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ABSTRACT 

In this paper we describe lst and 2nd order finite volume schemes for the solution of the steady 
Euler equations for inviscid flow. The solution for the first order scheme can be efficiently computed 
by a FAS multigrid procedure. Second order accurate approximations are obtained by linear interpo
lation in the flux- or the state space. The corresponding discrete system is solved (up to truncation 
error) by defect correction iteration. An initial estimate for the 2nd order solution is computed by 
Richardson extrapolation. Examples of computed approximations are given, with emphasis on the 
effect for the different possible discontinuities in the solution. 

1. INTRODUCTION 

As soon as viscosity and heat conduction are neglected, the flow of a gas is described by the Euler 
equations. In two dimensions these equations are given by 

with 

~ a a _ at + ax f (q) + oy g(q) - 0 , 
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(1.1) 

(1.2) 

where p , u , v , e and p respectively represent density, velocity in x- and y- direction, specific energy 
and pressure; H=e+p / p is the specific enthalpy. The pressure is obtained from the equation of 
state, which - for a perfect gas - reads 

p =(y-1) p(e-+(u2 +v 2 )), 

y is the ratio of specific heats. q(t,x,y) describes the state of the gas as a function of time and space 
and f and g are the flux in the x- and y- direction. We denote the open domain of definition of (1.1) 
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by g•. 
It is well known that solutions of the nonlinear equations (I.I) may develop discontinuities, even if 

the initial flow (t=t 0 ) is smooth. To allow discontinuous solutions, (1.1) is rewritten in its integral 
form 

aa ff q dx dy + f c f.nx + g.ny ) ds = 0' for all ncn· ; 
t a aa 

(1.3) 

au is the boundary of f.! and (nx,ny) is the outward normal vector at the boundary an. 
The form (1.3) of equation (1.1) shows clearly the character of the system of conservation laws: the 

increase of q in Q can be caused only by the inflow of q over an. In symbolic form we write (1.1) as 

q, + N(q) = 0. (1.4) 

In the numerical computations we are only interested in the solution of the steady state Euler equa
tions 

N(q) = 0. (1.5) 

The solution of the weak form (1.3) of (1.1) is known to be non-unique and a physically realistic 
solution (which is the limit of a flow with vanishing viscosity) is known to satisfy the additional 
entropy condition (cf. [15,16]). Further, the equation (1.l) is hyperbolic, i.e. written in the form 

k + 21_ .k + k .k = 0 at aq ax aq ay 
the matrix 

k1M +k k 
aq 2 aq 

has real eigenvalues for all (k1>k2). 

These eigenvalues are (k 1u+k2v)±c and (k 1u+k2v) (a double eigenvalue); c = Vyp / p is the 
local speed of sound. The sign of the eigenvalues determines the direction in which the information 
about the solution is carried along the line (k1>k 2 ) as time develops (the direction of the characteris
tics). It locates the domain of dependence. The entropy condition implies that characteristics do not 
emerge at a discontinuity in the flow. 

2. THE BASIC DISCRETIZATION 

In order to discretize eq. (1.1) on a domain with an irregular grid, there are two ways to proceed. 
First, a mapping can be defined from the physical domain to a computational domain, so that the 
irregular grid in the physical domain corresponds to a regular grid in the computational domain. By 
means of this transformation the equation and the boundary conditions are reformulated for the com
putational domain, where they will contain metric information about the mapping. Now an (arbi
trarily accurate) discretization of the transformed equations can be used on the regular grid to solve 
the original problem. 

A second approach (a/mite volume technique) is to divide the domain of definition in the physical 
space into a number of disjunct cells {f.!.,} and to require the equation (1.3) to hold on each Un ... 
In this way the essential global property of the flow -the conservation character- is easily preserved as 
long as we take care that for any two neighboring cells 0,. and Op with r aP = an .. U afip , the same 

approximation is used for the flow quantities f f.nx + g.ny ds, both for the outflow of Sl., and for the 
r.,. 

inflow of Op . In that case (1.3) will hold for any 0 which is the union of an arbitrary subset of {Sl .. }. 
In this approach there is no need to transform the equations (1.1) or the boundary conditions. 

We found it most convenient to use this finite volume technique and to divide the domain Q* in 
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quadrilateral cells n;1 in a way that is topologically equivalent with a regular division in squares (i.e. 
O;±I,J±I are the only possible neighbors of n;1 ). 

In order to define subsequent refinements of the irregular mesh and to define a meaningful order of 
accuracy for our schemes on these non-uniform grids, we introduce a mapping from a "computational 
domain" divided into regular squares, to the physical domain g•. We assume this mapping to be 
non-singular (i.e. with a non-vanishing Jacobian J on ~f) and sufficiently smooth (bounded partial 
derivatives of J). 

The discrete approximation q(t,x,y) to q(t,x,y) is represented by the values% for each nu, where 
qu represents the mean value of q over nu 

J /q(x,y) dx dy 
ii., (2.1) 

The space discretization method is now completely determined by the way of approximating 

J (f.nx + g.ny) ds , k = 1,2,3,4, (2.2) 
r.,. 

at the four walls of the quadrilateral cell Ou. The wall f;Jk may be either a common boundary with 
another cell niJk or a part of the boundary ag·. In the first case we have to take into account the 
requirement of conservation of q. To satisfy this requirement we compute the approximation of (2.2) 
as 

(2.3) 

i.e. we approximate fnx + gny by a constapt value at f;Jb which depends only on qt, a uniform (con
stant) approximation to q(t,x,y) in nij at the wall rijb and on qtk> a similar approximation to 
q(t,x,y) in nijk at rijk· (Notice that q(t,x,y) is not assumed to be continuous over rijk .) 

The semi-discretization of the equations (1.4) is now 

~ j*(qt,qtk) meas(fuk) 
a 1 N < ) 1 k = 1,2,3,4 (2 4) at qh i,J = - h qh i,J : = - meas(Ou) . 

and the steady discrete equations Nh(qh) = 0 are equivalent with 

~ j*(gt,qtk) · meas(fuk) = 0, for all n;1 en· . (2.5) 
k = 1,2,3,4 

The approximate flux function j*(qt,qtk) depends on the direction (n~,n;), of the side f;Jk· How
ever, by the rotation invariance of the Euler equations, we may relate j*(. , . ) to a local coordinate 
system (rotated such that it is aligned with f;1k). Hence, only a single function/(. , . ) , the numeri
cal flux function, is needed to approximate the flux between two cells (cf.[9,10]): 

f(. , . ) = j*(. , . ) if n~ = 1, n; = 0. (2.6) 

In this way the freedom in the approximation of (2.3) is in the choice of a numerical flux function 
and in the computation of qt and %k from {quJ!J;1 en·}. We shall first consider two element;1:1 pos
sibilities for the choice of a numerical flux function. Then we describe the computation of { qy} for 
the first order scheme. In the next section we shall consider second order schemes, generated by 
other computations of {qt} or j* . 

For consistency of the resulting scheme, f(. , . ) should satisfy f (q,q) = f (q), cf. [7]. A usual 
representation off ( . , . ) is given by 

I I I 
f(qo,q1) = 2/(qo) + 2f(q1) - 2 d(qo,q1), (2.7) 

withd(qo,q1) = e(j Jq1 - qol j). 
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The central difference flux is defined by d(q 0 ,q 1) = 0. For an upwind numerical flux functions we 
have ([7]), 

d(qo,qi) = \ * [ qo; qi]\ (qi - qo) + o(j Jq1 - qoJ J). (2.8) 

For reasons explained in [10], we prefer to use a slight modification of a numerical flux function that 
was proposed by Osher [19,21]. We take 

q· a 
d(qo,q 1) = J If j(w) dw, 

qo q 
(2.9) 

where the integration path in the state space follows three sub-paths along the eigenspaces of at/ aq. 
These sub-paths correspond to the eigenvalues A.1 = u -c, A.2 = A.3 = u, and ~ = u + c respectively. 

In the case that rijk can· , interpolation from the interior of n· yields a value q{fl which 
corresponds to the mean value of qi} at rijk in nu: 

fq(t,x,y) ds 
f,µ 

=~----

meas(fijk) 

For well posed boundary conditions B(q) = 0 at f;Jk , a value qgpr can be determined such that 

f'<qgkur,q{jt) = f*<qef!T), c2.1oa) 

and 

(2. lOb) 

is satisfied at a point on riJk . In [10] we showed how qef!T is connected with qij1k with respect to the 
outgoing characteristics; the incoming characteristic information is taken from the boundary condi
tions. This corresponds with the use of Riemann invariants to derive non-reflecting numerical boun
dary conditions. 

In our first order scheme we use a piecewise constant numerical approximation for q: 
q(x,y) = q;J 

This uniform state in niJ is assumed for all (i,j), and hence 

f'<qt,qtk) = /'(qiJ•%k). 

(2.lla) 

(2.llb) 

The flux at f;Jk now corresponds with the flux at a discontinuity between two uniform states. Such a 
flux can be computed by solving the Riemann problem of gasdynamics. However, this is a nontrivial 
nonlinear computation, and we approximate it by (2.7) , (2.9), cf.[10], which is a slight variant of 
Osher's "approximate Riemann solver". 

The order of accuracy of the resulting schemes on the nonuniform mesh is not immediate. It can 
be proved that in general (at most) second order accuracy can be obtained when qt,qtk are computed 
properly. We shall give here the principles along which these accuracy results are derived. For the 
detailed proof see [23). 

The relation between equation (1.1) and (2.4) can be described by the following diagram 
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N 
x y 

Rh l l Rh 
Nh 

xh yh 

where X (Xh) and Y (Yh) are the continuous (discrete) spaces of state and change-of-state respec
tively: qeX, qheXh, N(q)eY, Nh(qh)eYh. 

To compute the order of consistency, we introduce the restrictions Rh and Rh, as well as the 
parametrization h ~ 0 for the mesh refinement. 
For a given parameter value h >0, and an arbitrary q eX we define 

l Hh11+h 
q(~, T/) = (2h)2 • f f q(x (~. T/),y (~, 11)) d~ d11 · (2.12) 

~-h 11-h 

Here x (~, ri) and y (~. 11) describe the mapping between the computational (~, 11)-domain and the physi
cal (x,y)-domain, such that 

( x(2hi±h,2hj±h), y(2hi±h,2hj±h)) (2.13) 

denote the vertices of the cell O;j in the physical space. We consider the order of consistency for the 
discretization on the irregular grid, assuming that the mesh refines corresponding to h ~ 0 in (2.13), 
and that the mapping (~,11)~(x,y) is independent of h. Moreover, we require the Jacobian 
J(~,T/) = xvi 11 - x,.y~ not to vanish and to be smooth enough, i.e. jJ(~.ri)I ;;;. C 1 >0, and 

I u~ r· [a~ r' J(~.11) I .;;;; C2 jJ(~.11)j. 
A mean value of q in Ou is now given by q(2hi, 2hj). In this way a restriction operator Rh : q ~ qh is 
defined. 
Notice that the assumptions on the Jacobian imply 

ffq dxdy 

Sl, = q(2hi, 2hj) ( 1 + e(h 2 ))· 

ff dxdy 
0., 

The restriction Rh: Y ~ Yh is simply defined by 

(Rhr);j = - 1-2 · J J r dxdy. 
' (2h) Sl,, 

Now the truncation error for qeX is defined as 

Nh (Rh q) - Rh N(q) = Th(q), 

(2.14) 

(2.15) 

(2.16) 

and for a smooth function q we can determine the order of consistency. It can be shown that the 
order of consistency is 1 if eq.(2.11) holds. We denote this first order semi-discretization (2.4) -(2.11) 
in symbolic form by 

(qh)r + N~(qh) = 0. (2.17) 

Note: In the actual computations each discrete equation at the h-level is multiplied by a factor (2h)2 • 

This can be seen as discretization of the integral form (1.3) rather than of the differential form (1.1). 
The advantage is a simpler implementation. 
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3. SECOND ORDER SCHEMES 

The first order discretization discussed in section 2 has a number of advantages: it is conservative, 
satisfies an entropy condition, is monotonous and gives a sharp representation of discontinuities 
(shocks and contact discontinuities), as long as these are aligned with the mesh. Further it allows an 
efficient solution of the discrete equations by a multigrid method [9]. Disadvantages are: the low 
order of accuracy (many points are required to find an accurate representation ·of a smooth solution) 
and the fact that it is highly diffusive for oblique discontinuities (the discontinuities are smeared out 
over a large number of cells). For a first order (upwind) scheme these are well known facts (cf. e.g. 
[8]) and it leads to the search for higher order methods. 

A key property of the discretization, that we want to maintain in a 2nd order scheme, is the conser
vation of q, because it allows discontinuities to be captured as weak solutions of (1.1) and avoids the 
necessity of a shock fitting technique. Therefore, we consider only schemes that are still based on 
(2.4), and we select j*(qt,qtk) that yield a better approximation to (2.2) than (2.1 lb). 

The higher order schemes can be obtained in two different ways. Higher order interpolation (or 
extrapolation) is used either for the states (i.e. in Xh) or for the fluxes (i.e. in Yh)· The first approach 
is used e.g. in [1,4,28], the second in [20,24]. In the first case, in (2.5) qW and qtk are obtained by 
some interpolation from qh = { qij }. In the latter, j*(qt•%k) is obtained from 
{j*(qt.qtk)} u {j*(qt.r/ij)} 

From the point of view of finite volume discretization, a straightforward way to form a more accu
rate approximation is to replace the lst order approximation (2.11) by a 2nd order one. Instead of 
the piecewise constant q(x,y), we may consider a piecewise bilinear function q(x,y) on a set of 2 X 2 
cells (a "superbox"). Such a superbox on the h-level corresponds with a single cell at the 2h-level. 
Over the boundaries of the superbox q(x,y) can be discontinuous; in the superbox q(x,y) is deter
mined by qiJ, q;+ 1,1, q;,1+ 1 and q;+i,J+l as defined by (2.1). Using such a bilinear function, we see 
that the central difference approximation is used for flux computations inside the superboxes; at 
superbox boundaries interpolation is made from the left and the right and the approximate Riemann 
solver is used to compute the flux. We denote the corresponding discrete operator by N~. It is easily 
shown that this superbox scheme is 2nd order accurate in the sense that 

- s - 2 R2h,h (Nh(Rhq) - RhN(q)) = fJ(h ) . 

Instead of the finite volume superbox scheme, we can also adopt a finite difference approach. In 
the case of interpolation of states, interpolation from the left (right) can be used to obtain a value qf;k 
( q~k ) at the left (right) side of all walls r ijk· In the case of interpolation of fluxes, it may be neces
sary to split flux-differences in positive and negative (right- and left- going) parts. 

In both cases the simplest 2nd order schemes are central differencing schemes. Here the interpola
tion is done irrespective of a particular characteristic direction. Central differencing in the Xh-space 
yields/(q0,q 1) = j((q0 + q1)/2) for the numerical flux function (2.6). By central differencing in 
Yh we obtain j(q0,q 1) = tJ(q0 ) + tJ(q 1). In contrast with the first order schemes, the central 

difference schemes are under-diffusive, which may lead to instabilities. An uncoupling of odd and 
even points may occur and spurious oscillations may appear in the solution. When these schemes are 
used alone, an artificial additional diffusion (dissipation) term is added to stabilize the solution 
[11,22]. 

To improve the stability behavior, both for the Xh- and for the Yh-interpolation, it is better to take 
into account the domain of dependence of the solution (the direction of the characteristics) and to 
distinguish between interpolation from the left and from the right of a cell wall. For simplicity of 
notation we shall exemplify this only for the 1-D case. Generalization to 2-D is straightforward. 
In 1-D , eq.(2.4) reduces to 

ii++ - ii-+ 
Nh(qh); = ----

X;+t - X;-+ (3.1) 
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Interpolation in Xh 
At a cell wall X;+1;2 we distinguish between the interpolated values from the left, qf+ 112 , and 

from the right, qf+1/2· We define 6.q;+ 1; 2 = q;+ 1 - q; and find the 2nd order upwind interpolated 
values 

qf++ 

qf+..!... 
2 

I = q; + 2 6.q; -+ ' (3.2) 

I = q;+J - 2 6.q;++. 

The stability properties of these one-sided approximations are better than for central approxima
tions, but monotonicity is not preserved (see section 5). The usual way to force the monotonicity is to 
introduce a limiting function .p, Oo;;;.pE>:2 and to interpolate by 

gT++ = q; + + .Pf++ t:.q;-+ (3.3) 

R - _..!..R 1 A q;-+ - q; 2 .P;-T uq;++ ' 

where .pL and .pR are chosen depending on { t:.q;±+} such that qf _ 112 lies between q; - l and q;, and 

qf+ 1; 2 between q; and q1 + 1 , (cf. [1,26]). 
Van Leer [28] also introduces a linear combination of the one-sided and central interpolation. 

Parametrized by " we obtain 

qT++ = q; + -t [(1-ic)f:.q;-+ + (l+ic)t:.q;+t]' (3.4) 

qf-+ = q; - -t [(l-ic)6.q;+t + (l+ic)6.q;-+]. 

This formula contains: (ic = -1) the one-sided 2nd order scheme, (ic = +) a "3rd order" upwind 

biased scheme, and (ic = I) the central difference scheme. (Notice that the "3rd order" scheme is 3rd 
order consistent in a 1-D situation; in 2-D the scheme is still 2nd order accurate.) We use (2.4) -
(3.4) for the construction of a 2nd order discretization of (1.4) 

(qh)1 + N~(qh) = 0 . (3.5) 

In 1-D the superbox scheme corresponds to the use of ic= + 1 for odd i, and ic= -1 for even i. 
The interpolation (3.4) is well defined in the interior cells of the domain. In the cells near the 

boundary ao·, one of the values 6.q;±J/2 is not defined, by the absence of a value q; corresponding to 
a point outside O*. Here a different approximation should be used. In our computations we set 
6.q; + 112 = 6.q1 - 112 at the cell 01 near the boundary. This corresponds with the "superbox" 
approximation for these cells. For the superbox scheme and for the scheme (3.4), with different 
values of ic, we show some results in section 5. 

Interpolation in Yh 
To take into account the domain of dependence (the direction of the characteristics), we here distin

guish between tlux differences in the positive and in the negative direction. We define 

(3.6) 

6..fi++ = +f(q;,q;+1) - j(q;). 

It is easily seen that 

/(q1+1) - f(q;) = t:.ft++ + 6..fi++ , 

and 
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j(q;,q;+1) - j(q;-J,q;) = !::../!-+ + !::..fi++. 

Further, the numerical flux has been constructed such that 

t::..f!++ I !::..q;++ ;;;. o, 

t::..fi++ I !::..q;++ ~ o. 

(3.7) 

For vectors f and q we mean by (3.7) that the matrices of partial derivatives have real non-negative 
(non-positive) eigenvalues. Hence, !::../!++ (or !::..fi++ ) corresponds to information going to the right 

(left). 
A 2nd order upwind scheme is now constructed as 

1 1 
ft++ :=j*(q;,q;+1) + 2t::..J!-+ - 2!::..fi++ (3.8) 

Notice that with this notation central differencing is written as 
1 I 

ft++ := j*(q;,q;+1) + 2 !::../!++ - 2!::..fi++. (3.9) 

Also here a linear combination of (3.8) and (3.9) is easily realized and flux limiting functions can be 
introduced to maintain monotonicity of the solution as for (3.3) [20]. 

4. DEFECT CORRECTION !TERA TION 

The 2nd order space discretization of the timedependent equations (1.4) yields a semi-discretization 
(3.5). The usual way to find the solution of the steady state equations 

N~(qh) = 0, (4.1) 

is to take an initial guess and to solve (3.5) for t~oo, i.e. to compute qh(t) until initial disturbances 
have sufficiently died out. The advantage is that, starting with a physically meaningful situation, we 
may expect that a meaningful steady state will be reached, even when unicity of the steady equations 
is not guaranteed. The drawback is that many timesteps may be necessary before the solution has 
sufficiently converged. For the acceleration of the convergence, many devices have been developed 
such as local time stepping, residual smoothing, implicit residual averaging or enthalpy damping [22]. 

Multigrid is also used as an acceleration device [ 14, 18,22]. Here discretizations (3.5) are given on a 
sequence of grids. The coarse grids are used to move low frequency disturbances rapidly out of the 
domain n· by large timesteps, whereas high frequency disturbances should be locally damped on the 
fine grids, e.g. by a sufficiently dissipative timestepping procedure. 

We take another approach [9,10,12,13,17], and consider directly the steady state equations. By the 
stability of the first order discretization, a relatively simple relaxation method (Collective Symmetric 
Gauss Seidel iteration, i.e. a SGS relaxation where the 4 variables corresponding to a single cell !Jij 
are relaxed collectively) is able to reduce the high frequency error components efficiently, and 
-therefore- a FAS-algorithm with this relaxation is well suited to solve the discrete first order equa
tions. 

Although no explicit artificial viscosity is added to the scheme, a suitable amount of "numerical 
diffusivity" is automatically introduced by the upwind discretization. As h ~o, this "artificial 
diffusion" vanishes and the sequence of discretizations converges to the Euler equations as the limit of 
an equation with vanishing viscosity. 

Another advantage of the introduction of this "artificial viscosity" just by the use of the upwind 
scheme is that the coarser discretizations, including their larger amount of "numerical viscosity", are 
now Galerkin approximations to the corresponding finer grid discretizations. Hence coarse and fine 
discretizations are relatively consistent. (For a discussion of related problems when multigrid is 
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applied to the convection diffusion equation and various amounts of artificial viscosity are used on 
the different grids cf [30].) 

When we try to solve the 2nd order discretization ( 4.1) in the same manner as we do the first order 
equations, we may expect difficulties for two reasons. First, the set of 4 equations to be solved at 
each cell Ou in the Collective SGS relaxation is much more complex . The set up of these equations 
would increase the amount of computational work considerably. Secondly, the nonlinear equations 
( 4.1) are less stable. The 2nd order discretizations are less diffusive, and in the case of central 
differences clearly "anti-diffusive". This may lead not only to non-monotonous solutions, but it also 
can cause a Gauss Seidel relaxation not to reduce sufficiently the rapidly varying error components. 

A local mode analysis of smoothing properties of GS for lst and 2nd order upwind Euler discreti
zations can be found in [12]. There, the flux splitting upwind scheme of Steger and Warming(25] is 
analyzed, whereas we apply Osher's scheme [19,21]. Numerical evidence that convergence for the 
relaxation process of a 2nd order upwind procedure is slower than for a lst order scheme, is also 
found in [17,29]. Here van Leer's flux splitting scheme [27] was used. 

To obtain 2nd order accurate solutions, we do not try to solve the system N~(qh) = 0 as such. We 
use the first order operator Nk to find the higher order accurate approximation in a defect correction 
iteration: 

N).(q~1 >) = 0 , 

Nk(q~+ 1 >) = Nk(q~l) - N~(q~>). 

(4.2a) 

(4.2b) 

For an introduction to the defect correction principle see [2]. It is well known [6] that -if the problem 
is smooth enough- the accuracy of q~> is of order 2 for i~2. If the solution is not smooth (higher 
order derivatives are dominating) there is no clear reason to expect the solution of (4.1) to be more 
accurate than the solution of (4.2a). Nevertheless, in section 5 evidence is given that a few defect 
correction steps may improve the solution considerably. 

In fact we may use q~ + 1> - q~> as an error indicator. In the smooth parts of the solution 
q~1 > - q~1 +0 = IS(_h), q~2> - q~2+i) = IS(_h 2); where these differences are larger, e.g. e(l), the solution 
is not smooth (relative to the the grid used). Then grid adaptation is to be considered rather than the 
choice of a higher order method, if a more accurate solution is wanted. 

In a multigrid environment, where solutions on more grids are available, we should -of course- also 
consider other approaches to compute higher order solutions, such as 
(1) Richardson extrapolation, 
(2) T-extrapolation, or 
(3) Brandt's double discretization. 

The two extrapolation methods can be well used to find a more accurate solution if the solution is 
smooth indeed. Then no additional difference scheme (4.1) is required . A drawback is that these 
methods rely on the existence of an asymptotic expansion of the (truncation) error for h--'>0, and 
-globally- no a-priori information about the validity of this assumption is available. Another disad
vantage is that the accurate solution (for Richardson extrapolation) or the estimate for the truncation 
error (T-extrapolation) is obtained at the one-but-finest level and no high resolution of local 
phenomena is obtained. Whereas we want not only a high order of accuracy, but also an accurate 
representation of possible discontinuities, we use Richardson extrapolation (only) as a possibility to 
find a higher order initial estimate for the iteration process (4.2b). 

Since the evaluation of N~(qh) is hardly more expensive than the evaluation of Nk(qh), the costs to 
compute the defect in ( 4.2bl is of the same order as the evaluation of the relative truncation error 
'T2Ji,h(qh) = N1,(R2h,hqh) - R2h,hN}.(qh)· This makes us to prefer (4.2b) to T-extrapolation. 

Having both a lst and a 2nd order discrete operator at our disposal, Brandt's double discretization 
[3] seems another efficient way to find a 2nd order accurate solution. However, we have bad experi
ence in applying it to the Euler equations. In particular when solving (contact) discontinuities. Using 
the Collective SGS relaxation and a 2nd order scheme based on (3.4), we experienced serious prob
lems in the computation of the numerical fluxes (2.11 b ), caused by virtual cavitation of the flow. Our 
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explanation is the following. In Brandt's double discretization each iteration cycle consists of a 
smoothing st~ towards the solution of Nhqh) = rl. and a coarse grid correction step towards the 
solution of Nh(qh) = i1. If a discontinuity in the solution is present, the differences between the 
results after the first and the second half-step may be considerable. In our case these differences 
resulted in such large differences in values for <itJ and qtk> that the numerical flux f«<ltJ.<fok) could 
not properly be evaluated. (The solution of the Riemann problem with the two states % and qtk 
shows cavitation.) The responsibility for this problem lies in part on the type of relaxation used: for 
the non-elliptic Euler equations CSGS-relaxation is not a pure local smoothing procedure. However, 
we did not succeed in finding a local smoothing procedure that was satisfactory for the Euler equa
tions. E.g. experimentation with a damped collective Jacobi relaxation was not successful. 

The Full Multi Grid algorithm 
We aim at the approximate solution qh of the Euler equations for a given mesh and we assume that 

also L coarser meshes exist. We denote the level of refinement by m and the approximate solution at 
level m by q(ml = q2••-·•h· The coarser grids, m <L, are not only used for the realization of FAS
iteration steps as described in [9, 10], but also for the construction of the initial estimate for the itera
tion process. The algorithm used to obtain the initial estimate and further iterands in the defect 
correction process is as follows: 

(0) start with an approximation for q<0l; 
(1) form : = 0 (1) L -1 do 
(.) begin 
(l.a) for i : = 1 (!)km do FAS (Nlmi q(m) = 0 ); 
(1.b) q(m+l) := P~+l,m q(m); 

(.) end; 
(.) m := L; 
(2) for i := 1 (!) kL do FAS (Nlml q<ml = 0 ); 
(3) q(m) := q(m) + P;,m-1 (R~-1,mq(m) - q(m-1)); 

(4) ford : = 1 (1) dcps do 
(.) begin 
(4.a) r(m)_ := N{m)(q(mi) - Nfm)(~(m)); 
(4.b) for 1 := 1 (1) kd do FAS (N(m) q(m) = r(m) ); 

(.) end; 

Step (!) is an FMG process to obtain a lst order accurate initial estimate at level L. The prolonga
tion P~ + l,m is a linear interpolation procedure and, hence, accurate enough to retain the lst order 
accuracy on the finer mesh. Asymptotically, the discretization error for q(ml is bounded by 
C h(m) = fJ(2L-mh) for h(LJ = h ~o. Now a simple analysis shows that, for a fixed km = k at all 
levels, the iteration error at level m is ~Chem) s / (1 - 2sk), where s is an upper bound for the 
FAS-convergence factor. Therefore, to obtain a lst order accurate solution, for iteration (La) it is not 
necessary to reduce the iteration error in q(m) by a factor much smaller than sk ~ l / 3. This means 
that a single FAS step as described in [9,10] may be sufficient. Not being sure about the validity of 
the asymptotic assumption, we set km =2, m= 1,2, ... ,L. Step (2) is the FAS-iteration to obtain the 
solution to Nl(qh) == 0 up to truncation error accuracy. 
Step (3) is a Richardson extrapolation step to find a 2nd order initial estimate for qh. The prolonga
tion P;,m - l and the restriction R~ - l,m are piecewise bilinear interpolation over su~erboxes and 
averaging over cells, respectively, so that R~ - l,mP;,m -1 = Im -1 is the identity, and P m,m -1 R~ -1,m 
is a projection operator. With the asymptotic expansion for the error in qh as 

qh = Rhq + hP Rh e + fJ(hP + 1) , ( 4.3) 

where q is the exact solution, we obtain for p= 1 the 2nd order extrapolation 

R2h q = 2 R2h,hqh - q2h + fJ(h 2). (4.4) 
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We find the extrapolated value of qh in (3) as the sum of (4.4) and 
Um - P~,m -1 R~ -1,m)qh E Ker(R2h). We notice that formally the approximation of q(L) after stage 
(3) is still C9(h), unless q(L-l) is an fJ(h 2) approximation, and stage (2) can reduce the (smooth) error 
component Rhe by a factor 0(h). Nevertheless, we see in practice that already for small values of 
km, m = 1,2,. . .,L, the Richardson extrapolation can reduce the error significantly. 
Step (4) is the defect correction iteration (4.2b). If the defect correction iteration starts with a lst 
order initial approximation, for 2nd order accuracy it is sufficient to take dcps = I. This necessitates 
an improvement of the error by a factor 0(h) in the iteration (4.b), i.e. we need kd = fJ(log(h)). 
However, since the FAS iteration step is the expensive part of the computation in (4), for most pur
poses we take kd = l and a sufficiently large number for dcps. 

5. NUMERICAL RESULTS 

To see the effect of the various different 2nd order schemes and their combination with (a few 
steps) in the defect correction iteration (4.2), we consider three model problems. We take (1) a 
smooth subsonic flow through a channel with a curved wall, (2) an oblique shock, and (3) an oblique 
contact discontinuity. The three problems are all defined on a rectangular domain. The first problem 
may clearly show the 2nd order accuracy. The other two problems contain the two kinds of discon
tinuities that may appear in Eulerian flow. In the shock, the characteristics converge and there is a 
natural mechanism to steepen a smeared shock [5]. In the contact discontinuity the characteristics are 
parallel and no such mechanism exists. This kind of discontinuity is more like discontinuities that 
may appear in the solution of the linear convection diffusion equation [8]. 

We first give a precise description of the 3 problems and then comment on the various numerical 
results obtained. 
Problem 1 The smooth problem. 

The domain Q* is (-1,l)X(O,l); the coarsest mesh (m=O) contains 4X2 square cells. y = -1 is the 
inflow boundary, with boundary conditions p = 1.0, u = 0.75, v = 0.0; y = 1 is the outflow boun
dary: p = l / y; x = 0 and x = l are solid walls: at x = l we take v = 0, and at x = 0 we use a 
slender body approximation for a curved boundary: v / u = 0.02·sin('1Tx). 
The initial approximation is uniform flow in Q* with p = 1.0, u = 0.75, v = 0.0 and p = 1.0. 
Problem 2 The oblique shock 

The domain Q' is (0,4)X(O,l); the coarsest mesh contains 6X2 cells. The exact solution has 3 
subregions with uniform states as given in figure 5.1. 

E 

N ES;:':;c:ls 
The states are resp.: 
state 1 : u = 2.9, v = 0.0, c 1.0, p = 1.0; 

w 
Figure 5.1 

state 2: u = 2.6, v = -0.5, c = 1.1,p = 2.1; 
state 3 : u = 2.4, v = 0.0, c = 1.2, p = 4.0. 
The boundary conditions are: at N supersonic inflow, at W a solid wall, and at E and S the boun
dary conditions are overspecified (i.e. for all variables Dirichlet boundary conditions are given, but 
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these are partly neglected by the difference scheme). 
Problem 3 The contact discontinuity 

Here !J' = (0, 1) x (0, I), the coarsest mesh is 2 X 2 cells. The exact solution of the problem h1 
discontinuity at x + y = 1. In both parts of the domain the solution has a uniform state: 
x +y<l we takep = 1.0, u = 0.3, v = -0.3 and c = 0.6; for x +y>l we havep = 1.0, u = 
v = - 0.6 and c = 1.0. At the outflow boundaries p = 1.0 is given and at the inflow boundariei 
give the correct values for u, v and the entropy. The initial estimate has a uniform state over al 
which has mean values between the two uniform states that define the exact solution. 

In the figures 5.2 we show for problem 1 the pressure at the curved wall y = 0. The results 
obtained by the algorithm (0)-(4) described in section 4. In figure 5.2.a the lst order solution (i.e. 
solution after stage (2)) is given for L = 3,4,5 and in figure 5.2.b-c we show the second order s 
tions (at stage (4)) obtained from scheme (3.4) with IC = -1, after d = 0 and d = 1 defect co1 
tion steps (km = kL = 4, kd = I). I.e. fig. 5.2.b shows the solution before and fig. 5.2.c the solu 
after the first defect correction step. More defect correction steps (d> 1), or the use of IC = 1 / 
the "superbox" scheme all yield very similar pressure profiles. 

In figure 5.2.a we see clearly lst order convergence for the lst order scheme; 5.2.b and 5.2.c s 
more accurate solutions. Under assumption of the asymptotic expansion 

qh(x,y) = q(x,y) + hPe(x,y) + e(hP+ 1), 

the order of convergence p is derived from the solutions for L = 3,4,5, computed as described ab 
The same computations were made for"= -1, IC= l /3 and for the "superbox" scheme, both· 
and without the Richardson extrapolation (i.e. stage (3) of the FMG algorithm). The results 
shown in Table 5.1. They seem to confirm the hypothesis of the validity of the asymptotic expan 
( 4.3) with p = l. 

with without 
Richardson Richardson 
extrapolation extrapolation 
IC= -1 IC= 1/3 SB IC= -1 1C=l/3 SB 

d=O 2.08 2.08 2.08 1.00 1.00 1.00 
d = 1 2.20 1.88 2.23 1.64 l.78 1.50 
d = 2 2.11 1.93 1.81 2.18 1.83 1.50 
d = 3 1.88 2.01 l.96 l.88 2.13 2.02 
d=4 2.15 1.93 1.96 2.10 1.99 1.95 
d = 5 1.92 1.92 1.92 1.98 1.93 1.92 

Table 5.1. The measured (mean) order of convergence (at cell corners, boundaries excluded). 
second order schemes are (3.4) with IC = -1 and IC = 1 / 3, and (SB) the "superbox" scheme. 

For problem 2 we show results in the figures 5.3. For the level L = 4 we show the lst order : 
tion, the solution obtained after Richardson extrapolation and the solution after l and 3 d 
correction steps. 

In the figures 5.4 we show the same results for problem 3. For the problems 2 and 3 result: 
shown only for the scheme (3.4) with IC = -1. From the figures 5.3 and 5.4 it is clear that not 01 

higher order of accuracy is obtained; we also find a better resolution of skew discontinuities. 
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PRESSURE PRESSURE 

Figure 5.2.a Problem I. The lst order solution. Figure 5.2.b Problem I. 
The 2nd order solution ((3.4) with K = -1], dcps • 0. 

PRESSURE 

Figure 5.2.c Problem I. The 2nd order solution ((3.4) with K = -1], dcps - I. 
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PRESSURE PRESSURE 

Figure 5.3.a Problem 2. The lst order solution. Figure 5.3.b Problem 2. 
The 2nd order solution after Richardson extrapolation. 

PRESSURE PRESSURE 

Figure 5.3.c Problem 2. After l DCP step Figure 5.3.d Problem 2. After 3 DCP steps 
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ENTROPY ENTROPY 

Figure 5.4.a Problem 3. The lst order solution. Figure 5.4.b Problem 3. 
The 2nd order solution after Richardson extrapolation. 

ENTROPY ENTROPY 

Figure 5.4.c Problem 3. After I DCP step Figure 5.4.d Problem 3. After 3 DCP steps 


