I or II errors.

Multiclass confusion matrices are usually synthesized by
summing errors for each class (Fig. 2 extreme right). However,
it is no longer possible to distinguish which classes are likely to
be confused with one another, e.g., summed FP do not indicate
the original true species of the misclassified individuals. Users
need this information to identify biases induced by Species or
Behavior Recognition Errors, and hence, counts of individuals
that are not representative of the actual population dynamics.
For instance, an increase of one species implies an increase
of its FN. A proportion of its individuals are likely to be
systematically attributed to other species. This can induce a
deceiving increase of another species population, especially
for species of much lower abundance. Hence, users need to
inspect the errors between pairs of species, rather than only
the synthesis of FP and FN summed for all species.

Derived metrics such as FP Rate ( FP
FP+TN

), FN Rate
( FN
FN+TP

) and Accuracy ( TP+TN
TP+TN+FP+FN

) are complex and
convey specific types of errors. Non-expert users may misin-
terpret them. For instance, when recognising species Sk, TN
are individuals correctly discarded from the Sk population. TN
are summed for all species other than Sk, and are usually of
a much higher magnitude than the TP, FP and FN for Sk.
High numbers of TN yield low FP Rates, which may conceal

important numbers of FP and FN. Uncertainty assessments
commonly performed by computer vision experts use pairs
of advanced metrics (e.g., FP and FN Rates in ROC curves
[13]). Such sets of metrics are likely to overwhelm and mislead
users who are not familiar with computer vision. Moreover,
advanced metrics no longer indicate the number of items in
the groundtruth, and thus possible groundtruth scarcity which
is an important aspect of Groundtruth Quality.

We elicited a set of uncertainty metrics that address un-
certainty factors due to computer vision algorithms, while
limiting misunderstandings and cognitive load. We first retain
the design choice to omit TN from [32]. They are not contained
in end-results and are not informative for users. Further, [27]
shows that understanding the concepts of TP, FN and FP is
already likely to overwhelm users. To limit cognitive load and
misunderstandings, we avoid advanced metrics and primarily
provide the numbers of TP, FN and FP rather than error rates.
Hence we convey the numbers of groundtruth items (which
are usually proportional in training and test sets), an important
aspect of Groundtruth Quality albeit abstracted in traditional
ROC or Precision/Recall curves.

Numbers of groundtruth items can greatly vary amongst
classes of species, behaviors or image quality, e.g., scarcity
for some classes, or abundance of others. In these cases,
classification errors can be difficult to compare across classes.
Hence we convey magnitudes of errors either as: i) numbers
of groundtruth items (default); or ii) proportional measure of
errors (on-demand). We retained the novel error rate formula
(1) from [15], [33] as it can convey the impact of misclassifi-
cations on end-user counting tasks. Users need to estimate the
true counts (TP+FN) from the output counts (TP+FP), e.g.,
the proportions of FP and FN w.r.t. the output counts they
are provided with. Precision ( TP

TP+FP
) and Recall ( TP

TP+FN
)

target such estimations. However, the use of FP is problematic
since FP and FN are not independent: FN for one class are FP
for others. Hence, the number of FP observed for one class
varies depending on the number of groundtruth items for other
classes. In ecosystems, the relative abundance of species and
behaviors may greatly vary over time or location, and may
not be similar to that of the groundtruth set. Therefore FP
are excluded from the measure of errors. FN transferred from
Class Ca to Cb (i.e., FNa→b) are given proportionally to the
TP of their true class Ca, using the equation (1). Although
atypical, the error ratio supports the estimation of errors in
counts of individuals, while accounting for potential changes
in class proportions. Further, it supports visualizations where
both FP and FN are represented with bars aligned horizontally
(Fig. 5), thus facilitating the comparisons of type I and II errors
over classes.

Pairwise Error Ratio Ca → Cb = FNa→b

TPa
(1)

Equation 1. Pairwise Error Ratio Ca → Cb [33] is the
ratio of individuals belonging to class A (Ca) erroneously at-
tributed to class B (Cb). FNa→b is the number of groundtruth
items attributed to Cb while truly belonging to Ca. TPa is the
total number of TP for Ca. Note that FNa→b is different from
FNb→a and Pairwise Error Ratio Ca → Cb is different from
Pairwise Error Ratio Cb → Ca.

This approach was presented to ecology, computer vi-
sion and visualization experts [30], [32], [34] and received



positive feedback for its simplicity and understandability. It
supports the assessment of uncertainty due to computer vi-
sion algorithms (Image Quality, Groundtruth Quality, Animal
Detection, Species Recognition and Behavior Recognition Er-
rors), and conveys a simplified but complete representation of
groundtruth evaluations. However, other aspects of Image and
Groundtruth Quality are not included. But these are of interest
mostly for technology providers rather than end-users, or are
of little interest for assessing the uncertainty in counts of indi-
viduals. Other aspects of image quality include, for instance,
how many classes of Image Quality are relevant, or how pre-
processing achieves to provide consistent feature descriptors
regardless of the original image quality. Or for Groundtruth
Quality, how many persons manually classified each items,
what was their expertise, and did their classifications differ
(e.g., Cohen’s Kappa).
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Fig. 5. Visualizations for the retained uncertainty assessment approach [34]

Assessing uncertainty due to in-situ system deployment -
The state-of-the-art does not offer well-established methods for
handling these uncertainty factors, as technical experts focus
on generic uncertainty assessment abstracted from application-
specific conditions. Future work needs to develop measures of
Duplicated Individuals depending on species, behaviors and
Fields of View. For example, classes of fields of view may be
identified, and rates of duplicates be estimated for each species,
e.g., species Si observed from field of view Vj are impacted
by Rate of Duplicatei,j = True Count

Output Count
. Species living in

groups may be under-estimated due to occlusions, and the re-
lated uncertainty may be assessed with such rate of duplicates.
With monitoring systems using fixed cameras, fields of view
may gradually vary over time (e.g., with maintenance, lens
cleaning, typhoons or other incidents). Assessment methods
are missing for this difficult problem.

The impact of Sampling Coverage and Fragmentary Pro-
cessing can be assessed using sampling theory. Ecologists need
to take into account the number of video samples from which
computer vision results are drawn, since it influences the sta-
tistical representativity of the observed counts of individuals.
For instance, counts observed from a few videos may not be
representative of the actual population abundance. Further, if
counts are drawn from different numbers of video samples, the
more videos the more individuals, hence comparison is biased.
Therefore users need evaluations of sampling size (e.g., the
numbers of equal-duration videos), and a comparable measure
of abundance for end-results drawn from different sampling
sizes. As we use equal-duration videos, the primary metric for
sampling size is the number of video samples from which end-
results are extracted. To analyze sets of end-results extracted

from varying numbers of video samples, averaging the counts
of individuals per video as in (2) offers a comparable metric
of abundance. Mean Count per V ideo must be analysed
with care as 3 problems may arise: 1) Video duration must
be identical over samples; 2) Combining data from several
cameras and time periods involves subtleties; and 3) the
computation of variance face issues with Sampling Coverage
and Fragmentary Processing.

Mean Count per V ideo =
Number of Individuals

Number of V ideos
(2)

Equation 2. Measure of population abundance for comparing counts
of individuals drawn from varying numbers of videos.

1) Heterogeneous video durations bias the Mean Counts
per V ideo (2), as longer videos contain more individuals than
shorter ones. Equations could be modified to handle videos
of unequal durations, e.g., by computing counts per video as
Number of Individuals in V ideo i

Duration of V ideo i
.

2) Combining data over different cameras and time periods
is subtle. It may seem trivial to compute population abundance
over different cameras as Total Individuals for All Cameras

Total V ideos for All Cameras
,

but it is incorrect. For instance, with 2 video samples recorded
simultaneously from two cameras (with different fields of
view), and yielding n1 and n2 counts of individuals, the total
abundance is n1 + n2 rather than n1+n2

2
. This is because

the 2 videos record the same time period, and the overall
abundance is the sum of individuals occurring at the different
locations. The measure in (3) is the correct alternative. It must
be interpreted as the mean count of individuals for the time
unit represented by the video duration (e.g., mean abundance
per 10-min for the Fish4Knowledge project). Note that this
approach is not appropriate if cameras observe overlapping
fields of view.

Mean Count over Cameras =
Nc

∑

j=1

MCVj (3)

Equation 3. Measure of abundance over several cameras. Nc is the
number of cameras, and MCVj is the Mean Count per V ideo,
i.e., the result of equation (2), for camera j.

3) The variance of population abundance may be difficult
if video samples are missing. For mean counts from a single
camera (2), equation (4) gives the variance over videos.
Mean counts over several cameras (3) is a sum of random
variables, which variance is given by equation (5). Measuring
the variance of (3) assumes that video samples are available
for all cameras. For instance, if one cameras provides a video
sample for the time period t (e.g., 08:00 to 08:10 on Jan. 1st
2012) then all cameras must provide a video sample for that
period. Otherwise neither the covariance (6) nor the variance
of Mean Count over Cameras (5) can be computed. For
such issues due to Fragmentary Processing or heterogeneous
Sampling Coverage, alternative methods exist [35] and must
be chosen depending on application requirements.

Single Camera V ariance =
1

Nv

Nv

∑

i=1

(MCV −Ni)
2 (4)

Equation 4. Measure of variance in population abundance mea-
sured at a single camera. Nv is the number of video samples,
Ni is the count of individuals in the i-th video, and MCV is the
Mean Count per V ideo, i.e., the result of equation (2).



V ariance over Cameras =
Nc

∑

j=1

Nc

∑

k=1

Cov(MCVj ,MCVk) (5a)

=

Nc

∑

j=1

V ar(MCVj) +

Nc

∑

j=1

Nc

∑

k>j

Cov(MCVj ,MCVk) (5b)

Equation 5. Measure of variance in population abundance measured
over several cameras. Nc is the number of cameras, MCVj is
the Mean Count per V ideo, i.e., equation (2), at camera j,
V ar(MCVj) is the result of equation (5) for Camera j, and Cov()
is the covariance from equation (6).

Cov(MCVj ,MCVk) =
1

Nt

Nt

∑

t=1

(MCVj−Nj,t)(MCVk−Nk,t) (6)

Equation 6. Measure of covariance used in equation (5). Nt is the
number of time periods of the duration of a video sample (e.g.,
10min for Fish4Knowledge) for which video samples are available
for all Nc cameras, Nj,t is the number of individuals at camera j
during time period t, and MCVj is the Mean Count per V ideo,
i.e., the result of equation (2), for camera j.

Assessing uncertainty in output counts - Although there is
a variety of factors and interactions between them, ecologists
seek to synthesise the overall impact of the various uncertainty
factors as two types of effect: noise (i.e., random errors
yielding count variance) and biases (i.e., systematic errors
yielding under- or over-estimated counts). Random errors are
commonly measured using metrics of mean and variance
(equations 2-6). These metrics are well-established bases for
the statistical analysis of populations [36]. Significant differ-
ences of means and variances may be observed due to technical
features, e.g., image quality, rather than natural phenomena. If
so, the technical features potentially introduce biases. As no
well-established methods are available for evaluating biases
due to Field of View and Duplicated Individuals, the rest of
the discussion focuses on identifying biases introduced by
computer vision algorithms.

The groundtruth evaluation measuring Object Detection,
Species Recognition and Behavior Recognition Errors can also
support the evaluation of biases due to Image Quality and
look-alike species or behaviors. If error measurements (i.e.,
equation 1) are significantly different amongst Image Quality,
it indicates potential biases in the counts of individuals. Counts
of individuals from a specific image quality can be artificially
over- or under-estimated, compared to counts from another
image quality. If error rates are of the same magnitude for all
image qualities, it indicates a general level of noise unlikely
to yield biases, even if error rates are high. Counts drawn
from different image qualities, and having similar magnitudes
of errors, are potentially over- or under-estimated in the same
way, and hence, are comparable.

In contrast, high error rates for Species or Behavior
Recognition Errors indicate potential biases between look-
alike species or behaviors, even if error rates are of the same
magnitude for all classes. As a class abundance varies over
time (e.g., migration or reproduction periods), the magnitude
of its FN vary accordingly. These FN are attributed to other
classes whose abundances may also vary. Hence the counts
of individuals may be artificially correlated, and may not
represent the actual trends in the observed ecosystem. The

Pairwise Error Ratio (1) and visualizations in Fig. 5 support
the identification of such biases with look-alike species and
behaviors. We further propose a novel method to correct for
potential biases, and estimate the correct counts of items. Our
method, called PERLE for Pairwise Error Rates and Linear
Equations, is given by equation (8), using the notation in
Table IV. Variables noted with the prime symbol designate
counts in end-results, e.g., n′.i is the output count for a given
class, which is known a priori, and n′i. is the true count, which
is unknown a priori. Variables noted without the prime symbol
designate counts for the groundtruth dataset, e.g., n.i is the
output count, ni. is the true count, and both are known a
priori. Our method relies on the assumption that error rates
are equivalent in groundtruth and end-results. Given n′ki

n′
k.
= nki

nk.

thus n′ki = n′k.
nki

nk.
and n′.i = ∑n′ki we can construct the

linear system (7). Its unknown variables are the true counts
n′i.. They can be derived by solving the linear system, i.e.,
by inverting the error rate matrix in (8) and multiplying the
result by the vector of output counts. A numerical example of
PERLE results is provided in Table V. The applicability and
limitations of PERLE needs to be investigated in future work
with real and synthetic datasets.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n′.1 = n′1.
n11

n1.
+ n′2.

n21

n2.
+ ... + n′i.

ni1

ni.

n′.2 = n′1.
n12

n1.
+ n′2.

n22

n2.
+ ... + n′i.

ni2

ni.

... = ... + ... + ... + ...

n′.i = n′1.
n1i

n1.
+ n′2.

n2i

n2.
+ ... + n′i.

nii

ni.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(7)

⎛
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⎝
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n′2.

...

n′i.

⎞
⎟⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

n11

n1.

n21

n2.
...

ni1

ni.

n12

n1.

n22

n2.
...

ni2

ni.

... ... ... ...

n1i

n1.

n2i

n2.
...

nii

ni.

⎞
⎟⎟⎟⎟
⎠

−1 ⎛
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⎝

n′.1

n′.2

...

n′.i

⎞
⎟⎟⎟⎟⎟
⎠

(8)

Equation 8. The PERLE bias correction method.

TABLE IV. NOTATION USED IN EQUATION (8)

True Class Output
CountC1 C2 ... Ci

Output
Class

C1 n11 n21 ... ni1 n.1

C2 n12 n22 ... ni2 n.2

... ... ... ... ... ...
Ci n1i n2i ... nii n.i

True Count n1. n2. ... ni.

TABLE V. NUMERICAL EXAMPLE OF BIASES CORRECTED WITH (8)

True Class Counts
Dataset Class C1 C2 C3 Output True Corrected

C1 80 10 0 90 100
C2 15 85 10 110 100 -Ground-

Truth C3 5 5 90 100 100

C1 160 10 0 170 200 200
C2 30 85 30 145 100 100Input Set1
C3 10 5 270 285 300 300

C1 80 10 1 91 100 100
C2 15 85 19 119 100 99Input Set2
C3 5 5 180 190 200 206

Assessing uncertainty propagation - To account for Object
Detection and Tracking Errors propagated to Species Recog-
nition Errors, groundtruth evaluations can evaluate Species
Recognition Errors by including a class for unknown species
to represent the FP objects. This approach is applicable to
other use cases applying species recognition prior to tracking



algorithms, as groundtruth evaluations are performed for the
whole pipeline of object detection, tracking and species recog-
nition as a black box, whatever the order of the algorithms’
sequence. Similarly, Behavior Recognition Errors can include
a class unknown behavior. Classes for unknown species and
behavior can be used to apply the bias correction method in
(8), while accounting for uncertainty propagation.

With this approach, 2 additional aspects need to be handled:
i) Image Quality and ii) Sampling Coverage and Fragmentary
Processing. The latter can be handled by using equations (2-
6), after correcting the counts of individuals with equation (8).
Our strategy for handling Image Quality consists of labelling
each video sample with an image quality class. Groundtruth
evaluations can be repeated for image quality class, at the cost
of requiring extensive groundtruth sets (i.e., sets of items for
each combination of species, behavior and image quality). If
magnitudes of misclassifications are significantly different, the
bias correction method in (8) needs to be applied for each class
of image quality. A numerical example is shown in Table VI.

TABLE VI. NUMERICAL EXAMPLE OF BIASES CORRECTION
HANDLING IMAGE QUALITY

True Class Counts
Dataset Class C1 C2 C3 Output True Corrected

Without Accounting for Image Quality
C1 145 25 5 175 200
C2 40 165 30 235 200 -Groundtruth

All Images C3 15 10 165 190 200

C1 355 40 5 400 500 487
C2 105 245 50 400 300 290Input Set

All Images C3 40 15 345 400 400 423
Accounting for Image Quality

C1 65 15 5 85 100
C2 25 80 20 125 100 -Groundtruth

Blurred Img. C3 10 5 75 90 100

C1 80 10 0 90 100
C2 15 85 10 110 100 -Groundtruth

Normal Img. C3 5 5 90 100 100

C1 195 30 5 230 300 300
C2 75 160 20 255 200 200Input Set

Blurred Img. C3 30 10 75 115 100 100

C1 160 10 0 170 200 200
C2 30 85 30 145 100 100Input Set

Normal Img. C3 10 5 270 285 300 300

C1 355 40 5 400 500 500
C2 105 245 50 400 300 300Sum of Both

Input Sets C3 40 15 345 400 400 400

Our proposed framework to estimate Biases Emerging
from Noise, and assess the Uncertainty in Specific Output,
is summarized in Fig. 6. It relies on the assumption that
errors measured in groundtruth evaluations are representative
of errors occurring in subsets of computer vision outputs.
However, stochastic variations of error magnitudes impact
the correction of biases, as shown in Table V (Input Set
2). Further work is needed to control this assumption (e.g.,
measuring the variability of error magnitudes over random
splits of groundtruth sets, and deriving confidence intervals for
the corrected counts of individuals). Future work also needs
to develop methods to i) estimate the number of groundtruth
items needed for the bias correction method to be reliable;
and ii) investigate methods to identify biases due to Image
Quality while avoiding to collect extensive groundtruth sets
representing all combinations of image quality, species and
behavior.

VI. CONCLUSION

We have presented foundations for assessing the multifac-
torial uncertainty in computer vision systems used for moni-
toring populations in their natural environment. Our approach
provides an original, comprehensive and interoperable set of
measures allowing the application of standard statistical tech-
niques for performing uncertainty-aware analyses of computer
vision data. Future work needs to investigate the validity of
our approach with empirical evaluations. However, this work
provides an overview of uncertainty factors and assessment
methods, and highlights issues that were unaddressed and pre-
vented scientifically valid analysis of computer vision results.
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