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Abstract Several data analysis steps are required for understanding computer vision
results and drawing conclusions about the actual trends in the fish populations. Par-
ticular attention must be drawn to the potential errors that can impact the scientific
validity of end-results. This chapter discusses the means for ecologists to investigate
the uncertainty in computer vision results. We address a set of uncertainty factors
identified by interviewing both ecology and computer vision experts, as discussed
in Chapter ??. We investigate state-of-the-art methods to specify these uncertainty
factors. We identify issues with conveying the results of ground-truth evaluation
methods to end-users who are not familiar with computer vision technology, and we
present a novel visualization design addressing these issues. Finally, we discuss the
uncertainty factors for which evaluation methods require further research.

1 Introduction

As scientists, ecologists have requirements of transparency regarding the data col-
lection process and its potential errors and biases. There are several uncertainty
factors that potentially impact computer vision end-results, as discussed in Chap-
ter ??. Each uncertainty factor has specific effects on end-results, hence requiring
specific evaluation methods. We interviewed both marine ecology experts and com-
puter vision experts to gain insights on the effects of uncertainty factors, and on the
methods for measuring them. In this chapter, we detail the potential effects of each
uncertainty factor, the goals of their evaluation, the state-of-the-art evaluation meth-
ods, and the uncertainty visualizations developed within the project. Sections 2-3
investigate uncertainty related to computer vision algorithms, while sections 4-5
investigate uncertainty related to the in-situ deployment of the Fish4Knowledge
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system. Section 6 investigates the impact of both computer vision algorithms and
in-situ system deployment uncertainties on end-results. Finally, section 7 discusses
the uncertainty issues that are not fully addressed by the state-of-the-art evaluation
methods.

We show that the Fish4Knowledge project is supported by well-established
methods for evaluating the uncertainty factors due to computer vision algorithms.
The evaluation of the remaining uncertainty factors requires methods beyond the
state-of-the-art. However, the Fish4Knowledge project developed simple evaluation
methods for these factors. Directions for future work are suggested with the aim of
enabling further scientific rigor in ecology research based on computer vision sys-
tems. An overview of the uncertainty factors and their evaluation methods is given
by Figure 1 and Table 1. The latter refers to the user interface designed to com-
municate computer vision results and their uncertainty to end-users. The interface
organises information in 5 tabs addressing specific uncertainty issues, and is further
discussed in Appendix ??.

Fig. 1: Model of interactions between uncertainty factors. Factors in blue boxes are
introduced by computer vision algorithms, while factors in red boxes are introduced
when deploying the system. Factors in purple boxes are impacted by both phases of
system implementation.
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Table 1: Uncertainty factors and user interface tabs addressing them.

Factor User Interface Tab & Metrics Figure

Uncertainty due to computer vision algorithms (Sections 2-3)

Ground-Truth
Quality

Video Analysis tab: Number of ground-truth items in test sets
(which are proportional to numbers of items in training sets).

Fig. 3-7

Image Quality
Video and Visualization tabs: Number of videos from each image
quality (bottom widget called Video Quality) to correlate with Fish
Detection Errors.

Fig. 8-9

Fish Detection
Errors

Video Analysis tab: Number and proportion of errors per Image
Quality.

Fig. 3-6

Species Recog-
nition Errors ...

Video Analysis tab: Number and proportion of errors per species. Fig. 4-7

Uncertainty due to in-situ system deployment (Sections 4-5)

Field of View
Video tab: Video browsing supports elementary control of Fields
of View over time and locations.

Fig. 8

Duplicated .
Individuals

Video tab: Video browsing supports elementary control of repeated
occurrences of fish in groups or coral heads (e.g., over-estimation
of schooling and sedentary species discussed in chapter ??).

Fig. 8

Sampling...
Coverage

Video and Visualization tabs: Number of 10-minute video samples
over time and locations.

Fig. 8-9

Fragmentary
Processing

Visualization tab: Number of processed and unprocessed 10-
minute video samples. Mean number of fish per video sample. Ad-
ditional video processing can be requested through the user inter-
face (Workflow sub-tab, Appendix ??, Fig. ?? p.??).

Fig. 10

Uncertainty due to both computer vision algorithms and deployment conditions (Section 6)

Noise and
Biases

Video and Video Analysis tabs: Video browser and visualization
of computer vision errors, to identify potential biases due to Field
of View, Duplicated Individuals, Image Quality, Fish Detection and
Species Recognition Errors.

Fig. 11

Uncertainty in
Specific Output

Visualization tab: Measures of dataset characteristics, to correlate
with Noise and Biases estimates (number of videos over time, loca-
tion, Image Quality and Field of View), and Certainty scores indi-
cating the similarity of fish with their species model. Report tab:
Uncertainty can be described by gathering and commenting visual-
izations.

Fig. 10-11

2 Evaluating Uncertainty Due to Computer Vision Algorithms

Computer vision algorithms can introduce errors in end-results by misidentifying
fish and non-fish objects, or by misidentifying fish species. To convey this uncer-
tainty to end-users, we consider the two stages of information extraction as two
distinct algorithms: Fish Detection for identifying fish from other objects (Chap-
ters ??-??), and Species Recognition for identifying the fish species (Chapter ??).
Besides algorithms themselves, two factors can impact the quality of the output. Al-
gorithms use ground-truth sets of fish examples to learn how to identify fish from
each species. The Ground-Truth Quality directly impacts the quality of end-results.
Further, the Image Quality of video recordings can induce errors, e.g., low image
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quality yields fish appearances that are more difficult to recognize. The interactions
between these uncertainty factors are shown in Figure 1 (blue boxes). In this section,
we present these uncertainty factors and their evaluation methods.

Fish Detection and Species Recognition Errors - Computer vision algorithms
identify the fish appearing in video footage by classifying them into predefined cat-
egories. The Fish Detection algorithm has two categories, fish or non-fish objects,
and Species Recognition has one category for each fish species. For both algorithms,
objects are assigned to a single category. The fish from the Fish Detection results
are classified further by Species Recognition.

Each fish category is defined by a model constructed from ground-truth sets.
Objects are compared to the models, and if similar enough, are classified in the re-
lated categories. Similarity between objects and models is usually represented with
a score. Score thresholds are used for selecting the objects to classify, and are usu-
ally set by computer vision experts. Errors occur when objects are not classified
into their true category, or when they are not classified at all (i.e., not detected in the
videos).

Fish Detection output is impacted by two types of errors. Errors of Type I, also
called False Positives (FP), are non-fish objects classified as fish and contained in
the output. Errors of Type II, also called False Negatives (FN), are undetected fish
not contained in the output. These errors are usually measured using ground-truth
sets distinct from those used to learn the fish models. Manual fish detections are
compared to those of the algorithm, and the numbers of errors are encoded in a
table called a confusion matrix. Table 2 illustrates a typical confusion matrix for
Fish Detection Errors.

Species Recognition Errors are fish that have been assigned to the wrong species.
They are also measured using dedicated ground-truth sets, and encoded in a confu-
sion matrix. Table 3 shows an example of a confusion matrix for Species Recogni-
tion Errors. Type I and II errors also apply to Species Recognition. Considering a
set of fish assigned to one species, e.g., Species A, Errors of Type I (False Positives)
are fish from another species erroneously classified as Species A. Errors of Type II
(False Negatives) are fish not classified as Species A but actually belonging to it.

Confusion matrices for Species Recognition are more complex to analyze than
those of Fish Detection. An important concept for understanding them is that False
Positives erroneously assigned to one species are False Negatives for their true
species. For instance, if Species A misses 17 False Negatives erroneously attributed
to Species B, then Species B gains 17 False Positives from Species A. Hence count-
ing all the errors for one species requires to sum the False Negatives assigned to
all other species (i.e., column-wise sum in Table 3), as well as summing the False
Positives added by all other species (i.e., row-wise sum in Table 3). This examples
is illustrated in Table 3, e.g., the cell with both red and grey squares indicates: 17
False Negatives (FN) for species A; 17 False Positives (FP) for species B. These 17
errors are counted both in the cell with red background (i.e., summing the cells with
red squares) and in the cell with grey background (i.e., summing the cells with grey
squares).
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Classification from Ground-Truth
Fish Non-Fish

Classification from Fish 85 (True Positives TP) 7 (False Positives FP)
Fish Detection Software Non-Fish 15 (False Negatives FN) 93 (True Negatives TN)

Table 2: Example of a confusion matrix for Fish Detection Errors (with synthetic
data). The color coding is used in our visualization design to facilitate the identifi-
cation of type I and II errors.

Classification from Ground-Truth Basic Metrics
A B C D E TP FN FP TN

Classification A 85 1 4 3 12 85 25 20 384
from B �17 � 78 1 � 7 � 2 � 78 17 27 392
Species C � 1 2 90 6 6 90 22 15 387
Recognition D � 5 7 2 77 1 77 18 15 404
Software E � 2 7 15 2 81 81 21 26 386

Table 3: Example of a confusion matrix with synthetic data for Species Recognition
Errors (left) and basic metrics for type I and II errors (i.e., FP and FN, respectively).

In the computer vision domain, classification errors are usually synthesized fur-
ther using advanced metrics derived from the basic measure of TP, FP, FN and TN.
Advanced metrics are rates of correct and incorrect object detection over total num-
bers of objects belonging to the category (TP and FN) or not (FP and TN). Table 4
shows the metrics and formulas commonly used in most of the state-of-the-art eval-
uations of computer vision errors. Advanced metrics are usually plotted by pairs
in Precision/Recall or ROC curves (Receiver Operating Characteristics). Measure-
ments are usually repeated for several parameter thresholds, e.g., a score represent-
ing the similarity between fish images and species models (i.e., fish below thresholds
are discarded from the species). Figure 2 shows examples of such visualization of
pairs of advanced metrics.

Precision
TP

TP+FP

Recall or TP Rate
TP

TP+FN

FP Rate
FP

FP+T N

Accuracy
TP+T N

TP+T N+FP+FN

F1 Measure
2TP

2TP+FP+FN

Table 4: Advanced metrics commonly used in computer vision.
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Fig. 2: Example of an ROC (left) and Precision/Recall curve (right). Error rates are
given for different parameter settings, e.g., the points on the curves show 4 score
thresholds discarding objects that are not similar enough to the fish model.

Image Quality - Varying image quality can be a source of bias. For instance, end-
results drawn from one type of image quality can systematically contain different
numbers of errors than for another image quality. This biases the comparison of
end-results drawn from different types of image quality. Ground-truth evaluations
of Fish Detection and Species Recognition Errors can be used to evaluate this type
of bias.

Hence we need to provide ecologists with evaluations of Fish Detection and
Species Recognition Errors detailed for each type of image quality. However, this
requires an extensive ground-truth containing sufficient numbers of annotations
for all combinations of species and image quality. The considerable cost of such
ground-truth collection is likely to be unaffordable, as it was the case for the
Fish4Knowledge project. Species Recognition Errors could not be fully evaluated
for each image quality. Hence we focused on evaluating Fish Detection Errors for
each type of Image Quality.

Image quality is automatically detected prior to Fish Detection, and specific pa-
rameter tuning is applied for adapting the computer vision algorithm to the charac-
teristics of image quality. To investigate uncertainty due to image quality, ground-
truth evaluation of Fish Detection Errors were performed for each Image Quality.
When analysing fish counts from a set of video samples, users can relate the num-
bers of videos from each image quality with the errors measured for each image
quality.

Ground-Truth Quality - Ground-truth sets contain examples of fish that were
manually annotated by ecology experts, or by non-experts recruited from crowd-
sourcing (Chapter ??). Computer vision algorithms learn to recognize fish and their
species by constructing fish models on the basis of these examples. Hence ground-
truth is essential to ensure the quality of information extraction. Issues arise with
ground-truth sets that are not representative of the possible fish appearances, and
with scarcity of fish examples, e.g., for rare species. To be representative of the fish
populations, ground-truth sets need to contain examples of the typical fish appear-
ances. For instance, if a species color can vary between grey and black, the ground-
truth must contain examples of both grey and black appearances. Similarly, if cam-
eras often record blurred and low-contrast images, then the ground-truth should con-
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tain examples of fish for each image quality. This is usually ensured by selecting
ground-truth images through a random sampling among all images collected from
all cameras.

Ground-truth can contain outliers such as erroneous annotations, or rare fish ap-
pearances (e.g., odd fish poses). With scarce ground-truth, outliers can have a great
impact on computer vision errors. For instance, if a small ground-truth set contain an
image of seaweed, then the fish model can be distorted so as to be compatible with
seaweed appearances. Hence a high number of non-fish objects can be included
in end-results. Large ground-truth sets potentially lower the impact of outliers, as
outliers’ distortion of fish models is likely to be overridden by numerous counter
examples.

Hence, to evaluate uncertainty due to ground-truth quality, we need to measure
the representativity of ground-truth sets, their annotation errors, and the quantity of
ground-truth items. Ground-truth quantity is the number of examples of each type
of fish to recognize: examples of fish and non-fish objects for the Fish Detection
algorithm, and examples of each species for the Species Recognition algorithm. Re-
garding annotation errors, several metrics exist: number of annotators for each im-
age, level of expertise of annotators (e.g., professor, student, or inexperienced), and
level of agreement amongst annotators if annotations are contradictory (e.g., Co-
hen’s kappa). They are typically applied for evaluating ground-truth sets collected
through crowd-sourcing (Chapter ??). For ground-truth representativity, we need
to take into account the Image Quality of the recordings. The number of ground-
truth items for each image quality indicates potential scarcity for one type of image,
which increases uncertainty in end-results drawn from such videos. A randomized
selection from a large quantity of ground-truth items ensures a priori that ground-
truth sets are representative of the fish appearances. This ground-truth collection
method is recommended both for the ground-truth sets used for learning fish mod-
els, and the sets used for evaluating Fish Detection and Species Recognition Errors.
However, future work is needed for formally assessing ground-truth representativity,
and for assessing that sufficient numbers of items are collected.

During interviews with ecologists, we explained the ground-truth annotation pro-
cess. Ecologists were interested in the numbers of ground-truth images, and in
browsing them. Further metrics, such as numbers of annotators and their level of
agreement, were not introduced at first to avoid overwhelming users. We focused on
providing the numbers of ground-truth items correctly or incorrectly classified, for
each species or image quality. Future work can investigate the benefits of providing
further metrics to end-users, e.g., the level of agreement between annotators, to im-
prove user confidence.



8 Emma Beauxis-Aussalet and Lynda Hardman

3 Visualizing Uncertainty Due to Computer Vision Algorithms

End-users who are not familiar with computer vision are likely to encounter diffi-
culties in understanding ground-truth evaluations and their technical concepts [?].
Some metrics may be misunderstood or may not fully address the uncertainty
factors. This section summarizes these issues, and presents a visualization design
adapted for end-users who are not necessarily experts in computer vision.

3.1 Usability Issues with Computer Vision Evaluations

Confusion matrices need to be read both column- and row-wise, which is tedious
and error prone. For instance, considering the cell with both red and grey squares
in Table 3, if read row-wise it indicates False Positives added to Species B. If read
column-wise, it indicates False Negatives lost by Species A. Memorizing all cell
values, and their semantics, is an important cognitive load. Users may forget cell
values, or may read only columns or rows.

To limit cognitive efforts, confusion matrices can be synthesized by cumulating
errors for each species (i.e., basic metrics in Table 3). However, it is no longer possi-
ble to distinguish which species are likely to be confused with another. For instance,
the cells with red or grey background in Table 3 do not indicate the original true
species of the misrecognized fish. Users need this information to identify correla-
tions between species populations that are induced by Species Recognition Errors,
and hence, that are not representative of the actual trends in fish populations. For
instance, an important increase of one species implies an increase of its False Neg-
atives. A proportion of its fish are attributed to other species, and this can induce
deceiving increases of other species, especially for species of much inferior abun-
dance. Hence, users need to inspect errors between pairs of species, rather than the
synthesis of False Positives and False Negatives cumulated for all species.

Finally, advanced metrics are more complex and convey specific types of errors,
and thus non-expert users may misinterpret them. For instance, with Species Recog-
nition, True Negatives are fish correctly discarded from a species. They are cumu-
lated over all other species, and are usually of a much higher magnitude than True
Positives, False Positives and False Negatives, as shown in Table 3. High numbers
of True Negatives yield low False Positive Rate and high Accuracy (see formulas
in Table 4). Hence this may conceal important numbers of False Positives or False
Negatives. The visualizations commonly used by computer vision experts use pairs
of advanced metrics (e.g., Figure 2). Considering the above-mentioned issues, such
visualizations are likely to be overwhelming and misleading for end-users that are
not familiar with computer vision. Moreover, advanced metrics no longer indicate
the number of items in the ground-truth, and thus possible ground-truth scarcity.
Confusion matrices originally provide this information, i.e., the numbers of test
items which are usually proportional to the numbers of training items. Hence we
investigated the ways to communicate numbers of test items correctly or incorrectly
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classified, rather than the ways to communicate complex and potentially misleading
error rates.

3.2 Preliminary User Study

Ecologists need to understand computer vision errors, but ground-truth evaluations
techniques are complex and may overwhelm them. Hence we investigated which
level of detail needs to be disclosed to end-users [?]. We exposed 7 marine ecolo-
gists to explanations progressively disclosing the concepts of ground-truth evalua-
tions. Explanations were given in 3 steps. Each step consisted of i) a visualization
of fish counts, as produced by our computer vision system; ii) a visualization of
a ground-truth evaluation of our system, introducing new technical concepts; and
iii) a questionnaire evaluating the impact of the new details introduced. The first
step introduced the concepts of ground-truth sets used for training and evaluating
the video analysis software. The uncertainty visualization simply compared manual
and automatic fish counts. The second step introduced the concepts of True Positive
(TP), False Negative (FN) and False Positive (FP). The uncertainty visualization
showed manual and automatic fish counts, with details about the amount of TP, FN
and FP. As a first step, True Negative were omitted to avoid overwhelming users.
The third step introduced the concepts of fish model and score thresholds of classi-
fiers. The scores measure how fish images look like the fish models, as discussed in
section 2. The visualization presented sets of fish counts produced by using differ-
ent score thresholds, and ground-truth evaluation of TP, FN, and FP given for each
score threshold.

Trust Acceptance Understanding Info. Needs
Step: 1 2 3 1 2 3 1 2 3 1 2 3
User 1 + + - + + + - - - - - - - - -
User 2 - - + + + + + - + - - - -
User 3 ++ ++ ++ ++ ++ ++ + - - - - - - - -
User 4 - - - - - - ++ ++ ++ - - -
User 5 - - - - - + + ++ ++ ++ ++ - - - - - -
User 6 - - - - - - - - - + + - - - - - - -
User 7 + - + + + ++ - - - - - - - + -

Table 5: Qualitative analysis of the experiment introducing technical concepts of
ground-truth based evaluations. The quality of user trust, acceptance, understand-
ing, and satisfaction of information needs is either Very High (++), High (+), Low
(-), or Very Low (- -). Green cells indicate a positive effect of the explanation steps,
orange cells indicate a negative effect, uncolored cells indicate no significant effect.

At each step, a questionnaire measured i) user trust in the computer vision soft-
ware’s ability to count fish; ii) user acceptance of the software for scientific re-
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search; iii) user understanding of the technical concepts; and iv) the satisfaction of
user information needs for uncertainty evaluation. The questionnaires were inde-
pendently analyzed by two experts in Human-Computer Interfaces. A 4-grade scale
was used to (Very Low - -, Low -, High +, Very High ++) to qualify user trust,
acceptance understanding and information needs. Table ?? summarizes the results
of this experiment. It shows that the technical concepts were generally difficult to
understand. Extensive time and additional explanations were required for ecologists
to familiarize with them. Further, users information needs were not fully satisfied.
For instance, users required to watch videos themselves and to inspect other uncer-
tainty factors. Besides these issues, user acceptance remained globally unchanged
over explanation steps. User acceptance is relatively high since computer vision can
greatly reduce material costs and human efforts. The third step, introducing score
thresholds, had a slightly positive impact on user trust and acceptance, i.e., in re-
spectively 4 and 2 cases out of the 6 cases that could be improved (User 3 already
had maximum score).

3.3 Visualization Design for Non-Expert Users

We designed visualizations intended to limit cognitive load and misunderstandings,
while addressing the 4 uncertainty factors related to computer vision algorithms.
Our first design choice is to omit the True Negatives. They are not contained, and
should not be contained, in end-results as they are not informative from a user view-
point. Further, [?] shows that understanding the concepts of True Positive, False
Negatives and False Positives is already likely to overwhelm users. Finally, as the
magnitude of True Negatives can largely exceed that of errors (False Positives and
False Negatives), True Negatives may conceal uncertainty (see section 3.1).

Fig. 3: Example of our novel visualization design detailing Fish Detection Errors
for each type of Image Quality.
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To avoid further cognitive load and misunderstandings, we avoid advanced met-
rics (Table 4). Our visualizations primarily show the numbers of ground-truth items
yielding True Positives, False Negatives or False Positives in computer vision re-
sults. Figure 3 gives an example of such a display for Fish Detection Errors. It shows
the numbers of ground-truth items, an important aspect of Ground-Truth Quality
which is abstracted in traditional ROC or Precision/Recall curves.

The layout of our visualization intends to intuitively convey the concepts of cor-
rect fish (i.e., True Positives), missed fish (i.e., False Negatives) and added fish (i.e.,
False Positives). Stacked charts show the fish contained in end-results above a hori-
zontal line, with correct fish below and added fish on top. Missed fish are displayed
below the horizontal line. Colors reinforce the perception of errors. Correct fish are
shown in blue, a positive or neutral color. Added fish are shown in light grey, to ex-
press an elusive presence contrasting with the saturated blue of correct fish. Missed
fish are shown in red, a negative color expressing a warning. It aims at creating an
intuitive perception that missed fish below the line are not included in end-results,
and that added fish create over-estimations.

Fig. 4: Example of our novel visualization design for Species Recognition Errors.

Fig. 5: Selecting a species of interest highlights the errors for that species. It shows
from which species its False Positives (FP) came from (grey stacked bars) and to
which species its False Negatives (FN) are attributed (red stacked bars).
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For visualizing Species Recognition Errors, the same design principles are appli-
cable. True Positives, False Positives and False Negatives can be displayed for each
species. However, ecologists need to investigate which species are often confused
with another, so as to identify potential biases with look-alike species. Hence, we
need to detail which species adds False Positives, or receives False Negatives, and
what is the magnitude of errors. Multiple confusions between pairs of species can
occur, especially since errors are directional: e.g., fish from Species A misclassified
as Species B (FNa→b), and inversely, fish from Species B misclassified as Species A
(FNb→a). With Ns species Ns(Ns−1) pairs of species need to be investigated. This
complexity can clutter the visualization and overwhelm users. To address this issues,
our visualization displays the most important inter-species confusions, and summa-
rizes the remaining errors. For each species, we select the 2 other species yielding
the most FP and FN, and display the related errors in distinct stacked block. The
remaining errors from other species are displayed together in one block. Figure 4
gives an example of such display. Users can select a species to display errors only
for that species, as shown in Figure 5.

The numbers of ground-truth items can greatly vary amongst classes of species
and image quality, e.g., scarcity for some classes, or abundance of other classes. In
these cases, ground-truth errors can be difficult to visualize. Hence users can switch
between visualizing errors either as: i) numbers of ground-truth items; or ii) propor-
tional measure of errors (Fig. 6-7). Fish Detection Errors are given proportionally to
the total number of detected items (T P+FP), using equations (1,2). This choice of
denominator intends to support the extrapolation of errors in subsets of end-results,
for which only the total numbers of detected items are known. For instance, given a
set of Ni fish detected in a set of videos with image quality Qi, a user can extrapolate
that it contains Ni

FPi
T Pi+FPi

False Positives, and Ni
FNi

T Pi+FPi
False Negatives (FPi, FNi

and T Pi being measured from a ground-truth set representative of image quality Qi).

Type I Error Rate Qi =
FPi

T Pi +FPi
(1)

Type II Error Rate Qi =
FNi

T Pi +FPi
(2)

Equations 1-2: Type I and Type II Error Rates Qi are, respectively, the ratio of non-fish objects
(FPi) and undetected fish (FNi) on the total numbers of detected items (T Pi +FPi), measured in a
ground-truth set of image quality Qi. T Pi is the number of fish correctly detected for the ground-
truth set. Equation (1) is equivalent to Precision, and equation (2) to False Discovery Rate.

For Species Recognition Errors, the False Negatives transferred from species A to
species B (FNa→b), which are also the False Positives attributed to species B while
truly belonging to species A (FPb←a), are given proportionally to the True Positive
for species A using the equation (3). The choice of a denominator is different from
that of error rates for Fish Detection Errors because in the case of Species Recog-
nition Errors, False Positives and False Negatives are not independent between
classes, i.e., between species. False Negatives for one species are False Positives
for other species. Hence, in ground-truth evaluations, the number of False Positives
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Fig. 6: Visualization design from Fig. 3 showing rates of errors from equations 1-2.

observed for one species arbitrarily varies depending on the number of ground-truth
items for other species, independently from computer vision algorithms. Further-
more, each subset of end-results may have different proportions of each species, as
population dynamics may be different over seasons or locations. For instance one
species may be more abundant at specific periods of time than others. Hence, in
end-results, the number of False Positives attributed to one species arbitrarily varies
depending on the population sizes of other species, independently from computer
vision algorithms. Therefore, False Positives are excluded from the denominator of
error rate (3). The choice of a denominator also intends to support extrapolations of
errors in subsets of end-results, as for the error rates (1-2). To do so, the denomina-
tor needs to represent the fish counts as observed in subsets of end-results, i.e., total
numbers of fish detected for each species. Therefore, False Negatives are excluded
from the denominators, as they are not contained in end-results’ fish counts for each
species. Using only True Positives as the denominator of error rates in equation (3)
is a tradeoff between representing fish counts as observable in sets of end-results
(i.e., T P+FP), and accounting for numbers of errors that are proportional to the
population size of their true species (i.e., excluding FP which are not proportional
to the size of their attributed species).

Pairwise Error Ratio Sa→ Sb =
FNa→b

T Pa
(3)

Equation 3: Pairwise Error Ratio Sa → Sb is the ratio of fish belonging to species A (Sa) erro-
neously attributed to species B (Sb). FNa→b is the number of ground-truth items attributed to Sb

while truly belonging to Sa (e.g., the cell with both red and grey squares in Table 3). Note that
FNa→b = FPb←a, i.e., the number of False Positives attributed to species B while truly belonging
to species A. T Pa is the total number of TP for Sa. Note that FNa→b is different from FNb→a and
Pairwise Error Ratio Sa→ Sb is different from Pairwise Error Ratio Sb→ Sa.
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To conclude, our visualization supports the evaluation of 4 uncertainty factors
due to computer vision algorithms by showing a simple but complete representation
of ground-truth evaluation results. Fish Detection and Species Recognition Errors
are evaluated by visualizing absolute and relative numbers of errors in ground-truth
sets (Figures 3-7). The uncertainty due to Ground-Truth Quality is evaluated by vi-
sualizing absolute numbers of ground-truth items, and the uncertainty due to Image
Quality is evaluated by visualizing Fish Detection Errors for each type of image
(Figure 3).

Fig. 7: Visualization design from Fig. 4 showing rates of error from equation 3.

4 Evaluating Uncertainty Due to In-Situ System Deployment

During our study of user requirements (Chapter ??), we identified uncertainty fac-
tors that are not related to computer vision algorithms but to the deployment of
the system. The deployment of cameras over marine ecosystems can greatly impact
end-results, independently from potential computer vision errors. The cameras’ field
of view can increase or decrease the chances to observe specific species, hence cre-
ating biases. Some fields of view increase the chances of counting repeatedly the
same individuals swimming back and forth in front of the camera, hence creating
further biases. These types of biases typically concern benthic (i.e., living on the
seabed), sedentary (i.e., living in coral heads), schooling (i.e., living in groups), and
herbivorous or carnivorous species.

Furthermore, camera deployment over geographical locations may not provide a
sufficient sampling of the ecosystem. Ecologists usually need redundant measure-
ments to ensure the statistical validity of their observations [?]. Hence sufficient
numbers of cameras need to be deployed. Additionally, the extent of the sampling
coverage can be reduced if all collected videos are not processed due to technical
issues. In this section, we discuss evaluation methods for these uncertainty factors
related to the in-situ deployment of the Fish4Knowledge system.
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Field of View and Duplicated Individuals - The different types of coral are
populated by specific species feeding on its organisms, or hiding in its structure.
Thus the placement of cameras needs to reflect the different habitats of interest. If
some habitats are not observed, their species are under-represented, and end-results
are biased. For instance, observations of benthic, sedentary and carnivorous and
herbivorous species are biased if fields of view do not cover the specific habitats
where these species are living.

Some species swimming behaviours (e.g., coming in and out of coral cavities)
yield repeated occurrences of the same fish in the cameras’ field of view. For in-
stance, schooling and sedentary species (e.g., living in groups, or coral head cavi-
ties) are likely to yield Duplicated Individuals in end-results. Fields of view con-
tribute to biases due to multiple re-identification of the same fish. For instance,
close-ups on specific coral heads increase the chances of observing duplicated fish
from sedentary species. Similarly, groups of schooling fish may not be consistently
observed between close-ups and open sea views. Further, the depth of field of view
modifies the sampling coverage of the area. For instance, compared to open sea
views, close-up views cover a smaller area of the ecosystem.

The state-of-the-art does not offer well-established methods for handling these
uncertainty factors. Future work needs to develop measures of rates of Duplicated
Individuals depending on fish species and Fields of View. For example, a measure
of such potential bias can indicate that schooling species S observed from field of
view V are over-estimated by FPs,v Rate = FPs,v

T Ps,v+FPs,v
, similarly to error rate (1).

Finally, the Fish4Knowledge system relies on fixed cameras which fields of view
are expected to remain the same over time. However, fields of view may vary over
time. Small shifts can occur during maintenance and lens cleaning operations, and
larger shifts can occur with environmental events such as typhoons. Hence, acciden-
tal changes of field of view need to be controlled and monitored over time.

Sampling Coverage and Fragmentary Processing - The Fish4Knowledge sys-
tem stores continuous video footage into 10-minute excerpts. Ecologists need to take
into account the number of 10-minute video samples from which computer vision
results are drawn, since it influences the statistical representativity of the patterns
observed in fish populations. For instance, fish counts observed from a few videos
may not be representative of the actual populations of the ecosystem. Further, if dif-
ferent fish counts are drawn from video sets of different size, the more videos the
more fish, hence comparison is biased. Therefore users need evaluations of sampling
size (e.g., the numbers of videos over time periods and locations), and a comparable
measure of fish abundance for end-results drawn from different sampling sizes.

The primary metric for sampling size is the number of video samples from which
end-results are extracted. Additionally, the number of unprocessed videos, i.e., still
in the workflow processing queue (Chapter ??), indicates that further video process-
ing could complement the end-results. The Fish4Knowledge system offers function-
alities for manually requesting that specific videos of interest are processed with
high priority [?].
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To analyze sets of end-results extracted from varying numbers of video samples,
averaging fish count per video as in (4) offers a comparable metric of fish abundance.
Further, measuring variance over samples as in (5) complements the estimation of
uncertainty. Such measure of variance over samples is often used as a basis for
statistical analysis [?].

Mean Fish Count per Video =
Number o f Fish

Number o f Videos
(4)

Equation 4: Measure of fish abundance for comparing fish counts drawn from varying numbers of
videos.

Variance over Videos =
1

Nv

Nv

∑
i=1

(Mean Fish Count per Video−Ni)
2 (5)

Equation 5: Measure of variance in fish abundance. Nv is the number of 10-min video sample, Ni

is the number of fish in the i-th video sample.

However, the measures of mean and variance of fish counts per video in (4-5)
must be used with care as they face three problems:

1) Video duration must be identical over samples. Video samples of longer du-
ration are likely to contain more fish that samples of shorter durations, thus bias-
ing the mean fish count per video as in (4). For video samples of unequal dura-
tion, fish abundance can be assessed by averaging fish counts over a time unit, e.g.,
Mean Fish Count per Minute = 1

Nv
∑

Nv
i=1

Number o f Fish in Video Sample i
Duration o f Video Sample i (in min) . We recom-

mend the use of video samples of equal duration. Using videos of different dura-
tions would considerably complicate the measurement of uncertainty, particularly
for analyzing the variance of fish abundance over different cameras while taking
into account missing videos, as explained below.

Mean Abundance per 10-min =
Nc

∑
j=1

Fish/Video at Camera C j (6)

Equation 7: Measure of fish abundance for analyzing fish counts drawn from several cameras, with
varying numbers of video per camera. Nc is the number of cameras. Fish/Video at Camera C j =

Number o f Fish at Camera C j
Number o f 10-min Videos at Camera C j

, i.e., the result of equation (4) for one camera.

2) Fish abundance over different cameras, and for the same time period, must
be measured by summing the results of equation (4) for each camera separately, as
in equation (7). It would be conceptually inaccurate to measure fish abundance as
the result of equation (4) for all cameras globally, i.e., Number o f Fish f or All Cameras

Number o f Videos f or All Cameras .
This is because the cameras observe the same time periods. For instance, if cameras
1 and 2 observe the same 10-minute time period, yielding 2 video samples with
respectively N1 and N2 fish occurrences, then the overall fish abundance is N1 +N2
rather than N1+N2

2 . To clarify what the metric represent, we recommend to use the
label Mean Abundance per 10-min rather Mean Fish Count per Video. Note that
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if the cameras’ field of view observe the same overlapping areas, the overall fish
abundance cannot be assessed as in (7).

3) The variance of fish abundance over different cameras (i.e., the variance
of equation (7) results) is equivalent to the variance of a sum of random vari-
ables (the variables being the results of equation (4) for each camera). Such vari-
ance is measured by summing the covariances of equation (4) results over cam-
eras, as in equation (8). Measuring such covariance assumes that video samples
are available for all cameras, and for all the 10-min time periods. For instance, if
Mean Fish Counts per Video at C1 include the 10-min time period t1 (e.g., 16:00 to
16:10 on Jan.1st 2011), then video samples must be available at all cameras for the
same time period t1. Then covariances can be measured using equation (9). If video
samples are missing, i.e., if a 10-min time period is covered by at least 1 camera
but not by all cameras, then it is not possible to measure covariances using equation
(9). However, statistical methods can address this problem [?]. They consists of dis-
carding incomplete sample subsets or using replacement values for missing samples
(imputation). None of them can provide perfect results, and the choice of a method
depend on each use case constraints.

Variance over Cameras =
Nc

∑
j=1

Nc

∑
k=1

Cov(Fish/Video at C j, Fish/Video at Ck) (7a)

=
Nc

∑
j=1

Var(Fish/Video at C j)+2
Nc

∑
j=1

Nc

∑
k> j

Cov(Fish/Video at C j, Fish/Video at Ck) (7b)

Equation 8: Measure of variance in fish abundance observed from several cameras, i.e., the vari-
ance of equation (7) results. Fish/Video at C j is the Mean Fish Count per Video for camera j, i.e.,
the result of equation (4) for one camera. Var(Fish/Video at C j) is the variance of Fish/Video at C j ,
i.e., the result of equation (5) for one camera. Cov(Fish/Video at C j, Fish/Video at Ck) is the covariance
of the results of equation (5) for cameras j and k. Nc is the number of cameras.

Cov(Fish/Video at C j, Fish/Video at Ck) =
N10min

∑
t=1

(Nt, j− Fish/Video at C j)(Nt,k− Fish/Video at Ck)

N10min
(8)

Equation 9: Measure of covariance as used in equation (8). Fish/Video at C j is the Mean Fish Count
per Video for camera j, i.e., the result of equation (4) for one camera. N10min is the number of 10-
min time periods covered by the video samples. Nt, j is the number of fish observed at Camera j
during the 10-min time period t.

To conclude, equations (4,5) provide relatively simple measures of fish abun-
dance which overcome the issues of Sampling Coverage and Fragmentary Process-
ing. However, these are applicable to analyze fish counts drawn from one single
camera. For analyzing the overall fish abundance for several cameras, the applicable
measure of fish abundance is given by equation (7). However, the related measure
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of variance in fish abundance, i.e., equations (??), is not directly applicable in the
case of missing samples due to Sampling Coverage and Fragmentary Processing. In
such cases alternative methods exists [?] and can be chosen depending on each use
case.

5 Visualizing Uncertainty Due to In-Situ System Deployment

Although the state-of-the-art does not offer well-established methods for quantify-
ing the effect of Fields of View on fish counts, we provide users with elementary
means to investigate their impact. A tab of the user interface is dedicated to the
browsing of video samples, and is shown in Figure 8. Ecologists can inspect the
different Fields of View over cameras and time periods. They can estimate which
ecosystem is observed, which species are likely to be over- or under-estimated, and
the potential Duplicated Individuals. Users can also investigate potential changes of
field of view over time.

The lower part of the interface contains filtering widgets for selecting the videos
of interest. Users can specify the characteristics of the videos of interest (e.g., time,
location, Image Quality, species observed), in widgets that can be opened and closed
on-demand. The widgets also offer an overview of the numbers of video samples for
each characteristics. For instance, in Figure 8 the histograms represent numbers of
videos over locations, year, and Image Quality. This offers basic means to inves-
tigate uncertainty due to Sampling Coverage, Fragmentary Processing and Image
Quality.

Uncertainty due to these factors can be further detailed in another tab of the
interface, shown in Figure 9. This tab offers the same widgets, and overview of
numbers of video samples. Numbers of videos can be detailed in the main graph, on
the upper part of the interface. Further, the main graph and the widgets’ histograms
can also display absolute numbers of fish, and mean abundance per 10-min as in (7).
Figures 9-10 show visualizations of these metrics. The main graph can also display
boxplots for visualizing the variance of fish abundance over sets of samples.

6 Uncertainty Due to Both Computer Vision Algorithms and
In-Situ Deployment

Ecologists need to evaluate the uncertainty in end-results. These are impacted by
uncertainty factors due to both computer vision algorithms and system deployment.
Uncertainty factors interact with each other, as summarized in Figure 1. Although
there is a variety of factors and interactions between them, their overall impact can
be synthesized as two types of effect: noise, i.e., random errors yielding measure-
ment variance, and biases, i.e., systematic errors yield under- or over-estimated mea-
surements. Biases occur when measurements are systematically different under con-
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Fig. 8: Video tab: Video browser and visualizations for estimating uncertainty due
to Field of View, Duplicated Individuals, Image Quality, Sampling Coverage and
Fragmentary Processing. The bottom histograms show numbers of 10-minute video
samples, and their distribution over locations (e.g., cameras), time (e.g., year) and
Image Quality.

Fig. 9: Visualization tab: Visualizations for estimating uncertainty due to Sampling
Coverage, Fragmentary Processing and Image Quality. The bottom histograms are
the same as Fig. 8, and the main line graph above details the distribution of 10-
minute video samples over one year (2011).
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Fig. 10: Visualization tab: Visualizations for estimating Uncertainty in Specific
Output due to Sampling Coverage, Fragmentary Processing, Image Quality, Fish
Detection Errors and Species Recognition Errors. The bottom histograms and the
main graph above show average fish counts per video, a balanced metric of fish
abundance addressing Fragmentary Processing issues. The Video Quality widget
shows fish abundance for each Image Quality. It indicates potential biases due to
Fish Detection Errors that can arbitrarily vary depending on Image Quality, rather
than natural phenomena. The Certainty Score widget shows the distribution of fish
scores, which are used by computer vision algorithms to represent the similarity
between each fish and their species models (section 2). These indicate potential
biases due to Species Recognition Errors since errors are more likely to occur for
fish with low score.

Fig. 11: Report tab: Example of visualizations gathered and annotated for describ-
ing Uncertainty in Specific Output due to Noise and Biases.



Understanding Uncertainty Issues in the Exploration of Fish Counts 21

ditions that are independent from natural phenomena, such as Image Quality. This
section discusses the means to measure the level of noise in the data, and to iden-
tify systematic differences of measurements. Levels of errors are usually measured
under controlled conditions, e.g., using ground-truth datasets with specific charac-
teristics. This section also presents the means to investigate errors in specific sets of
end-results, which characteristics can be different than those of ground-truth sets.

Noise and Biases - Random errors, i.e., noise in end-results, is commonly mea-
sured using metrics of mean and variance such as (4,5). These metrics are a well-
established basis for statistics investigating of all sorts of populations [?]. Signifi-
cant differences of means and variances can be observed under conditions that are
independent of natural phenomena. An example can be considered with a same fish
population observed with different image qualities, or fields of view. If computer
vision yields significantly different means and variances of the fish counts, then the
different observation conditions can potentially bias the end-results.

As mentioned in section 4, no well-established methods are available for evaluat-
ing biases due to Field of View and Duplicated Individuals. Hence the rest of the dis-
cussion focuses on identifying biases due computer vision algorithms. As discussed
in section 2, the Fish4Knowledge project was able to measure Fish Detection Er-
rors for each Image Quality, and Species Recognition Errors for each species. Such
measurements can support the evaluation of potential biases due to Image Quality
and look-alike species.

If measurements of Fish Detection Errors (e.g., equations (1,2) and Figure 3)
vary significantly with different Image Quality, then they indicate potential biases in
end-results. Sets of end-results from a specific image quality can be artificially over-
or under-estimated, compared to end-results from another image quality. If error
rates are of the same magnitude for all image qualities, then they do not indicate
potential biases. They rather indicate a general level of noise, even if error rates are
high. End-results drawn from image qualities having similar levels of uncertainty
are potentially over- or under-estimated in the same way, and hence, are comparable.
Contrarily, high error rates for Species Recognition Errors indicate potential biases
between look-alike species, even if error rates are of the same magnitude for all
species.

The visualizations of Fish Detection and Species Recognition Errors, presented
in section 3.3 and Figures 3-5, support the identification of significant difference in
error rates indicating potential biases in end-results. We assume that the significance
of error magnitude depends on the study at hand, and their specific requirements
with uncertainty issues. For instance, a descriptive survey of fish population may
tolerate higher uncertainty than a survey intended to demonstrate causal effects of
specific environmental conditions.

Uncertainty in Specific Output - Measurements of Fish Detection and Species
Recognition Errors in ground-truth sets potentially support extrapolations of errors
in other sets of computer vision results. Error rates in equations (1-3) can be used
to extrapolate errors in end-results, by multiplying them with the numbers of fish
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in the output. For instance, given a set of fish detected in video samples of image
quality Qi, the potential number of False Positives in end-results could be computed
using equation (10).

Non–Fish in Samples Qi = Ni ∗ Type I Error Rate Qi = Ni
FPi

T Pi +FPi
(9)

Equation 10 Non–Fish in Samples Qi is the extrapolated number of False Positives in a set of
end-results extracted from videos of image quality Qi. Ni is the number of fish in the end-results.
T Pi and FPi are the numbers of True Positives and False Positives measured for a ground-truth set
of image quality Qi.

However, the validity of such extrapolation relies on the assumption that errors
measured in ground-truth evaluations are representative of errors occurring in com-
puter vision outputs. Further research is needed to control this assumption. For in-
stance, the proportions of fish and non-fish objects may vary across videos of the
same image quality, and this would bias the results of (10). Alternative methods ex-
ist for the case of varying class proportions [?], and can potentially provide more
accurate counts of individuals. However, future work is needed to assess their relia-
bility. Hence the Fish4Knowledge user interface did not retain uncertainty methods
such as (10). Metrics such as (1-3), complemented with numbers of fish and videos
samples in sets of end-results, were retained for simple indications of uncertainty in
end-results, without extrapolating the numbers of errors.

To complement the evaluation of uncertainty in end-results, the user interface can
display the certainty scores measuring the resemblance of each fish with the model
of its species. Figure 10 shows the widget conveying the distribution of fish over cer-
tainty scores. Species models are constructed using ground-truth images dedicated
to the learning of fish appearances. Scores are used by the Species Recognition al-
gorithm for selecting which fish to classify in each species. The higher the score,
the more likely the fish truly belongs to the species, and the lower the chances of
errors. The score is not a measure of error probability, but a measure of visual sim-
ilarity between fish occurrences and fish models. Measures of error probability can
be developed on the basis of this score, and such probability can be used to improve
the computation of fish abundance (see Chapter ??).

We investigated the impact of such scores on user understanding of uncer-
tainty [?]. As shown in section 3.2, user trust and acceptance was slightly improved
by providing score thresholds to select fish to retain in end-results. Hence we re-
tained the use of such score in the user interface. A filter widget displays the dis-
tribution of fish over scores, and allows the manual selection of a threshold (see
Figure 10).
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7 Future Work

Ground-truth evaluations are well-established methods for evaluating uncertainty
due to computer vision algorithms. However, future work is needed to enable the
extrapolation of errors in end-results. The representativity of ground-truth needs to
be assessed. Large numbers of ground-truth items are selected amongst the entire
collection of images samples. This ensures a priori that the ground-truth is repre-
sentative of the entire video collection. However, this method does not demonstrate
that the magnitude of errors measured for the ground-truth sets is similar to that
of computer vision performed on other video sets. An approach to estimate how
the ground-truth is generalizable could consist of repeating ground-truth measure-
ments, and computing the mean and variance of numbers and rates of error. This
method can support extrapolation of errors in end-results, and the measure of confi-
dence intervals for extrapolated errors. But it may require an extensive ground-truth
collection. Another approach can make use of error probabilities estimated from
certainty scores, as discussed in Chapter ??. The accuracy and the costs of these
approaches can be compared.

During user interviews, ecologists often asked how to evaluate if the ground-truth
sets contain enough fish examples. This aims at estimating the cost of ground-truth
collection implied for integrating the detection of a new species. It also aims at
deciding on collecting further ground-truth items for the species that are difficult
to recognize. Future work is needed for establishing methods to estimate optimal
ground-truth size. An approach could consist of repeated ground-truth evaluation
for the same computer vision algorithm, but trained using ground-truth sets of dif-
ferent sizes. If the numbers of errors are relatively stable although ground-truth size
is increased, then users can consider that the number of ground-truth items is suffi-
cient.

Uncertainty due to in-situ deployment of the system requires important future
work. Metrics for Duplicated Individuals need to be researched, and to take into ac-
count the species and Fields of View at stake. Such metrics can be of the same form
as Type I Error Rates in (1), and Duplicated Individuals can be considered as False
Positives. To extrapolate Duplicated Individuals in end-results, the measurements
can be repeated over ground-truth sets to compute the mean and variance. Similarly
to extrapolations of computer vision errors in end-results, this supports the estima-
tion of confidence intervals for the numbers of Duplicated Individuals extrapolated
in end-results. Finally, future work needs to address the challenge of extrapolating
potential biases and errors in end-results by taking into account the different un-
certainty factors. To do so, a unified framework of compatible uncertainty metrics
needs to be researched. It needs to integrate metrics of biases and errors from Fish
Detection and Species Recognition Errors, Image Quality, Fields of View, and Du-
plicated Individuals, and metrics of species abundance accounting for Fragmentary
Processing and geo-temporal Sampling Coverage, e.g., average fish counts per unit
of time or area.


