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Mixed Defect Correction Iteration for the Solution 
of a Singular Perturbation Problem 
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Abstract 

We describe a discretization method (mixed defect correction) for the solution of a two-dimensional 

elliptic singular perturbation problem. The method is an iterative process in which two basic 

discretization schemes are used: one with and one without artificial diffusion. The resulting method is 

stable and yields a 2nd order accurate approximation in the smooth parts of the solution, without using 

any special directional bias in the discretization. The method works well also for problems with interior 

or boundary layers. 

1. Introduction 

In recent years much research has been devoted to the numerical solution of 

Singular Perturbation Problems or what is called in the engineering community: the 

computation of convection dominated flows. The solutions of these problems are 

characterized by large regions where the solution is a smooth function of the 

independent variable and small regions (boundary- or interior layers) where the 

solution varies rapidly. 

One of the first observations that are made for all known discretizations of these 

problems is that higher-order accurate schemes are strongly direction dependent, 

i. e. the difference scheme used or the Petrov-Galerkin weighting applied depends on 

the flow-direction in the equation. Symmetric schemes (finite differences or the usual 

Galerkin methods with symmetric weighting functions) are either not applicable 

(unstable) or only lst order accurate. 

On most feasible discretization grids it will be possible to represent properly the 

smooth parts of the solution but the grids are too coarse to fit the solution in the 

boundary layers. Therefore higher order accuracy is justifiably wanted only in the 

smooth parts. It makes no sense to require a high order polynomial approximation 

to the special layers, it is sufficient to locate then properly. 

It is now known that Defect Correction yields the possibility to improve the order of 

accuracy of a stable low-order discretization by means of accurate but instable 

higher order methods [3]. Guided by this idea, in this paper we study whether it is 

possible to use a symmetric higher order scheme to improve the lst order accurate 

solution obtained by a stable direction independent method. The purpose is to 

obtain a method in which no information is used about the flow direction and where 

still a high order of accuracy is obtained in the smooth parts of the solution. We shall 
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see that the direct application of the defect correction principle does not satisfy our 
needs, but we can extend the defect correction idea and obtain a second order 
accurate discrctization which has no directional bias. 

In this paper results arc collected that appeared in previous preliminary papers by 
the author on the same subject [6, 7, 8]. 

In the remaining part of this introduction we introduce the model problems that arc 
studied and we briefly show some fundamental problems that arise with their 
numerical solution. In the 2nd section we describe the Local Mode Analysis that is 
used to study the solution methods. In the 3rd section we show how the direct 
application of the defect correction principle works out for our problems and in the 
next section the "mixed defect correction iteration" is introduced. The solution 
obtained by this method is analyzed in Section 5 and in Section 6 the convergence of 
the iteration process is studied. In the following section the solution is studied in the 
boundary layer and finally a few numerical examples arc given. 

As a model problem we study the singular perturbation equation 

( I. I ) 

in a two-dimensional region Q. We refer to this equation as the convection-diffusion 
equation: dis the convection vector and c> 0 is the diffusion parameter, which may 
be small compared to I cl I. This equation can be considered as a model equation for 
more complex real-life problems such as flows described by the Navicr-Stokes 
equation. when the Reynolds number takes large values. 

Although we study equation (I. I) with constant coefficients, we w:!nt to find 
numerical methods that are also applicable for variable cl: i.e. ii=li(x,y) or 
li =ii (x, y, u). In particular, we are interested in methods that arc indcpenden t of the 
direction of a and independent of whether the grid is properly refined in possible 
boundary or interior layers, when i; is small. 

As a simplification of the two-dimensional equation we also study the one­
dimensional case. For this one-dimensional problem, 

( 1.2) 

many numerical methods have already been investigated [9]. However. almost 
none of these methods arc suitable for generalization in more dimensions. 

An essential difficulty in the numerical solution of ( 1.1) with 0<1: <h. h the mesh­
width, is the different type of approximation that is required in the smooth part of 
the solution and in the boundary or interior layers. In the smooth part an accurate 
approximation - possibly of high order - is desired. whereas for the boundary 
layer the proper location is most important, with the additional rcquire1rn:nt that 
the effect of an (almost) discontinuity docs not disturb the solution in the smooth 
parts. 

For large values of 1: the numerical solution of ( 1.1) or ( 1.2) gives no particular 
problems. Discretizations 

(!Jl 
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arc known for which I: 11 1,_,-u" II =0('12 ) as iz . .,Q. e.g. the usual central difference 
discrctization. The crrorbound remains valid for small values of 1:: 

but C,-. x and h" -->O as 1: -0. This means that the error estimate is of no use if we 
apply these discrctizations with finite h and 1:-•0. In fact. for small 1:, the usual 
discretizations may yield quite useless approximations. We show this by means of 
the 1-D model problem 

1:11xx+2u,=0. XE[O, x1, 11(0)=L ll(X)=O. 

Discrctizing by central differences 

1: fi+ 6._ u1i+(fi+ +fi _) 111i=O. 
we find 

( 1:-h ).i 
u (i h\ = ---

h.1 .' . 1:+/z . 

This is a second order approximation indeed: for j h fixed and (-';1 )-.o 
I 11i, I (j h) - LI (i h) I = I (I: -h )j - (e 1 h I )j I :::; c (!11; )2 

. . . 1: • 1:+/J 

C independent ofj, h and hi1:. 

However, the solution of the reduced difference equation is 

1111.0Uh)=lim1111.,(ih)=(- l}i. 
' -·0 

(1.4) 

( 1.5) 

( 1.6) 

The influence of the boundary condition at x = 0 is significant over the whole domain 
of definition, whereas for the differential equation the influence of this boundary 
condition vanishes in the interior of the domain. 

A well-known cure against this spurious influence of the boundary condition is 
"upwinding" or ··artificial diffusion". In upwinding one-sided differences arc used 
for the discretization of the first order term. In artificial diffusion, the diffusion 
constant /: is replaced by a larger value '.I'.= 1: + 0 (h ). In both cases the spurious 
influence of the boundary layer far into the smooth part of the solution disappears at 
the expense of the fact that these discrelizations are only accurate of order O(h). 
In the 1-D case "upwinding" is equivalent with "artificial diffusion" with 

'.l'.=1:+hluli2. 

The solution of the upwind discrctization of ( 1.4) 

;; Ll + 6, _ II h + 2 f;. I ll 11 = Q ( 1.7) 

IS 

( ,. )j 
11 1,.i:U h)= ·· " .. 

1:+2h 

In contrast with the central difference solution, we sec that here the influence of the 
boundary condition vanishes in the interior of the domain as 1: -.(): but the 
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discretization is only first order: for j h fixed and ( ~ )-.o we find 

I uh., (i h)- u, (i h) I:<::; C (!~). 

2. Local Mode Analysis 

We want to analyze separately the behaviour of the discretization (i) in the smooth 
parts of the solution, and (ii) in the boundary layers. Therefore we use local mode 
analysis, cf. Brandt [2] and Brandt and Dinar [1]. We consider equation ( 1.1) in two 
particular model problems: 

(i) the inhomogeneous problem 

Lh,,uh=f~ (2.1) 

on a regular rectangular discretization of IR 2 : u1, and J;, are 12-functions, and 

(ii) the homogeneous problem 

(2.2) 

in a discretization of the half-space, of which the boundary is a grid-line: boundary 
conditions are given on this grid-line and uh is bounded at infinity. 

In both cases we consider the discretization of the constant coefficient problem on a 
regular rectangular grid and we decompose the solution in its Fourier modes ([5]) 

uh(jh)=(v~~J J uh((J))e+;, .. hjdw. jEZ. 2• (2.3) 

where uh."'= uh (w) e;'"hj is the mode(}[ frequency win uh: the amplitude of this mode 
with 

wE T~={wEIC2, ReuhE[-n/h,nlh), k= 1,2} 
is given by 

• ( )-(--':__)
2 

'\' -iwhj 'h uh w - -- L e u11 U ) . y2n j 

(2.4) 

If we consider the problem (2.1 ), the boundary condition imposes w E IR2 : for (2.2) 
with Q being the half-space, with boundary conditions at x = 0, we have Im w 1 :2'.0, 
Im u)z =0. 

The modes being the eigenfunctions of the discrete operator Lh, we can define the 
choracteristic jimn Lh (w) corresponding with the discrete operator L,,, by 

............... ,,....._ 
Lhuh,e•=Lh(w)z'.ih,w (2.5) 

/'. 
This characteristic form Lh (w) is the analogue of the characteristic polynomial or the 
symhol L ((/)) of the continuous operator L. 

We now define consistency and stability of the operator Lh for each mode w 
separately. 
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Definition: The operator Lh is consistent with L i>f' order p j(;r mode m E Tf, if 

ILh(w)-L(u;)ls;ChP for h-->O. (2.6) 

Definition: The stability <d' Lh fi>r mode w E T; is the quantity I L,, (w) I. 

Definition: The local stability of L1z. a discretization of L, fiw w E T; n IR 2 • L (w) =!= 0 
IS 

1L,,((!Jll IL((l)JI. (2.7) 

Definition: The operator L" is locall.r stohle if 

Vp>O 3tJ>0 \iwET;niR2 IL(w)l>p-+IL,,(w)l/IL(w)l>IJ, (2.8) 

where 11=17 (p) is independent of h. 

Definition: The operator L1z,,, a discretization of L", is asymptotically stable if 

- 1L,,,(wll 
Vp>O 31]>0 VwET;nlR 2 limlL,(oJ)l>p->lim-~- >17, 

1:-·o ,~o I L,(w)I 

where 11=17(p) is independent of h. 

Definition: Th;- operator Lh.c is 1:-unij(mnly stable if (2.8) holds with 17=17(p) 
independent of h and c. 

To analyze the local behaviour of the discretization (1.5) of our one-dimensional 
problem we find its characteristic form 

L1z.,(w)= -4S (c S-i h C)/h 2 , (2.9) 

where S=sin((l)hi2) and C=cos(l.oh/2). 

Comparing this with the symbol L" (w) = -1: o} + 2 i w of L, we find: 

(1) the discretization ( 1.5) is consistent of order 2: 

I L,,.r. ( w )- L, ( w l I :::;: c h2 I 1: w4 + i w3 I + o ( h3 l: 

(2) the discretization (1.5) is not asymptotically stable: 

Jim Lh.e (n/h) = 0, whereas Jim L, (n1h) = 2 n i/h. 
t:-0 t·-"0 

We find that 111i.n•h is an unstable mode. This mode corresponds to 

u,,(i h)=einJ=( - l)J, 

cf. eq. ( 1.6). 

If we consider the discretization with artificial diffusion a, we find its characteristic 
form (2.9) with c; replaced by a>O. This discretization is 

(1) consistent of order 1 if I ex -c; I::;: C 1 h; viz. 

I L1i.a(w)- L, (w)I s; c 1 I a -s I I w \2 +I Lh,, (w)- L, (w)I 

s; o (I a - e I l + o ( h2 l = o ( h l. 

(2) locally stable, uniform in e, if I r:J. - c: I~ C 2 h; viz. 

(2.10) 
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_ •.. 1 • . .• •.· 
2 :x sin(wh/2)-2icos(wh/2) 

1 

?if.? 1 -~~:-~12 \ = I ~~i~J~i __ :l 11-~~~----.---: ------ z -=z: m in ( C 2 , I). L,(w) wh'2 i:w-21 n 
These last two observations show that we obtain an <:-uniformly stable discreti­zation. which is of order 1, only if we take et. - D = 0 (h). 

3. The Defect Correction Principle 

For the solution of linear problems, the defect correction is a general technique to approximately solve a "target" problem 

Lu=f 
by means of an iteration process 

[d;+11=[u1;1_Li/il+ f, i= 1,2, .... 
The operator L an approximation to L, is selected such that problems 

lu(i+ Ii= f, 

( 3 .1) 

(3.2) 

with 1 in a neighbourhood off, are easy to solve. If l is injective and the iteration process (3.2) converges to a fixed point ii, then ii is clearly a solution of (3.1). 
If two equations Lh uh =f;, and L,, u,, =.f,1 are both discretizations of a problem Lu= f (respectively consistent of order p and q, p sq) and if lh satisfies the stability condition 

ii l;; 1 I! < C, uniform in h. (3.3) 
then it is well known \cf. e.g. [3]). that, ifthe solution is sufficiently smooth, u\;i in the iterative process 

satisfies 

{ L" 11\,1 1 =.t;,, 
L" 11\;+ Ii= L" u~ 1 - L1i u\; 1 +f;,. 
1111~ 1 - Rh LI II= 0 (hminl 4• ip)), 

where R11 denotes the restriction of u to the gridpoint values. 

(3.4a) 

(3.4b) 

(3.4c) 

This error bound holds without a stability condition (3.3) for the accurate operator L11. 

Direct application of the defect correction principle to the solution of our singular perturbation problem suggest the application of (3.4) with L1i = L"·"' the 2nd order central difference discretization, and with L1i = L,,_ ,, the artificial diffusion discreti­zation. Then, the correction equation (3.4 b) has the simple form 
L (i+l1_1·+( ·)A A (i) ,,,,u,, -_" rx-1, '-'+ '-'- u,,. (3.5) 

Since L11 • 1 is stable and consistent of order I and L,,_, is consistent of order 2. we obtain 

iiu\,1 1-11 =0('1) and ll11);1-ull=O(h2 ) for i>I. (3.6) 
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In the regions where Li+ LL u\:1 is a good approximation to ux.x, i.e. in the smooth 
part of the solution) u\; + 1 >is a better approximation to u than u\,ll. The error bounds 
(3 .6), however, hold in the classical sense: for fixed i; and h __,.o. For a small t:/h and a 
general i > 1, the solution uh;> is not better than the central difference approximation, 
but in the first few iterands the instability of Lh,r. has only a limited influence. This is 
shown in the following example. 

For (1.4) we can compute the solutions in the defect correction process explicitly. 
Application of (3.5) with ex= i; + h yields the solutions 

( c )j u\i>UhJ= --· , 
1;+2h 

(2) . 1; .I 1 - 11 ( )j[ ., ?' J u,, uh)= ---· 1--·· ' --·-·-· ' 
1:+2h 2 (c:+21z) 

(3) . ( 1: )j [ . 2'12 
{ jh2 -h(1:+h)}] 

u,, Uhl= ~+2·j~ l-1(1:+i/;) 1----(1:~ . 

The general solution is 

( 
1: )j (m + 1) • · • 11 Uh)= ----·· 11 (J In) 

h t:+2h m ' I•' 

where /l,., U, h/1;) is a m-th degree polynomial inj, depending on the parameter h/e. It is 
easily verified that, for c fixed and fJ__,.Q, the solutions are 2nd order accurate 
for m = 1, 2, .... For small values of D/h, p,,, U. h/E) changes sign m times for 
j=O, 1,2, ... ,m+ 1; i.e. in each iteration step of(3.5)one more oscillation appears in 
the numerical solution. The influence of the boundary condition at x =0 vanishes in 
the interior after the first m + 1 nodal points. Thus, we see that by each step of (3.4) 
the effect of the instability of L,,,, creeps over one meshpoint further into the 
numerical solution. Similar effects arc found for the process in two dimensions. 

The behaviour of the iterands u\;1 can also be analyzed by local mode analysis. E.g. 
for the solution after one additional iteration step, u\,21 , we have 

Q,,," ul,2 i: = L1,,, (2 L 11., - L,,)- 1 L,,,, uh21 =f. 

By Fourier analysis, analogous to (2.9), we find 

- - 4 S (ex S - i h C)2 

Q,,,' (w) = !?[(2ex-=1;J s-::_ i h cJ · 
from which we derive that Q1i,, is locally stable, uniformly for small 1:: 

_ 2 min 2 (1,a/hJ 
IQ,,,, I~-~ I w I ~~x(i~·2;/11) 

For all modes the operator Q,,,, is consistent of order two: 

- ~ I 4 s3 (o: -1;)2 I , 
IQ"·"- Lh,, I= Ji2-{(2;-~,:is--=--ih c-: = o tr). 
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We find u~2 l to be a 2nd order accurate solution, uniformly in e > 0, for the smooth 
components in the solution. The effect of improved accuracy in the smooth part of 
the solution, for small e, is found in the actual computation indeed, see Table I. 

Table 1. Errors in the numerical solution of c; y" + y' = f on (0, I) hy application of (3.4)-(3.5). Boundary 
conditions and fare such that y(x) =sin (4 x) +exp ( -x/e). Near the boundary at x = 0 the accuracy is only 
0 (! ). Howeiier. on a mesh with meshwidth h, the boundary layer cannot he represented anyway. For 
boundary layer resolution, locally a finer mesh is necessary. In the smooth part elf" the solution we find the 

order of accuracy as predicated by local mode analysis 

0=10- 6 h= 1/10 ratio h = 1/20 ratio h= 1/40 

II· II =max I y1-y(x1)1. i=O, I, ... , N 

ii Yh1i-Rhy II 0.3303 1.98 0.1665 2.00 0.0831 

ii Yi,2 i - Rh Y Ii 0.6213 1.09 0.5714 1.06 0.5384 

Ii Yh3 i-Rhy II 0.7770 0.99 0.7791 1.0 l 0.7677 

Ii· ll=rnaxly1-y(x1)1, i=N/2,N/2+1, ... ,N 

Ii Yh"-Rhy Ii 0.0698 2.38 0.02931 2.21 0.01326 

Ii Yh2 i - Rh y Ii 0.1037 3.83 0.02707 3.94 0.00687 

Ii Yh3 i - Rh Y Ii 0.0544 4.58 0.01188 4.18 0.00284 

For the two-dimensional problem (1.1) we do not find this e-uniform stability for 
Qh,.- Hence, with e « h, it is not possible to find a 2nd order accurate approximation 
for (1.1) by application of a single step of (3.5). On the other hand, iterative 
application would result in the unwanted solution of the target-problem Lh,e uh =fh· 

In Table 2 we show that, indeed, the error estimate (3.4 c) for a single step of (3.5), 
which holds for a fixed e and h->O, does not hold uniformly in e, not even in the 
smooth part of the solution. 

Table 2. The error in max-norm .fi)/· (3.4). (3.5) with a=i:+h/2, in the smooth part of the solution. The 
problem: 1:.Ju+u,=f on the unit square; with the Dirichlet boundary data and the data f such that 

. . (exp(-x/c)-exp(- l/1;)) 
u(x,y)=sin(rrx)sm(rry)+cos(rrx)cos(3 rr y)+----~- -·-------­

(1-exp(- l/c:)) 

h= 1/8 ratio h = 1/16 ratio 

c=l 

Ii llh1 I - Rh u Ii 0.0630 2.5 0.0255 1.7 
ii uh2 i - R,, u Ii 0.0740 3.6 0.0203 4.0 

f.= 10-6 

l1d 1l-R,,u!1 0.790 1.4 0.578 1.5 
Ii u~,2 i - Rh u II 0.634 1.8 0.360 2.1 

··-

h = 1/32 

0.0149 

0.00505 
-----

0.380 

0.173 
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4. The Mixed Defect Correction Process (MDCP) 

In the previous section we considered the Defect Correction Process (3.4) in which in 
each iteration step an improved approximation is obtained to a (single) discrete 
target problem 

Lhuh=f~, Lh:Xh-+Yh. 

Now we consider the possibility of two different target problems 

L! Uh = R ' Lh : x h-+ Y,~ ' 

L~ u~ = fh2 , L~: X h-+ n, 
(P 1) 

(P 2) 

to be used in one iteration process, where both (P 1) and (P 2) are discretizations to 
the same problem 

Lu=f, L:X-+Y. (P) 

To this end we introduce approximate inverse operators G~ and c; to the operators 
L~ and Ll respectively (we assume Gh and Cl to be linear), and we define the Mixed 
Defect Correction Process (MDCP) by 

{ ui+t=u;-G~ (Lh u;-f;,1), (4.1 a) 

- c-2 2 -2 4 b U;+1-Ui+t- h(lhui+J:-fh). ( .1 ) 

If G~ and G~ are invertible, we also introduce the notation L~ =(G~)- 1 and 
Ll=(Gl)- 1 for the approximations to L! and L~. The convergence of (4.1) is 
determined by the "amplification operator for the error" 

(4.2) 

By the fact that two different target operators L! and Ll are used, it is clear that the 
sequence u112 , u1 , u3 12 ,u2 , .•• generally does not converge. However, it is possible 
that limits 

u: = hm u; and u~ =Em u; + 1, i = 1, 2, ... , 
!_._..,·X t----+';t• 

exist. A stationary point u: of (4.1) satisfies 

(I-Ah) U~=(I -G~ Lll G~f~1 + G~R. (4.3) 

In the case that J;; and J;; can be written as }~1 =Rh f and R = R~ .f (Rh : Y-+ Yh, 
Rl: Y-+ ni equation (4.3) is equivalent with 

(GhLh+G~Ll-GlLlG~L~)u:=(G~R. 1 +Gl,R.l,-GlLlGhR~)f. (4.4) 

For u: we prove the following theorem. 

Theorem: Let (P I) and ( P 2) be two discretizations of (P) and let restrictions be 
defined hy Rh: X-+Xh, Ri: Y-+ Y~, Rr Y-+ n. 

(i) Let ( P I) and (P 2) be such that f~1 = R1~ f, ./~2 = R~ f. 
(ii) Let the local truncation error i<l (P I) and (P 2) be of order p 1 and p2 respectively. 

(iii) Let L~: X h ____, Y~, k = I, 2, be stable discretizations r~l L and let L~ be consistent 
with L~ i<f' order qk. 
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(ii:) Lei II A 11 II :::;; C < 1, so that (4.1) conterges for all h and let ut he the stationary 
point of (4.1), then 

Ii u;;- R,, u* Ii:::;; c hmin1p1 +q,,p2), 

with u* the solution of (P). 

Proof: From (iii) it follows that II G~ II :::;; C, k = 1, 2, and II Lf, - Lf, Ii ::; C fi'1 2 uniformly 
in ,;, From (ii) follows for the truncation error T~=(L~R-RkL)u* that 
ii Tft 11 = 0 (/iP'). 

From (iv) we know II Ad:::;; C < 1 and hence Ii (I - Ah)- 1 Ii::; 1/(1 - C). 

Now we see from (4.3) 

4 -z 2 -1 1 * r·1) G-2 (L2 R * 1·2)-(l-Ah)(Rh u*-u;, )=(l-G1i Lh) G11 (L,, R11 u -.1t - 1i 1i 1i11 -.1t -
=Gi~(Lf, -L1J G~ Ti: -Gf, Tf,, 

and hence 

11 Rh u* - uii4 II ::; II (l -A1tl- 1 Ii 11 Gf, II { II Lf, - L1i Ii II G1: II II Th Ii + II Tf, II } 
s;;C(Chq'. ChP 1 +ChP2 ) 

Q.E.D. 

Similarly we find for uf, 

For the singular perturbation problem (1.1) we take 

a) L~ = L 11 ., the central difference (or FEM) discrete operator, 
b) Lf, = L~ = L 11 ., the artificial diffusion discrete operator, and (4.5) 
) L- 2 -D ·-7d' (L ) c h - h.,. - - iag h,> . 

By this choice, (4.1 a) is a defect correction step towards the 2nd order accurate 
solution of L1i_,,u1i= f~, by means of the operator L11 ,,. The second step (4.1 b) is only a 
damped Jacobi-relaxation step towards the solution of the problem L,,_, uh =.k For 
this choice of operators, the above theorem yields, for a fixed <:, the error bounds 

(4.6) 
where u, is the exact solution. The defect correction step (4.1 a) generates a 2nd order 
accurate solution and may introduce high-frequency unstable components. The 
damped Jacobi relaxation step (4.1 b) is able to reduce the high-frequency errors. 

In this paper we shall mainly be concerned with the convergence of the iteration 
process (4.1 )-(4.5) and with the properties of its fixed points, the "'the stationary 
solutions". These solutions ut and uf, can be characterized as solutions of linear 
systems 

[L1: + Lf, (lf,)- 1 (Lf,- Li:)] ut =.f~, (4.7) 
and 

[L1i +(Lf,-L,: )([f,)- 1 Lf,] uf, =[I +(Lf,- L~)(Lf,)- 1 ] f~, (4.8) 

with L,:, Lf, and Lf, as in (4.5). 
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In short, we denote eq. (4.7) as 

M,,,,, u;; =./~. (4.9) 

The method described here is to a large extent similar to the double discretization 
method of Brandt [2]. ln that method a multiple grid iteration process is used for the 
solution of (1.1). The relaxation method in each MG-cycle is taken with a stable 
"'target" equation, and the course grid correction is made by means of a residual that 
is computed with respect to another (accurate) equation. In the double discretization 
method this is applied to all levels of discretization, to obtain efficiently an 
approximation of the continuous equation. There, however, it is hard to characterize 
the solution finally obtained. In our MDCP method we use also two target 
equations, but we restrict the treatment to a single level of discretization. We don't 
specify the way by which the stable linear system ( 4.1 a) is solved and, thus, we can 
characterize the two solutions obtained by (4.7) and (4.8). 

5. Local Mode Analysis of the MDCP Solution 

The characteristic forms of the different discretizations of the one dimensional 
model problem (l .2) are, for central differencing, upwinding, and the MDCP 
discretization respectively: 

_ 4e , 4i 
L,,,,(w)= - 1 S- +~SC, 

lr h 
(5. I) 

- 4s 2 [ h] 4i L (w)=-~. S I+-.··· +--SC h." 112 [; h ' (5.2) 

- 41: ? [ h 2] 4 i [ h 2] M1i_,,(w)= ---, S- I+-· S +--SC I+-- S , 
h- i: h r,+h 

(5.3) 

where S=sin(wh/2) and C=cos(wh/2). 

Theorem: The operator M,,.i: def!nt>d by the MDC P process (4.1) -(4.5) applied to the 
model equation ( 1 .2) is consisti'nt of 2nd order and i:-uniformly stable. 

Proof: See [6]. 

Table 3. Errors in th<' 1111111erical sol11tion hy MDC P; the same prohlem has been soh-ed as ji1r Tahle I 

II Y~ -Rh Y II 
II yf,-Rhy II 

h = ~]· .. . ratio I Ii ,,:,~/20 . T- ratio 
--------- -------- ----------·----

ll·li=maxly,-y(x,)l,i 0,1, ... ,N 

11 ·II =maxJy,-y(x,)J, i=N/2,N/2+ I, .. .,N 

r Ii= 1/40 ____ _ 

--0.v;;--R,-, )-' 1-1 - 0.~2-5-07·~~;--r- 0.00653 ·13.96 0.00165 

__ 11 .vf.--_2v 11___L_~os9s=.__ _[~ __ 3_.s:___J__ o.o 1556 _3_.9 __ 7--·~----o_.o_o_J_92_~ 
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From this result, obtained by local mode analysis, we expect that u: shows 2nd 
order accuracv in the smooth part of the solution. This is found in the actual 
computation i~deed. Results are shown in Table 3. 

An analysis similar to the one-dimensional case, can be given for the two­
dimensional model problem (1.1). 

The corresponding difference operator is given by 

~ -~]· 
-2 

(5.4) 
With p=O it corresponds to the central difference discretization; with p= 1 it 
describes the FEM discretization on a regular triangulation with piecewise linear 
trial- and test-functions. The discretization operator is used either with the given 
diffusion coefficient c; or with this coefficient replaced by an artificially enlarged 
diffusion coefficient rx = r. + C h, where C is independent of c and h. Also for the 2-D 
equation we define the MDCP by (4.1)-(4.5). For the two-dimensional problem 
( 1.1) the characteristic form of the discrete operators is 

and 

where 

- -41: ' 4i 
Lh_,(w)=--, S-+- T, 

h- h 

- -8 C( 
Dh, (w) =--1...,,.--, . r 

- -4 £ ? [ C( -1: '] 4 i [ C( - £ J Mh_,,(w)=-1- s- 1 +-- S- +- T 1 +-- S 2 , h 2£ h 21rt. 

T= -[u 1 S.p (2 C.p + p C.p+ 28)+a2 S8 (2 C0 + p Co+ 2 .p)]/(4+ 2p), 

S2 =S~+Sl, S.p=Sin</;, C.p=COS<p, 

</;=w 1 h/2 and 0=w2 h/2. 

(5.5) 

(5.6) 

For i; =0 the continuous operator L, is unstable for the modes u = eiwx with 
frequencies (!) = (wi, Wz) that are perpendicular to a =(a1' llz). For (, = o' the discrete 
operator L1i,e is unstable for the modes u,,,w=eiwh for which w satisfies T(w)=O. In 
the finite difference discretization (p = 0), these modes w = (oJ 1 , w 2 ) are simply 
characterized by 

a 1 sin(w 1 h)+a2 sin(w 2 h)=0. 

The operator L,,,, has no unstable modes for 1>->0 and it is consistent (of order one) 
with L,,_, if and only if I rJ. -i; I= 0 (h) as h --->O. The 2nd order consistency of M h , and 
its asymptotic stability are proved similarly to the one-dimensional case. · 

Theorem: The operator Mh.e• defined by the process (4.1 )-(4.5), applied to the model 
equation (I .1) with central difference of finite element discretization for Lh,, and with 
artificial diffiision, rJ. =f.+ C h, is consistent of 2nd order and is asymptotically stable. 
Pro()f': See [7]. 



Mixed Defect Correction Iteration for the Solution of a Singular Perturbation Problem 135 

As for the one-dimensional case we expect from this result 2nd order accuracy in the 
smooth part of the solution. Results for an actual computation are shown in Table 4. 
In contrast with the direct defect correction method as treated in Section 3, we see 
here that a 2nd order accurate solution is obtained also for small c: indeed. 

Table 4. The error is the max-normfor u: and uf, measured in the smooth part of' tlie solution. The problem 
solved is the same as used for Table:? 

-· ·-
h= 1/8 ratio h= 1/16 ratio h = 1/32 

i:=l 

II u;,'-R,,11 II 0.0693 3.5 0.0201 3.9 0.00516 
II u~-R,,1111 0.0780 3.6 0.0214 4.0 0.00533 

i:=J0-6 

II u:-R,,11 ii 0.459 3.4 0.132 4.5 0.0291 
II u~ -R,, u II 0.608 3.8 0.159 4.7 0.0335 

Computing two final solutions u: and uf,, we are interested to know what the 
difference between both solutions is. From (4.1)-(4.5) we easily derive 

uf,-u:=(a-r;)Dh.~ L1+ ,1_ u{ (5.7) 

From this formula we see that uf,- u: is large where a -B and the 2nd order 
differences of u: are large. Hence, this is the region where the influence of the 
artificial diffusion is significant. From (5.7) we immediately derive 

~ !Y.-C: 
uB -!IA=-:_ s2 UA 

h h 2 ()( h' 

from which we conclude ( cf. [8]) that for low frequences (where S ~ h) 

/""-. 
uf,-u:=O(h2 ) for h-+O, 

uniformly for all e. For the high frequencies (where s~ 1): for fixed ewe find 

uf,-u:=O(h) for h-+O 

and for 0::::; e < h with h-+O 

6. The Convergence of MDCP Iteration 

In this section we consider the rate of convergence of the process (4.1)-(4.5). By 
local mode analysis we show at what rate the different frequencies in the error 
are damped. The amplification operator of the error, Ah, is given by (4.2). Its 
characteristic form is 
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Using this expression for the one-dimensional model problem we find 

(a-i:)SC [SC(a2 -h2)+iha] 
Ah ( w) 

-r:J. az sz +hz c2 
and 

I Ah(w)I ~ O!~e + V ~ ( ~-- ~ )2 +max2 ( :-, ~} 

(6.1) 

(6.2) 

With the upwinding amount of artificial viscosity, a= e + h, we derive from (6.2) that 

i.e. the process converges with a finite rate for all frequencies. Such a simple result is 
not obtained in the two-dimensional case. 

For the two-dimensional problem we find 

(a-e)5 2 V(: C2 5 2 -~ T 2)2 +4T2 

(6.3) 

where C2 = q +er It is easy to show that I Ah(w)I ~ 1 for all w. However, for some 
frequencies convergence is slow. E.g. for the unstable modes w of Lh_,, for which 
T(w) = 0, we find 

i.e. for small B, along T(w) =0, in the neighbourhood of w =0, convergence is slow. If 
we set '.X=i:+yh, then, considering the limit for e->O, we obtain 

- I }' sz I ( 1 ( T 2 (}' 52 ))2)-l: ( ()' 52 ) 2)-1 IAh(w)I= y:- 1+4- -y--C T 1+ T (6.4) 

To understand this expression, we introduce a new coordinate system in the 
frequency space. We define lines with constant y=y 5 2 /T and lines with constant 
t = T/2 /'- Then 

- IYI · 
I Ah(w)I = --2 v1 +(t-(1 -y t)y)2 • 

I+y 
(6.5) 

In the neighbourhood of the origin, lines of constant y are approximately circles 
tangent in the origin to the line T(w)= 0, the value of y is proportional to the radius. 
Lines of constant tare lines approximately parallel to the line a1 o> 1 + a2 w 2 = 0, t is 
proportional to the distance to this line. We see that for small y 

I Ah(w)I ~ y Vi+t2 = o (y); 
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and for large y, i. e. in the neighbourhood oft= 0, 

- v---2-l-~· 1 2 7 IAh(co)i~ y + 4-c ~-i(C<1,+C0). 

Thus we sec that low frequencies converge fast along the convection direction ci and 
that convergence is slow (only!) in the direction perpendicular to the convection 
direction (i.e. for those co with T(w)=O). 

I li,,(wJI ~ 

,. 
o~..(", o 

""'0>"' ~ 
+ ...y~ 7 

- "°/ C>~) 

0" 

<o 

·"" 

Fig. I. The M DCP convergence rate for the equation - i: tw + u, =f; discretization by finite differences 

7. Boundary Analysis of the MDCP Solutions 

In Section 5, by Local Mode Analysis for 12-functions on an unbounded domain, we 
saw that the MDCP discretization is asymptotically stable with respect to the right­
hand side j;,. To analyze the effects of the boundary data, we consider the 
homogeneous problem (2.2) in a discretization of the right half-space (x :2: 0), the 
boundary x = 0 being a grid-line. Dirichlet boundary data are given on this 
boundary and we consider solutions that are bounded at infinity. This situation is 
again studied by mode analysis. Now we use complex modes, uJ=(w 1 ,co2 )EIC2 ; 

oJ2 E lR: is given by the boundary data and Lr,(w) = 0 is solved for w1 E IC. Those 
solutions w1 for which Im w 1 ~ 0 determine the behaviour of the discrctization near 
the boundary at x = 0. 

In this way, we first treat the one-dimensional model problem ( 1.2) with :x = 1: +h. For 
this problem the only possible inhomogeneous boundary data arc uh (0) =I. The 
modes u1,_"' (i Ii)= eiwhJ = )J for which the homogeneous equation ( 4.9) is satisfied, are 
determined by 

M1",(w)=0. (7 .1) 
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This is a 4th degree polynomial in Jc. With£ =0 we find for (7.1) the solutions ,1, = L 
A.= 0, Jc= 2 ± ys. From (5.3) it is clear that for all c/h > 0, Jc= 1 is a solution and no 
other solutions with I), I= 1 exist. Since all Jc are continuous functions oft:, we have 
for all 1-;;:::: 0 two A's with I A. I< 1 and one Jc with I Jc I> 1. The two ),'s with I Jc I< I 
determine the behaviour of the solution near the boundary at x = 0. For small values 
of F./h we find ), 1 = 0 (c/h) and ,1,2 = 2-j/5 + 0 (c/h). These values show that in the 
numerical boundary layer, for small 1;/h, the influence of the boundary data 
decreases with a fixed rate per meshpoint. I.e. the width of the numerical boundary 
layer is only 0 (h). 

Only ,1, 1 and Jc2 determine what modes appear in the solution of 

Mh,euh=O, uh(O)=l. 

The difference operator at the meshpoint next to the boundary determines what 
linear combination of Jc{ and Jc~ forms u: and uf A more detailed computation 
shows 

(7.2) 

This describes completely the behaviour of the 1-D numerical boundary layer 
solution. 

We analyze the two-dimensional model problem in a similar way. For given 
boundary data 

we compute the modes 

that satisfy Mh.euh.w=O forj1 >0, and we determine the corresponding I Jci. 

To simplify the computation, we restrict ourselves to the finite difference star (i.e. 
p=O in eq. (5.4)) and artificial diffusion r:x=c;+h I a1 1/2, a1 ,PO. First we consider 
boundary data with w2 =0. For r.=0 we determine Jc from 

- -2r:x 4 2i 2 
Mh 0 (w)=- S +- T[2+S ]=0. . h2 h (7.3) 

We find the solutions Jc 0 = 0, A1 =1, ). 2 , 3 = 3 ± 02. Next we consider w 2 + 0. From 
(7.3) it follows that no real w E [ - n/h, n/h] 2 , w + (0, 0), exists such that M h 0 (w) = 0. 
Hence, except for w 2 = 0, no Jc exists with I Jc I= I. All Jc's are continuous fu~ctions of 
w2 and for small w2 we know 
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Hence I ), 1 I;;:::1 and for all w2 E [ - n/h, n/h] there are two A's with I A I< 1 and two A's 
with I). I;;::: 1. The two small A's, considered as functions of w 2 E [ - n/h, n/h] describe 
a curve inside the unit circle in C. The curves are closed subsets of C and have no 
point in common with the unit-circle. Thus, we see that C = maxw2 I ),"' 2 I exists and 
I ~-1:::;; C < 1. Thus we see that for all w 2 the small eigenvalues are separated from 1. 

To study the case ef O, we consider Mh.E instead of Mh.o and we see again that for 
bounded i;jh no real w exist for Mh,,(w)=O except cv=(0,0), which yields a single 
root /c 1 =I for all i;/h. Since all ).'s are continuous functions of e/h we conclude that for 
all w2 and all 0:::;; e/h < C there are two Xs with I A. I;:::: 1 and two Xs with I A I :S: C 2 < 1. 
We conclude that, also in the two-dimensional case for small e/h, the influence of the 
boundary data decreases with a fixed rate per meshpoint, i.e. the width of the 
numerical boundary layer is 0 (h). 

This non-constructive proof for the existence of max I ),(cv2 )1 < l allows the 
possibility of a large I A I< I, such that the existence may be of little practical use. In 
the numerical examples we see that the numerical boundary layer extends only over 
a few meshlines in the neighbourhood of the boundary indeed. 

8. Numerical Examples 

In this section we show some numerical results obtained for the model problem, in 
the presence of boundary or interior layers. We include also an example with 
variable coefficients. 

8.1 In the first example we show the solution of problem ( 1.1) with Dirichlet 
boundary conditions on the unit square;<:= 10- 6 , a=(-1,0), the functionfand the 
boundary data are chosen such that 

u(x,y)=(Mexp(-x/i:)-1)/(M-I) with M=exp(l/1;). 

The problem is discretized with the standard FEM with piecewise linear functions 
on a regular triangulation. The mesh was chosen with h= 1/8, 1/16, 1/32. With 
a= e + h/2 the numerical solution u~ is shown in Fig. 2. We see that the numerical 
boundary layer has width 0 (h). Only a few meshlines near the boundary layer are 
affected by the downstream Dirichlet boundary condition. 

8.2 In the second example we show again solutions of ( 1.1) with e =lo- 6 , cl= (I, OJ. 
Dirichlet BCs are given, except at the outflow boundary, where natural BCs were 
used. The rhs and the Dirichlet boundary data were chosen such that 

u (x, y) = -V-~x0/(x -x0 ) exp (-(y- y0 )2/(41:(x - x0 J)) 

with x 0 = -0.1 and Yo= 0.5. These data cause a strong parabolic interior layer in the 
solution. (The solution u (x, y) also satisfies the homogeneous equation 
-1.: u.vy+ux=O.) In Fig. 3 we see the numerical solution of this problem (a) by 
application of artificial diffusion with ix= B + h/2, (b) by application of a single defect 
correction step, (c) the solution u: and (d) the difference between u: and u~. We see 
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that the solutions u: and uf, yield much sharper layers than (a) or (b).Further, we see 
that uf,- u: is large where the influence of the singular perturbation is significant (see 
eq. (5.7)}. 
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"' ...; 

" ~· 

.,., 
'" 

"' '" 

b 
Fig.4. Example 8.3. a Neumann boundary conditions, h Dirich!et boundary conditions 
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8.3 In the 3rd example we show the solution of (1.1) with s= 10- 6 , a.=e+h/2, 
a= (cos ((PJ, sin ((pj), <P = 22f'. Dirichlet BCs are given at the inflow boundary; u =0 
or LI= I with a discontinuity at (0, 3/16), so that an interior layer is created. At the 
outflow boundary homogeneous Neumann (Fig. 4a) or Dirichlet (Fig. 4 b) boundary 
data are given. We see that also for a skew flow a rather sharp profile is found (cf. 
[10]). The boundary layer at the outflow Dirichlet boundary shows the same 
behaviour as in Example I. Similar behaviour of the solutions is found for other 
angles <P (cf. [8]). 

-
d 

d 
-o.s o.o 0.5 I. 0 

X - AXIS 

Fig. 5 a. Example 8.4 with artificial diffusion 

d 
0.0 o.s 

X - AXIS 

Fig. 5 b. Example 8.4, solution u: 
8.4 In this last example we use a problem with variable coefficients: equation (I.I) 
on a rectangle [-1,+l]x[0,1] with 1:=10- 6 , a=(y(l-x2),-x(l-y2 )). This 
represents a flow around the point (0, 0), with inflow boundary - 1 s; x s; 0, y = 0 and 
outflow at 0 < x s; I, y = 0. Dirichlet boundary conditions are given at all boundaries 
except the outflow boundary where Neumann boundary conditions were used. At 
the inflow boundary a flow profile is given: LI (x, 0) = 1 + tanh ( 10 + 20 x). This results 



Mixed Defect Correction Iteration for the Solution of a Singular Perturbation Problem 145 

in an interior layer. For the boundary condition at (x = l, 0~y~1) the data 
u (x, y) = 2 (l -x) are used. This yields a contact layer near this boundary. All other 
boundary conditions were taken homogeneous. This problem is again discretized by 
the FEM. In Fig. 5 b we show the solution u~ and in Fig. 5 a the solution with 
artificial diffusion (ex= e + h/4). We see that by u~ the profile both of the interior layer 
and of the contact layer are well represented. 
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