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Part I

Introduction, methods and results

1 Introduction

An important tool in analyzing the black hole information problem is the entanglement

of particles behind the horizon with particles outside the horizon. More precisely, the

quantum fields can be decomposed into modes localized outside or inside the horizon.

Assuming that the quantum state approaches the Minkowski vacuum at short distances,

modes outside the horizon are entangled with modes behind the horizon.

In their famous ‘firewall’ paper [1], Almheiri, Marolf, Polchinski, and Sully (AMPS)

demonstrated a remarkable conflict between three fundamental principles of physics: the

equivalence principle, unitarity, and causality. To accomplish this, they made use of an

entangled pair of modes, which we will refer to as H and P . These modes must have the

following three properties:

• Each mode separately is in a mixed state. This means their von Neumann entropies

satisfy

SH ∼ SP & 1.

• The two modes purify each other, so that the combined system is nearly in a pure

state. That is

SHP � 1.

• Both modes are localized in a region small compared to the Schwarzschild radius of

the black hole.

To the best of our knowledge, the existence of pairs of modes satisfying these three

properties has not been demonstrated. In this paper, we construct such entangled pairs. We

analyze the problem in the simplest context of free scalar field theory in Minkowski space-

time. Because the whole point in the black hole context is to construct wavepackets which

are small compared to the Schwarzschild radius, the geometry is effectively Minkowski

spacetime at these distance scales. Even in this simple context, the existing literature (in

particular [2]) does not contain wavepackets satisfying these three criteria.

Modes satisfying the first two criteria are well known: they are the ‘Rindler modes’,

which we refer to as Rindler plane waves. These modes, however, are not localized. The

wavepackets we consider are simply Rindler plane waves modulated with a Gaussian en-

velope. They are most naturally written in terms of the Rindler coordinate ξ, which is

related to the proper distance from the Rindler horizon by

distance ∼ eξ.

In terms of this coordinate, our modes are plane waves with Gaussian envelopes of length

σ (see figure 1).
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Figure 1. Real part of a Rindler wavepacket and its ‘mirror’ mode. The parameters are set

such that the depiction is most clear, and not to make the wavepackets actually highly entangled.

Conditions for the wavepackets to be highly entangled are derived in this paper. (For later reference:

σ⊥ = σ, k = 4π/σ.)

We find that for appropriately chosen parameters, such a wavepacket localized to the

right of the Rindler horizon is nearly purified by a corresponding ‘mirror’ wavepacket to

the left of the horizon.

Quantitatively, we find

• There is a trade-off between localization and purification. In 1+1 dimensions, the

entropy of the combined system is

SHP ∼
log(σ)

σ2
. (1.1)

• In higher dimensions, the proper width σ⊥ of the wavepacket in the directions along

the horizon must be large compared to the radial length σ in order for the combined

system to behave approximately like a pair of Rindler plane waves,

σ⊥ >
1

2
eσ

2

. (1.2)

If the latter condition is not satisfied, the difference is surprisingly large and the transition

seems to behave as a phase transition. We know of no simple physical argument for this.

Our results quantify the extent to which the degrees of freedom of quantum field

theory can be organized into localized, entangled pairs. The existence of such highly

entangled pairs puts the ‘firewall’ argument of AMPS on stronger footing. In addition, the

quantitative results for how localized the wavepackets can be while remaining in a pure

state gives an indication of on which scales physics must be modified in order to avoid the

paradox.
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We also calculate the entanglement entropy of a single Gaussian wavepacket, which is

approximately a momentum eigenstate with momentum k and has length σ and width σ⊥.

In this case we find that for large spatial extension the entropy goes as a power law in 1/σ⊥,

S ∼ 1

(kσ⊥)4
, (1.3)

where we have neglected logarithmic terms. For infinite width, and in 1 + 1 dimensions,

the entropy is exponentially small in the length σ of the wavepacket,

S ∼ e−(kσ)2
, (1.4)

where we have kept only the exponential dependence. Surprisingly, in the limit that the

width goes to infinity but the length to zero (i.e. σ⊥ → ∞, σ → 0), the entanglement

entropy remains finite, approaching the value S ≈ 0.35 bit. The latter also holds for our

Rindler wavepacket in the same limit.

A number of interesting open questions remain.

• Does including interactions, such as gravitational backreaction, change our

conclusions?

• We have considered modes with a Gaussian envelope. How does the entanglement

change for modes that are truly localized in a region of space?

• Is there a better choice of modes that allows for a purer state with the same local-

ization? We have not shown that our modes are optimal in this respect. It would be

very interesting to know how universal our results quoted above are (eqs. (1.1)–(1.4)).

• What physical arguments explain the sudden transition at σ⊥ ≈ 1
2e
σ2

, and the entropy

of S ≈ 0.35 bit in the limit σ⊥ →∞, σ → 0?

This paper is structured as follows. It is divided into two parts. The current, first

part contains some preliminaries (section 2), a general recipe for computing the entropy

of a collection of modes in the Minkowski vacuum (section 3), the usage of this recipe to

compute the entropy of various wavepackets (sections 4 and 5), a discussion on how these

results apply to the firewall paradox (section 6) and a conclusion (section 7). The majority

of calculations can be found in part II of this paper.

Note added. This work originated as the master’s thesis of the first author. A more

detailed account of the background and techniques can be found in the thesis [3].

2 Preliminaries

Here we give a short introduction to the concept of particles in the vacuum, Gaussian states,

and Rindler space. Useful existing literature on these topics includes references [4–12]. We

set c = ~ = kB = 1.
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2.1 Particles in the vacuum

Consider the free massless scalar field. The field operator φ̂ can be expanded over the basis

of Minkowski plane waves fp as

φ̂ =

∫
dp (fpâp + f∗pâ

†
p),

thus associating the mode operator âp with the Minkowski plane wave fp. The Minkowski

vacuum |0〉
M

is defined as the state for which

âp |0〉M = 0 for all p. (2.1)

Alternatively, the field could be expanded over a basis {gk},

φ̂ =

∫
dk (gkb̂k + g∗kb̂

†
k).

Here k need not be momentum, but should be thought of as an index that labels the basis

modes. Thus the operator b̂k is associated with the mode gk. This operator can be written

in terms of the mode operators âp as

b̂k =

∫
dp
(
α∗kpâp − β∗kpâ†p

)
, (2.2)

where αkp and βkp are the so-called Bogolyubov coefficients. These coefficients can be

computed by

αkp = (gk, fp), βkp = −(gk, f
∗
p), (2.3)

where ∗ is complex conjugation, and the inner product (·, ·) is given by the Klein-Gordon

inner product. In Minkowski space it reads

(g, f) = −i
∫

dx [ g ∂tf
∗ − (∂tg)f∗] . (2.4)

Now by using (2.1) and (2.2), we see that the expectation value of the number operator

of the new modes equals

〈b̂†kb̂k〉M =

∫
dp |βkp|2. (2.5)

So, even though the overall state is the vacuum with respect to the modes fp, the modes

gk are in an excited state. As will become clear in due course, the modes gk will separately

often be in a mixed state due to entanglement with other modes. Thus they will have

some non-zero von Neumann entropy. Since the overall state |0〉
M

is pure, this entropy is

solely due to entanglement, and we will therefore refer to this quantity as the entanglement

entropy of the mode.

In this paper, the overall state is always the Minkowski vacuum, so we will henceforth

drop the subscript M .

– 5 –
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2.2 Gaussian states

The Minkowski vacuum is in fact a Gaussian state (see [3, 9] for a proof.) We will here

show how Gaussian states and continuous variable quantum information theory can be

used to calculate various quantities. More detail can be found in [6–9].

In the phase space formulation of quantum mechanics, any state - be it mixed or pure -

is fully described by the characteristic function χ. There is a specific one-to-one relation

between the density matrices and the characteristic functions [7], but its actual form is not

of intrest here.

Now let X = (q1, p1, . . . , qN , pN)T be a vector in the 2N -dimensional phase space of an

N -mode system with mode operators b̂m. A Gaussian state then, is a state with a Gaussian

characteristic function,

χ(x) ∼ e−
1
2
xTσx. (2.6)

Here σ is the covariance matrix,

[σ]kp =
1

2
〈{R̂k, R̂p}〉 − 〈R̂k〉〈R̂p〉, (2.7)

with {·, ·} the anti-commutator, R̂ = (q̂1, p̂1, . . . , q̂N , p̂N)T , and (q̂m, p̂m) the quadrature

operators

q̂m =
1√
2

(b̂m + b̂†m), p̂m =
1

i
√

2
(b̂m − b̂†m). (2.8)

Note that in the standard formulation of quantum mechanics, the density matrix is al-

ready infinity dimensional for N = 1, whereas the covariance matrix is only 2N -dimensional

in general.

Since σ contains all information about the Gaussian state it must, in principle, be

possible to express the von Neumann entropy S of that state in terms of the entries of σ

only. Indeed there is a nice formula that does exactly that [8]. It reads

S =
∑
j

[(
sj +

1

2

)
log

(
sj +

1

2

)
−
(
sj −

1

2

)
log

(
sj −

1

2

)]
, (2.9)

where the sj are the positive eigenvalues of the matrix iΩσ, called the symplectic eigen-

values of σ, and

Ω =

N⊕
j=1

(
0 1

−1 0

)
.

Example. Let us write out the entropy of a single mode. For N = 1, the covariance

matrix reads

σ =

(
〈q̂2〉 1

2〈{q̂, p̂}〉
1
2〈{q̂, p̂}〉 〈p̂2〉

)
.

It has a single symplectic eigenvalue, s =
√
〈p̂2〉〈q̂2〉 − 〈{q̂, p̂}〉2.

– 6 –
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It is sometimes more convenient to have this symplectic eigenvalue in terms of the

mode operator b̂m rather than the quadrature operators. Using (2.8) and the bosonic

commutation relations, one finds

s =

√(
〈b̂†k b̂k〉+

1

2

)2

− |〈b̂k b̂k〉|2 . (2.10)

Plugging this into (2.9) directly yields the entropy in terms of the expectation values. In

the cases that follow, we will find the closed form of these expectation values by using (2.2)

and (2.4).

2.3 Rindler space

Rindler space is Minkowski space as seen by an accelerating observer. In effect it is a

mere coordinate transformation to coordinates that are most natural for the accelerating

observer. For a more detailed description than the following, see e.g. [4, 5].

The transformation from Minkowski coordinates (t, x) to Rindler coordinates (η, ξ)

comes in four patches or ‘wedges’. The first, x > |t|, is called the right Rindler wedge R.

Here, the transformation is defined as

t =
1

a
ea ξ

R
sinh(aηR), x =

1

a
ea ξ

R
cosh(aηR),

where a sets the energy scale. We have set a = 1 in the introduction, and we will continue

to do so in the following sections, with the exception of section 6.

A second region is x < |t| and is called the left Rindler wedge L. Here the transforma-

tion is defined as

t = −1

a
ea ξ

L
sinh(aηL), x = −1

a
ea ξ

L
cosh(aηL).

In terms of the Rindler coordinates the Minkowski metric ds2 = −dt2 + dx2 reads

ds2 = e2aξ(−dη2 + dξ2), (2.11)

be it in R or L. Indeed, these coordinates are the most natural coordinates for an accelerat-

ing observer: objects standing still in the Rindler frame at ξ = ξ0 have a proper acceleration

of ae−aξ0 , and there is a horizon at x = |t|. Therefore the Rindler coordinates can be used

to describe spacetime just outside a Schwarzschild black hole. (A more careful treatment,

as for example in [12], shows that indeed the Rindler metric is a good approximation to

the Schwarzschild metric when the proper distance to the horizon is small enough.)

The Rindler plane waves

gRp (ηR, ξR) =

{
1√

4πωp
eipξ

R−iωpηR in R

0 in L
, gLp (ηL, ξL) =

{
0 in R

1√
4πωp

eipξ
L+iωpηL in L

,

(2.12)

– 7 –
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where ωp = |p|, are solutions to the equation of motion of the free, massless scalar field.

They can be used as a basis to expand the field operator over, that is,

φ̂ =

∫
dp
[(
gRp b̂

R
p + gLp b̂

L
p

)
+ h.c.

]
,

where h.c. stands for the Hermitian conjugate of the preceding term.

The Rindler plane waves do not annihilate the Minkowski vacuum, that is, b̂L,Rk |0〉
M
6=0.

Instead, they have their own vacuum |0〉
R

defined by b̂L,Rk |0〉
R

= 0. It is, however, possible

to express them in terms of operators (ĉIp, ĉ
II
p ) that do annihilate the vacuum [5],

b̂Rp =

√
1

2
csch(πωp/a)

(
eπωp/(2a)ĉIp + e−πωp/(2a)ĉII†−p

)
,

b̂Lp =

√
1

2
csch(πωp/a)

(
eπωp/(2a)ĉIIp + e−πωp/(2a)ĉI†−p

)
.

(2.13)

Example. We can now continue the example in section 2.2 and calculate the entropy

of a Rindler plane wave by calculating the two relevant expectation values. Using (2.5),

we find

〈b̂Rp b̂Rp 〉 = 0, 〈b̂R†p b̂Rp 〉 =
1

e
2π
a
ωp − 1

≡ Np. (2.14)

Thus, the Rindler plane waves have a thermal spectrum Np with temperature a/(2π).

By (2.10) the symplectic eigenvalue equals

s =
1

e
2π
a
ωp − 1

+
1

2
. (2.15)

Thus the entropy of a Rindler plane wave with Rindler momentum p, in L or R, equals

S̃L = S̃R ≡ S̃ =

(
s+

1

2

)
log

(
s+

1

2

)
−
(
s− 1

2

)
log

(
s− 1

2

)
, (2.16)

with s as in (2.15). Throughout, we will use tildes to refer to plane waves.

In addition to a single mode, we can compute the entropy S̃LR of the two-mode system

that is comprised of a Rindler plane wave gRk and its ‘mirror’ or ‘partner’ mode gL−k. We

call this system a pair of Rindler plane waves. This computation is done as in the single

mode case, the only difference being the dimension of the covariance matrix. One finds

that there are two symplectic eigenvalues, which are both equal to s1,2 = 1/2. Plugging

these into (2.9) yields

S̃LR = 0. (2.17)

Thus a Rindler mode is exactly purified by its mirror mode.

In the Minkowski vacuum all Rindler plane waves have a thermal density matrix, but

are purified by their partners. Thus it can be derived that the Minkowski vacuum can be

written as [3, 13]

|0〉
M

=
⊗
p

(√
1− e−2πωp/a

∞∑
n=0

e−
π
a
ωpn |n〉L |n〉R

)
. (2.18)

– 8 –
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Here, |n〉R is obtained by acting with b̂†Rp on the Rindler vacuum n times, and |n〉L is

obtained by acting with b̂†L−p on the Rindler vacuum n times. This expression shows how

the Rindler modes are entangled, and not just by how much. In this paper we investigate

exactly what happens to this entanglement structure when the Rindler plane waves are

localized.

Higher dimensions. So far, we have considered Rindler space with one temporal di-

rection and one spatial direction. The Rindler metric (2.11) can be extended to higher

dimensions by adding a flat, n-dimensional hyperplane perpendicular to dη and dξ. The

metric then reads

ds2 = e2aξ(−dη2 + dξ2) + dx2
⊥.

So in total, we now have D = 1+1+n dimensions, where n is the number of perpendicular

directions. The Rindler plane waves also extend to D dimensions (see eq. (9.6)).

For reference later on, we note that the operators associated with these plane waves

can also we written in terms of operators that annihilate the vacuum [10, 11],

b̂Rp = b̂R(Ω,p⊥) =

√
1

2
csch(πΩ)

(
eπΩ/2ĉ(−Ω,p⊥) + e−πΩ/2ĉ†(Ω,−p⊥)

)
,

b̂Lp = b̂L(Ω,p⊥) =

√
1

2
csch(πΩ)

(
eπΩ/2ĉ(Ω,p⊥) + e−πΩ/2ĉ†−(Ω,p⊥)

)
,

(2.19)

where the operators ĉ satisfy the commutation relations[
ĉ(±Ω,p⊥), ĉ

†
(±Ω′,p′⊥)

]
= δ(Ω− Ω′)δ(p⊥ − p′⊥).

3 The entanglement entropy of a set of modes in the Minkowski vacuum

In the previous section we have seen that after a basis transformation, the modes in the new

basis can be in an excited state even though the overall state is the Minkowski vacuum

(see eq. (2.5)). Also, we have seen how the entropy of a general Gaussian state can be

computed (eq. (2.9)). As an example, we calculated the entropy of a single Rindler plane

wave and a pair of Rindler plane waves using the formalism of continuous variable quantum

information (eq. (2.16)). We will now extend this to the most general case and give a recipe

for computing the entanglement entropy of a set of N modes that are mutually orthogonal

under the Klein-Gordon inner product (2.4).

As mentioned before, the Minkowski vacuum is a Gaussian state. A Bogolyubov

transformation, as described in section 2.1, is a mere basis transformation, so naturally the

Minkowski vacuum is still a Gaussian state after such a transformation.

Given any set of N modes that are mutually orthogonal under the Klein-Gordon inner

product, there exists some Bogolyubov transformation that transforms the Minkowski plane

wave basis to a basis of which these N modes form a subset. In principle the characteristic

function (2.6) of the N modes can be obtained by explicitly finding such a transformation,

and then integrating out all complementary basis modes. The resulting characteristic

– 9 –
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function will still be Gaussian, and therefore equation (2.9) can be evoked to compute the

entropy of the N modes together.

The above procedure, however, is not tractable in many cases and furthermore unnec-

essary. Namely, one can start from the fact that the N modes are in some Gaussian state

and then compute the entries of the covariance matrix. To do so, we only need to know

the Bogolyubov coefficients for some subset of indices.

Another crucial insight that makes the calculations tractable is that we do not need

to know the full time evolution of the N modes we are interested in. This is because the

symplectic eigenvalues only depend on some expectation values (e.g. eq. (2.10)), which

in turn only depend on some Bogolyubov coefficients (e.g. eq. (2.5)). These coefficients

are given by some Klein-Gordon inner product (2.3), which only depends on the mode

functions at a given time slice and their time derivatives at that same slice.

So to summarize: the entropy of a set of mutually orthogonal modes is a functional of

the initial value conditions of these modes only. This allows us to compute the entanglement

entropy of a set of modes without even having to solve the field’s equation of motion, and

without having to explicitly trace out other modes. The recipe is as follows

1. Define the N modes by their initial value conditions.

2. Using (2.3), compute the necessary Bogolyubov coefficients.

3. Find out which expectation values are relevant by computing the N symplectic eigen-

values in terms of expectations values (2.9).

4. Compute these expectation values using (2.2) and the results of step 2.

5. Plug the symplectic eigenvalues, which are now in closed form, into the expression

for the entropy (2.9).

We will follow these steps in this order in the following sections for various choices of the

N modes.

4 Minkowski wavepacket

Here we will compute the entropy of a Minkowski plane wave with a Gaussian envelope.

So in this section, N = 1. First this is done in 1+1 dimensions and then in D dimensions.

For the sake of example, we will be relatively explicit in the first subsection, but after that

we will just state the results. Full detail on the calculations can be found in section 8.

4.1 1+1 dimensions

Consider the mode function

gk(t, x) =
1

N
e−

1
2σ2 (x−t)2

eikx−ikt. (4.1)

Here, N is some normalization, k > 0 is the approximate momentum, and σ is the length

of the Gaussian envelope. Note that k and σ should be thought of as being fixed. We can

– 10 –
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σ⊥
σ

Re[gk(0, x)]

x

(a) (b)

σ−σ

Figure 2. Schematic depiction of: the real part of (a) the 1+1 dimensional Minkowski wavepacket

(arbitrary units on the vertical axis), and (b) a slice of the D-dimensional Minkowski wavepacket.

For the plots, we have set k = 4π/σ and σ⊥ = σ/2.

vary those parameters, but we should keep in mind that as we do so, we keep going to

different bases. Figure 2(a) shows a plot of the mode function.

This mode is actually a valid solution of the field’s equation of motion, but since

we know the full time evolution anyway, it is given here. Also, it is important to note

that k should be seen as a fixed quantity, and not as an index that labels modes in an

orthogonal basis.

Now that we have defined the wavepacket, we can move on to the Bogolyubov coeffi-

cients. By solving the integrals (2.3), we obtain

αkp =

{
0 : p ≤ 0√

σp
k π
−1/4 exp[−σ2

2 (k − p)2] : p > 0
,

βkp =

{
0 : p ≤ 0√

σp
k π
−1/4 exp[−σ2

2 (k + p)2] : p > 0
.

We already know what expectation values to compute (see equation (2.10)). Using (2.2),

we find

〈b̂†k b̂k〉 =
1

2

(
e−σ

2k2

√
πkσ

− erfc(kσ)

)
, 〈b̂k b̂k〉 =

e−σ
2k2

2
√
πkσ

.

Then by (2.10),

s =
1

2π1/4

√
erf(kσ)

(√
πerf(kσ) +

2e−σ2k2

kσ

)
.

Plugging this into the formula for the entropy (2.9) gives the entropy as a function of kσ.

Let us analyze the result. First of all, note that in the limit kσ → 0, the symplectic

eigenvalue equals s = 1/
√
π, and so

lim
kσ→0

S = S|s=1/
√
π ≈ 0.35 bit. (4.2)

– 11 –
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Contrastingly, 〈b̂†k b̂k〉 goes to infinity in the same limit. In other words, an infinitely narrow

wavepacket is infinitely excited, but has a finite entropy.

Secondly, as we now increase the width of the wavepacket, s is exponentially close to

1/2. Examining formula (2.9) for the entropy, we see that for s = 1/2 + ε, the entropy is

of order S ∼ ε log(1/ε) for small ε. In this case ε ∼ exp[−(kσ)2] (neglecting a power law

prefactor), so S drops to zero exponentially fast, S ∼ exp[−(kσ)2], where we again keep

track of only the exponential dependence. So for all intents and purposes, the localization

entropy of a Gaussian Minkowski wavepacket is negligible.

4.2 D dimensions

Before we define our D-dimensional Gaussian Minkowski wavepacket, let us introduce

some notation. We divide the spatial vector x into a direction parallel to the direction the

wavepacket is moving in, and the n directions perpendicular thereto. That is, x = (x,x⊥)T ,

where x⊥ is an n-dimensional vector. Similarly, the momentum is written as p = (p,p⊥)T .

As our D dimensional Minkowski wavepacket we take a Minkowski plane wave with

a Gaussian envelope. The spatial extension of the envelope in the parallel direction is

denoted by σ. We will refer to this as the length of the wavepacket. Additionally, the

width in the n perpendicular directions is taken to be equal, and is denoted by σ⊥. We

simply call this the width. For a depiction of the parameters σ and σ⊥, see figure 2(b).

With these definitions in place, our D-dimensional wavepacket mode reads

gk(0,x) =
1

N
exp

(
−|x⊥|

2

2σ2
⊥
− x2

2σ2
+ ikx

)
,

(∂tgk)(0,x) =
(
−ik +

x

σ2

)
gk(0,x).

(4.3)

This is a natural extension of the initial value conditions of a 1+1 dimensional Gaussian

wavepacket (4.1). Again, N is some (new) normalization constant.

Having defined the wavepacket we now move on to the calculation of the entropy.

Although we will skip the calculations, an important note is in order. As mentioned

before, the expectation values are ultimately some integral of the mode functions. In the

present case however, these integrals cannot be solved completely. Instead, we have used

a saddle-point-like method and found the relevant expectation values as an asymptotic

series. The full series can be found in section 8.2.

The first few terms of the relevant expectation values of a D-dimensional Gaussian

Minkowski wavepacket are

〈b̂†k b̂k〉 =
n(n+ 2)

64 (kσ⊥)4

(
1 +

3

(kσ)2
+

45

4(kσ)4

)
+O

[
1

(kσ)6(kσ⊥)4

]
, (4.4)

〈b̂k b̂k〉 = O
[
e−(kσ)2

]
.

The symplectic eigenvalue is given directly by (2.10), and plugging this into (2.9) yields

the entropy. The resulting expression is a bit unwieldy, but since the entropy S is a

monotonically increasing function of 〈b̂†k b̂k〉, we can look at the latter to qualitatively discuss

the entropy.
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Let us first check consistency with the 1+1 dimensional result of the previous sub-

section. We can go from the D-dimensional result we have here to the 1+1 dimensional

result in two ways. Firstly, we can put n, the number of perpendicular directions, to

zero. Secondly, we can send kσ⊥ →∞ because an infinitely wide wavepacket is in essence

a 1+1 dimensional wavepacket. In both cases, 〈b̂†k b̂k〉 goes to zero. This is consistent be-

cause the 1+1 dimensional result is exponentially small, and we neglect exponentially small

contributions in (4.4).

There is another reason to look at the limit kσ⊥ → ∞. As mentioned before, in this

limit the D-dimensional wavepacket behaves in essence as a 1+1 dimensional wavepacket.

This also means that if we sequentially send kσ → 0, then S ≈ 0.35 bit. Thus we conclude

that a Gaussian Minkowski wavepacket that is infinitely wide, but has a vanishing length,

has an entropy of S ≈ 0.35 bit.

A final thing to observe from (4.4) is the asymmetric behavior between kσ and kσ⊥:

when we send kσ → ∞ while keeping kσ⊥ fixed, the entropy assumes some finite value.

Contrastingly, when we send kσ⊥ → ∞ and keep kσ fixed, the entropy vanishes. Or, in

other words, a spaghetti-like wavepacket has more localization entropy than a pancake-like

wavepacket.

5 A pair of Rindler wavepackets

We now move to Rindler space (see section 2.3). As in the previous section, we start in 1+1

dimensions and then generalize to D dimensions. In both cases, we compute the entropy

of a single Rindler wavepacket (i.e. N = 1), and a pair of Rindler wavepackets (i.e. N = 2).

These two quantities will tell us how much the Rindler wavepackets are entangled. More

details on the calculations can be found in section 9. In this section and section 9 we put

a = 1.

5.1 1+1 dimensions

As our pair of Rindler wavepackets, we take a pair of Rindler plane waves (2.12), both with

a Gaussian envelope in ξ,

hRk (η, ξ) =
1

N
exp

[
− 1

2σ2
(ξ − η)2 + ik(ξ − η)

]
,

hL−k(η, ξ) =
1

N
exp

[
− 1

2σ2
(ξ − η)2 − ik(ξ − η)

]
.

(5.1)

Here N is some (new) normalization constant, (η, ξ) the Rindler coordinates in the appro-

priate wedge, k > 0 the approximate Rindler Momentum, and σ the length in Rindler coor-

dinates. Both modes are positive-frequency and right-moving. Note that strictly speaking

we have again given more information about our wavepacket than necessary since we will

only be using the initial value conditions. The mode operators d̂Rk and d̂L−k are associated

with the Rindler wavepacket modes above. A schematic depiction of the D-dimensional

extension of these modes can be found in figure 1.
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Figure 3. (a) The entropy of: a Rindler wavepacket, a pair of Rindler wavepackets and a Rindler

plane wave; all as a function of the length σ. The Rindler momentum k is chosen as to make

S̃ ≈ 1 bit. (b) Log-lin plot of the mutual information of two Rindler wavepackets for various k with

increments of 1/4, as a function of the length σ.

The entropy of one Rindler wavepacket. Again, a saddle-point-like method was

used to obtain the relevant expectation values. The explicit calculation can be found in

section 9.

We found that the relevant expectation values of a single Rindler wavepacket that is

in either R or L equals

〈d̂Rk d̂Rk 〉 = 〈d̂L−kd̂L−k〉 = O
[
e−(kσ)2

]
,

〈d̂R†k d̂
R

k 〉 = 〈d̂L†−kd̂
L

−k〉 = Nk

[
1 +

ϕk
σ2

+O
(

1

σ4

)]
,

(5.2)

with ϕk = π
2 (1 + cothπk) (π cothπk − 1/k) and Nk the thermal spectrum (2.14). Remem-

ber that for the Rindler plane waves, 〈b̂Rp b̂Rp 〉 = 〈b̂L−pb̂L−p〉 = Np (also see eq. (2.14)).

By computing the symplectic eigenvalues and inserting these into the entropy, we find

the entropy of a single 1+1 dimensional Rindler wavepacket equals

SR = SL ≡ S = S̃ +
2πNkϕk
σ2

+O
(

1

σ4

)
, (5.3)

where S̃ is the entropy of an Rindler plane wave (2.16). We use the symbol to denote

wavepackets. Next to this analytic result, we have computed S numerically. For the results,

see figure 3(a).

Additionally, we found that in the limit σ → 0, s = 1/
√
π, as was also the case for the

1+1-dimensional Minkowski wavepacket. So an infinitely narrow Rindler wavepacket also

has an entropy of approximately 0.35 bit.

The entropy of a pair of Rindler wavepackets. We now move to the entropy of the

combined system of hRk and hL−k, so here N = 2. Calculating the 4 × 4 covariance matrix,

– 14 –
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we find the relevant expectation values are the ones we already found (5.2), together with

〈d̂Rk d̂L−k〉 =
1

2 sinhπk

[
1 +

ϑk
σ2

+O
(

1

σ4

)]
,

〈d̂R†k d̂
L

−k〉 = O
[
e−(kσ)2

]
,

(5.4)

where ϑk = π
2

[
π coth2 πk − cothπk

k − π
2

]
. Computing the symplectic eigenvalues and plug-

ging them into (2.9) yields

SLR =
1 + log(2κ2σ2)

κ2σ2
+O

[
1

σ4

]
, (5.5)

with κ = 2
π sinhπk. Again, a plot of the numerical result can be found in figure 3(a).

The mutual information of two Rindler wavepackets. The mutual information

between subsystems A and B is defined as IAB = SA + SB − SAB, where SX is the von

Neumann entropy of system X. The entropy of one Rindler plane wave equals S̃ = S̃R = S̃L
as in (2.16). Furthermore, S̃LR = 0 (see eq. (2.17)). Therefore, the mutual information of

two Rindler plane waves equals ĨLR = 2S̃.

The localization of the Rindler plane waves introduces corrections to this result. With

the results from the previous two paragraphs, the mutual information of two 1+1 dimen-

sional Rindler wavepackets equals

ILR = Ĩ +
1

σ2

(
4πNkϕk −

1 + log(2κ2σ2)

κ2

)
+O

(
1

σ4

)
, (5.6)

with Nk, ϕk and κ functions of k, as defined before. In addition, numerical results can be

found in figure 3(b).

A feature that stands out in the numerical results, is that ILR can not only be smaller

than the asymptotic value, but also larger. For small k it can actually be much larger,

with a peak at around σ = 1.

This behavior is explained by our analytical result (5.6). There are two corrections to

the asymptotic result with competing effects, represented by the two terms in the paren-

thesis. On the one hand, we have the first term, 4πNkϕk. It originates from the one-sided

entropies SR and SL, and increases the mutual information. As is clear form section 4,

localization alone can introduce some entropy. So, when two Rindler plane waves are lo-

calized, there is simply more entropy to be shared, which can lead to an increase of the

mutual information.

On the other hand, we have the second term. It originates from the two-sided entropy

SLR, and decreases the mutual information. As we have seen in (2.17), the Rindler plane

waves purify each other perfectly. These plane waves are a very special choice. If we

localize the plane waves, they become less like the Rindler plane waves, so we can expect

their mutual information to decrease.
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5.2 D dimensions

In this subsection we extend the results of the previous to D dimensions, with D > 1 + 1.

Analogous to the extension of the 1+1 dimensional Minkowski wavepacket, we define our

D-dimensional Rindler wavepackets by

I
(γ)
k (0,x) =

1

N
exp

[
− x2

⊥

2σ2
⊥
− ξ2

2σ2
+ ikξ

]
,

∂ηI
(γ)
k (0,x) =

(
−iγk +

ξ

σ2

)
I

(γ)
k (0,x),

(5.7)

with N some (new) normalization, k > 0, γ = 1 in R, γ = −1 in L and x = (ξ,x⊥)T .

Again, an infinitely wide, D-dimensional wavepacket is in essence a 1+1 dimensional

wavepacket. In other words, in the limit σ⊥ → ∞, the relevant expectation values of

a (pair of) D-dimensional Rindler wavepacket(s) are given by (5.2), (5.4), the entropy

by (5.3), (5.5) and the mutual information by (5.6). Accordingly, a D-dimensional Rindler

wavepacket has an entropy of approximately 0.35 bit in the limit σ⊥ →∞, σ → 0. There is

no dependence on D in any of the aforementioned quantities, as is more clear in section 9.

Decreasing σ⊥ from infinity introduces corrections to the 1+1-dimensional results.

Since σ is measured in Rindler coordinates, naively one would expect these corrections

to be small whenever eσ/σ⊥ � 1. However, as a lengthy and technical calculation shows

(section 9.2), the relevant quantity that controls the corrections to the expectation values is

ω ≡ log 2σ⊥
σ2

,

and corrections are always or order e−cω, with c > 1 if ω > 1.

As an example, let us look at the corrections to the expectation value of the number

operator,

〈d̂†kd̂k〉 = Nk

[
1 +

ϕk
σ2

+O
(

1

σ4

)]
+ eσ

2(1−k2) ×


O[σeσ

2(1−2ω)]

O[e−σ
2ω2

]

O[σe−σ
22ω]

,

with ϕk as before (cf. eq. (5.2)). In the piecewise definition of the correction, we have

assumed k < 1. For this expectation value, we can see there are two regimes that are

separated by ωcrit ≡ 1 − k2/2. Corrections are exponentially large for ω > ωcrit, but

exponentially small for ω < ωcrit.

From the above we can conclude that one cannot assume a Rindler wavepacket to be a

Rindler plane wave whenever ω . 1. The exponential difference in the expectation values

of the respective number operators shows they are really different modes.

Note there is an asymmetry between the two directions, as is also the case for the

Minkowski wavepacket. If we first take σ⊥ →∞, the wavepacket is like a 1+1 dimensional

wavepacket for any σ. If we, however, first send σ → ∞, the expectation value of the

number operator is infinite for any finite σ⊥.
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Figure 4. Schematic depiction of the various subsystems at play in the firewall paradox. Arrows

symbolize entanglement. Definitions of the other symbols are given in the text.

So there are two surprising facts. First of all σ⊥ has to be tremendously large for the

corrections to be negligible. Secondly, the transition to the regime where the corrections

are no longer negligible is very sudden, and it behaves as a phase transition. It would be

interesting to study this further as a phase transition, possibly in the context of RG-flows.

6 Application to the firewall paradox

With the exception of the introduction, there has been no reference to the Firewall paradox.

This is because the results are interesting in their own right, and to be clear that they do

not depend on the details of the paradox in any way. In this section we comment on how

the results can be used in the discussion of the firewall paradox.

The firewall paradox [1], seems to show a contradiction between unitarity, equivalence

and effective field theory. There are many formulations of the paradox, and we will give

our own here to be precise on how our results fit in, although a comprehensive formulation

is out of the scope of this article. Our formulation is mostly adapted from [14], and more

details can be found there.

6.1 The paradox

Consider a black hole that was formed by a collapsing shell of photons that are together in

a pure state. Say we have waited long enough so that the majority of degrees of freedom

have now escaped the black hole due to Hawking radiation.

Now let H be a newly emitted, outgoing Hawking mode that is still close to the horizon,

P its partner mode behind the horizon, B the remaining degrees of freedom of the black

hole, and R the far-away radiation that has long escaped the black hole. For a schematic

depiction of the various subsystems, see figure 4.

Firstly, by the equivalence principle, space should locally look like Minkowski space,

in particular near a black hole horizon. Near-horizon Hawking modes are like Rindler

modes [1, 12, 13]. These Rindler modes need to be entangled with their partners, for

otherwise space does locally not look like the Minkowski vacuum (see eq. (2.18)). As we
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have seen in section 2.3, a Rindler mode by itself has some order one entropy, whereas a

pair of Rindler modes has no entropy. In other words,

SH − SPH ∼ 1.

Secondly, because we started out in a pure state, we have by unitarity that the whole

(B, P , H and R together) is in a pure state. Since the abundance of degrees of freedom is

in R, and the black hole formation and evaporation process is so complex that is scrambles

all information evenly over the degrees of freedom, there is a sub-factor RH in R that

purifies H to a large extent [15]. In other words, for the entropy of the combined system

HRH we have

SHRH � 1. (6.1)

Since H alone is in a mixed state this means H and RH are entangled.

Now comes the paradox. Any three quantum systems obey strong subadditivity of

their von Neumann entropy [16],

SHRH − SPHRH ≥ SH − SPH . (6.2)

As we have argued, the right hand side is of order unity, whereas SHRH is much smaller

than unity, and SPHRH is positive. This is clearly a contradiction.

We can rewrite the above to get a statement that involves the mutual information. By

(normal) subadditivity and the triangle inequality,

|SP − SHRH | ≤ SPHRH ≤ SP + SHRH ,

so that SPHRH = SP + ε with |ε| � 1. Substituting this into (6.2), we get

SHRH − ε ≥ IHP , (6.3)

with IHP the mutual information between H and P . We will explicitly show that our

Rindler wavepackets have a mutual information that violates this inequality.

6.2 Rindler-Hawking wavepackets

In the formulation above, but certainly also in [1], it is argued that close to the horizon,

space is like Rindler space, and near-horizon Hawking modes are like Rindler modes. How-

ever, Rindler modes are infinitely extended, but by definition, near-horizon Hawking modes

are not. Moreover, even though space might locally look like Rindler space, the Rindler

modes extend into the region where the Schwarzschild metric is no longer approximated by

the Rindler metric. So in a more rigorous treatment, one would have to consider localized

Rindler modes.

However, the localization induces some entropy, and this entropy need not be shared

with the mirror mode on the other side of the horizon. So a priori, it is not clear that

a localized Rindler mode is purified by its partner enough. Luckily, with the results of

the previous sections at hand, we can show that under certain conditions, this is indeed

possible.
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To do so, let 2GM be the Schwarzschild radius of an old black hole, and say we trust the

Rindler approximation up to a proper distance ρmax from the horizon. As our near-horizon

Hawking wavepacket H we can now take a Rindler wavepacket, as defined in this paper,

that runs from ρ = 1
ae
−naσ to ρ = 1

ae
naσ with 1

ae
naσ = ρmax . Here n determines how strict

a confinement we demand. Remember that if σ⊥ >
1
2ae

(aσ)2
, a D-dimensional wavepacket

is in essence 1+1 dimensional (section 5.2). For any n, σ and ρmax (and in particular for

large σ so that a 1+1 dimensional Rindler wavepacket is purified by its partner), there

exists a 2GM and σ⊥ so that 2GM � σ⊥ > 1
2ae

(aσ)2
while respecting 1

ae
−nσ � lp and

1
ae
nσ = ρmax. Here lp is the Planck length.

In other words, there are certain conditions to be met for the pair of Rindler wavepack-

ets to be highly entangled, and the size of the black hole can always be increased so that

these conditions are met with arbitrary satisfaction.

As we have shown in this paper (in particular, see eq. (5.6) and figure 3(b)), a pair of

Rindler wavepackets has ILR ∼ 1, while on the other hand, unitarity demands ILR ∼ 0

(eq. (6.3)). This, exactly, is the paradox.

7 Conclusion

In this paper, a recipe was given to compute the entanglement entropy of any mutually

orthogonal set of modes in the Minkowski vacuum. This recipe was applied to a Minkowski

plane wave with a Gaussian envelope, and a pair of Rindler plane waves, both with a

Gaussian envelope. These results enabled us to gain more insight in the entanglement

structure of the Minkowski vacuum, and explicitly construct the Hawking wavepackets

that play an essential role in the firewall paradox.

For a D-dimensional Minkowski wavepacket, we found the entropy goes to zero as a

power law in the spatial extension of the wavepacket. There is an asymmetry in this power

law: a spaghetti-like wavepacket has more entropy than a pancake-like wavepacket. In

addition, we found the entropy obtains a specific parameter-independent value of approxi-

mately 0.35 bit in the limit of infinite width but vanishing length (i.e. σ⊥ →∞, σ → 0).

For the D-dimensional Rindler wavepackets, we found that they are essentially 1+1

dimensional if ω ≡ log(2σ⊥)/σ2 > 1. For a 1+1 dimensional wavepacket, the corrections to

the entropies are a power law (for the one-sided entropy) or slightly worse than a power law

(for the two-sided entropy). A D-dimensional Rindler wavepacket also obtains an entropy

of approximately 0.35 bit in the limit of infinite width and vanishing length.

If, however, ω < ωcrit ≡ 1 − k2/2, the D-dimensional Rindler wavepacket is nothing

like a 1 + 1 dimensional wavepacket. This is shown by the expectation value of the number

operator, which goes like e−cω if ω > ωcrit, but like ecω if ω < ωcrit. (In both cases c is

some positive constant.)

Some questions still remain. First of all, we have treated gravity as a fixed background.

It would be interesting to see whether gravitational back-reaction could be included, and

whether it could be of any influence on our conclusions.

Also, there are two things we as of yet do not have any physical intuition for. Firstly,

we found an entropy of approximately 0.35 bit in the limit of infinite width and vanishing
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length for both the Minkowski wavepacket and the Rindler wavepacket. This suggests that

this value might be obtained by any highly localized mode in the same limit. It would

be interesting to find out what physical principle is behind this parameter-independent,

dimensionless constant.

Secondly, we have no intuition for why the ratio ω = log(2σ⊥)/σ2 turns out to the

natural parameter for describing the corrections to the expectation values of the 1+1

dimensional Rindler wavepacket. Also, the behavior of the expectation value of the number

operator hints there is a phase transition at ωcrit = 1− k2/2. It would be interesting to see

if this behavior can be properly described as a phase transition, and if so, we could ask:

why at 1− k2/2?

Part II

Calculations

This part is structured as sections 4 and 5 and shows the calculations. Although technical

and lengthy, the calculation in section 9.2.1 gains some insight in the phase transition-

like behavior of the expectation values of a D-dimensional Rindler wavepacket because

mathematically we can pinpoint where and why the transition occurs.

8 Minkowski wavepacket

8.1 1+1 dimensions

The initial value conditions of a Minkowski plane wave with momentum p are

fp(0, x) =
1√

4πωp
eipx,

(∂tfp)(0, x) = (−iωp)fp(0, x),

with ωp = |p|. From the full definition of the Rindler wavepacket (4.1), we have after

normalization,

gk(0, x) =
1

π1/4
√

2kσ
exp

(
− x2

2σ2
+ ikx

)
,

(∂tgk)(0, x) =
(
−ik +

x

σ2

)
gk(0, x) .

The Bogolyubov coefficient αkp that is needed to write the wavepacket in terms of the

plane waves is then found by (see eq. (2.3))

αkp = (gk, fp) (8.1)

= −i
∫

dx gk(0, x)f∗p (0, x)
(
iωp + ik − x

σ2

)
. (8.2)

By solving this integral we find

αkp =

{
0 : p ≤ 0√

σp
k π
−1/4 exp[−σ2

2 (k − p)2] : p > 0
. (8.3)
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Likewise, we obtain for βkp = −(g, f∗),

βkp =

{
0 : p ≤ 0√

σp
k π
−1/4 exp

[
− σ2

2 (k + p)2
]

: p > 0
. (8.4)

The resulting expectation values are given in the text.

8.2 D dimensions

To save writing, we will work with unnormalized functions. As a reminder, we will put

tildes over these functions. These tildes should not be confused with the tildes in part I,

which denote plane waves.

In D-dimensions, the initial value conditions of an unnormalized Minkowski plane

wave are

f̃p(0,x) = eip·x, (∂tf̃p)(0,x) = (−iωp)f̃p(0,x),

with ωp =
√
p2 + |p⊥|2. The initial value conditions for the wavepacket are (4.3).

Normalization. To properly normalize the wavepacket, we compute the norm of the

unnormalized wavepacket

N 2 = (g̃k, g̃k) = 2πd/2kσσn⊥ .

The normalized mode function is then given by gk = g̃k/N .

The Minkowski plane waves are delta function normalized,

(f̃p, f̃p′)δ = 2ωp(2π)dδ(p− p′).

Let us define (f̃p, f̃p′) ≡ (f̃p, f̃p′)δ/δ(p − p′) so that we can write the normalized plane

waves as fp = f̃p/
√

(f̃p, f̃p).

Bogolyubov coefficients. By (2.3),

αkp =
1

2
π−

1
4

(n+1)

√
σσn⊥
k ωp

(p+ ωp) exp

[
−σ

2
⊥

2
|p⊥|2 −

σ2

2
(p− k)2

]
,

βkp =
1

2
π−

1
4

(n+1)

√
σσn⊥
k ωp

(p+ ωp) exp

[
−σ

2
⊥

2
|p⊥|2 −

σ2

2
(p+ k)2

]
.

Note that the only difference between αkp and βkp is the sign in front of the k that is in

the exponent.

Expectation values. The expectation values that go into the symplectic eigenvalue are

〈b̂†k b̂k〉 and 〈b̂k b̂k〉 (see eq. (2.10)). The former equals

〈b̂†k b̂k〉 =

∫
dp|βkp|2

=
σ σn⊥

4
√
πn+1

S(n− 1)

∫ ∞
−∞

dp

∫ ∞
0

d|p⊥| |p⊥|n−1 (p+ ωp)2

k ωp
e−σ

2
⊥|p⊥|

2−σ2(p+k)2
.

Here, S(n− 1) is the surface area of a unit n− 1 sphere.
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Unfortunately, we cannot solve the last integral due to the factor
(p+ωp)2

k ωp
. To tackle

this, we expand this factor around the part where the rest of the integrand is exponentially

peaked. The integral that is obtained by plugging in this expansion can be solved. Note

that the width of the exponential peak scales as 1/σ⊥ in one direction, and as 1/σ in the

other, so that the approximation becomes better with increasing σ and σ⊥. By the above

procedure, we will obtain a solution to the integral as an asymptotic series.

Computing many terms of the expansion, we find they coincide with

(p+ ωp)2

k ωp
≈

L∑
`=0

J∑
j=0

C`j

(
|p⊥|
k

)2`+4(p+ k

k

)j
,

where

C`j =
1√
π

(−1)`

(2 + `)! `!

2j

j!
Γ
(
a(−)

j + `+ 1
)

Γ
(
a(+)

j + `+ 1
)
,

a(±)

j =
1

4
(3± (−1)j + 2j).

So we find that

〈b̂†k b̂k〉LJ =
n

8
√
π

L∑
`=0

J∑
j=0

(−1)`

j!
(1 + `)1+j(1 + n

2 )1+`(3 + `)j− 3
2

(kσ⊥)−4−2`(kσ)−2j ,

where we used the Pochhammer symbol (a)n = Γ(a + n)/Γ(a) as shorthand notation. To

make this result a bit more insightful, we note that he first few terms read

〈b̂†k b̂k〉 =
n(n+ 2)

64 (kσ⊥)4

(
1 +

3

(kσ)2
+

45

4(kσ)4

)
+O

(
1

σ6σ4
⊥

)
.

The second relevant expectation value is

〈b̂k b̂k〉 = −
∫

dpα∗kpβ
∗
kp = O

[
e−(kσ)2

]
.

9 A pair of Rindler wavepackets

9.1 1+1 dimensions

The mode function of a 1+1 dimensional Rindler wavepacket is given in equation (5.1).

We associate the operators d̂Rk and d̂Lk with the two Rindler wavepackets.

Bogolyubov coefficients. Here we will take a slightly different approach than before.

Instead of writing the Rindler wavepackets in terms of the Minkowski plane waves, we write

the Rindler wavepackets in terms of the Rindler plane waves. Sequentially, we use (2.19)

to compute expectation values. So in this section, the Bogolyubov coefficients are between

the Rindler wavepacket and the Rindler plane waves.

The Rindler metric (2.11) is conformally equivalent to the Minkowski metric. There-

fore, the Klein-Gordon inner product has the same functional form as in Minkowski
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space (2.4). Note also that our wavepacket in the right Rindler wedge (5.1) can be obtained

from the Minkowski wavepacket (4.1) by sending (t, x) → (η, ξ). The same holds for the

Rindler plane waves. So, in this section, we can just use the Bogolyubov coefficients (8.1)

and (8.3), but now they act between different modes.

There are some subtleties concerning the coefficients in the left Rindler wedge L. A

careful consideration shows

αRkp = αL−k−p ≡ αkp, βRkp = βL−k−p ≡ βkp.

So we drop the superscript whenever it is irrelevant. We will also do this for mode operators

and expectation values.

Expectation values. Calculating the covariance matrix (2.7), we find that for our spe-

cific choice of modes, it is in the particularly nice form

σ =


A00 0 C00 0

0 A11 0 C11

C00 0 A00 0

0 C11 0 A11

 , with



A00 = 〈d̂†kd̂k〉+ 〈d̂kd̂k〉+ 1
2

A11 = 〈d̂†kd̂k〉 − 〈d̂kd̂k〉+ 1
2

C00 = 〈d̂R†k d̂
L
−k〉+ 〈d̂Rk d̂L−k〉

C11 = 〈d̂R†k d̂
L
−k〉 − 〈d̂Rk d̂L−k〉

. (9.1)

Using equation (2.2) (where â and b̂ are now b̂ and d̂ respectively) and (2.19), we obtain

〈d̂kd̂k〉 = −
∫

dp
1

sinh(π|p|)
α∗kpβ

∗
kp,

〈d̂†kd̂k〉 =

∫
dp

1

2 sinh(π|p|)

(
|αkp|2e−π|p| + |βkp|2eπ|p|

)
,

〈d̂Rk d̂L−k〉 =

∫
dp

1

2 sinh(π|p|)
(
αR∗kpα

L∗
−k−p + βR∗kp β

L∗
−k−p

)
,

〈d̂R†k d̂
L
−k〉 = −

∫
dp

1

2 sinh(π|p|)
(
αRkpβ

L∗
−k−p + βRkpα

L∗
−k−p

)
.

(9.2)

We can now insert the Bogolyubov coefficients, which yields

〈d̂kd̂k〉 = − 1√
π

σ

k
e−(kσ)2

∫ ∞
0

dp
p

tanh(π p)
e−(pσ)2

,

〈d̂†kd̂k〉 =
1

2
√
π

σ

k

∫ ∞
0

dp
p

sinh(π p)

(
e−σ

2(k−p)2−π p + e−σ
2(k+p)2+π p

)
,

〈d̂Rk d̂L−k〉 =
1

2
√
π

σ

k

∫ ∞
0

dp
p

sinh(π p)

(
e−σ

2(k−p)2
+ e−σ

2(k+p)2
)
,

〈d̂R†k d̂
L
−k〉 = − 1√

π

σ

k
e−(kσ)2

∫ ∞
0

dp
p

sinh(π p)
e−(pσ)2

.

(9.3)

Some of these integrals cannot be solved directly. Like in the previous section, we

tackle this by expanding the troublesome parts around the point where the rest of the

integrand is exponentially peaked. Note that, again, the width of this peak scales as 1/σ.
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Thus we obtain

〈d̂kd̂k〉 = O
[
e−(kσ)2

]
,

〈d̂†kd̂k〉 =
1

e2πk − 1

[
1 +

ϕ(k)

σ2
+O

(
1

σ4

)]
,

〈d̂Rk d̂L−k〉 =
1

2 sinh(π k)

[
1 +

ϑ(k)

σ2
+O

(
1

σ4

)]
,

〈d̂R†k d̂
L
−k〉 = O

[
e−(kσ)2

]
,

(9.4)

with

ϕk =
π

2
(1 + cothπk) (π cothπk − 1/k) ,

ϑk =
π

2

[
π coth2 πk − cothπk

k
− π

2

]
.

In the limit σ →∞ the above expectation values are equal to the corresponding expectation

values of the Rindler plane waves, as they should. (The latter expectation values can not

be found elsewhere in this paper.)

The symplectic eigenvalues. Since any covariance matrix is real and symmetric, it

can be written as [6]

σ =

(
A C

CT B

)
.

For a two-mode system, A, B and C are real 2 × 2 matrices. These matrices contain the

information about systems A, B, and the correlations between A and B respectively.

The two symplectic eigenvalues s± are

2s2
± = I0 ±

√
(I0)2 − 4I4,

where

I0 = I1 + I2 + 2I3, I1 = det(A), I2 = det(B), I3 = det(C), I4 = det(σ).

Specifically, the symplectic eigenvalues of the covariance matrix (9.1), where B happens to

be equal to A, are thus

s2
± =

(
〈d̂†kd̂k〉+

1

2

)2

− 〈d̂Rk d̂L−k〉2 +O
(
e−σ

2k2
)
. (9.5)

Plugging this into (2.9) and expanding around 1/σ gives

SLR =
1 + log(2x2)

x2
+O

(
1

σ4

)
,

with x ≡ 2σ sinh(πk)/π.

– 24 –



J
H
E
P
1
0
(
2
0
1
7
)
0
9
2

9.2 D dimensions

The initial value conditions of the unnormalized, D-dimensional Rindler plane waves are

obtained from the full expressions (for example, see [10]),

f̃
(γ)
p (0,x) = Θ(ρ)KiΩ(|p⊥|ρ) exp [ip⊥· x⊥] ,

∂ηf̃
(γ)
p (0,x) = Θ(ρ)(−iγΩ)f̃

(γ)
p (0,x),

(9.6)

where p = (Ω,p⊥)T with Ω > 0, η the Rindler time, Θ the Heaviside step function, KiΩ

the modified Bessel function of the second kind and ρ = eξ is the proper distance to the

horizon. The expression for the left (right) wedge is obtained by setting γ = −1 (γ = 1).

The initial value conditions of the Rindler wavepacket are given in the text (eq. (5.7)).

Normalization. The norm of the unnormalized wavepacket equals

N 2 = (Ĩk, Ĩk) = 2k(
√
πσ)(
√
πσ⊥)n,

with k > 0 and n the number of perpendicular directions. The norm of the Rindler plane

waves is

(f̃p, f̃p′)δ = π2(2π)ncsch(πΩ)δ(p− p′).

So, we have by definition (f̃p, f̃p) = π2(2π)ncsch(πΩ). The normalized Bogolyubov coeffi-

cients are then related to the unnormalized ones via

αkp = α̃kp/

√
(Ĩk, Ĩk)(f̃p, f̃p), βkp = β̃kp/

√
(Ĩk, Ĩk)(f̃p, f̃p).

Bogolyubov coefficients. Here we calculate the coefficients that take us from the

Rindler plane waves to the Rindler wavepackets. The first (unnormalized) coefficient is

α̃Rkp = (ĨRk , f̃
R
p ) = −i

∫
dx Ĩkf̃

∗
p

(
iaΩ + ik − ξ

σ2

)
= I× II,

with

I ≡
∫

dx⊥ exp

(
− x2

⊥

2σ2
⊥
− ip⊥ · x⊥

)
and

II ≡
∫
dξ K−iΩ(|p⊥|eaξ) exp

(
− ξ2

2σ2
+ i ξk

)(
aΩ + k +

iξ

σ2

)
.

Integral I is a standard Gaussian integral,

I = (
√

2πσ⊥)n exp

(
−σ

2
⊥

2
|p⊥|2

)
.

The Bessel function K makes it impossible to solve integral II directly. We will expand the

Bessel function around |p⊥|eaξ = 0 and then solve the integral term by term.
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Now |p⊥| will be of the order of 1/σ⊥ due to the exponential in I. However, ξ will be

of order σ due to the exponential in II. Therefore, our approximation only holds in the

regime where

σ⊥ � eσ.

From the general series representation of the Bessel function [17],

K−iΩp(|p⊥|eξ) = K0 +K1 + . . .

with

K0 =
∑
δ′

Aδ
′
ξ

(
|p⊥|

2

)δ′iΩ
, K1 =

∑
δ′′

Aδ
′′
ξ′ B

δ′′
ξ′

(
|p⊥|

2

)δ′′iΩ+2

, (9.7)

where

Aδ
′
ξ =

1

2
eξ δ

′iΩΓ(−δ′iΩ) , Bδ′′
ξ′ =

e2ξ′

1 + δ′′iΩ
. (9.8)

Here δ′, δ′′ ∈ {−1, 1} make complex conjugates.

We now define IIq to represent integral II where K is replaced by the q’th order of K

in |p⊥|2 eξ. The resulting expectation values are defined likewise. So, for example, 〈d̂†kd̂k〉
1

is the first correction to 〈d̂†kd̂k〉
0 that is due to the expansion of K.

9.2.1 Expectation values

The relevant expectation values can be obtained by generalizing and solving the inte-

grals (9.2). Effectively, the integrals only change in that p is replaced by p = (Ω,p⊥), and

|p| by Ω.

For conciseness, we will here only show the calculation of 〈d̂†kd̂k〉
0 and 〈d̂†kd̂k〉

1. The

other relevant expectation values can be obtained in a similar way and will be listed at the

end of this section.

The D-dimensional generalization of the expectation value of the number operator (cf.

eq. (9.2)) reads

〈d̂†kd̂k〉 =

∫ ∞
0
dΩ

∫
dp⊥

1

2 sinh(πΩ)

(
|αkp|2e−πΩ + |βkp|2eπΩ

)
. (9.9)

The effect of the expansion of Bessel function K on |α̃kp|2 is

|α̃kp|2 = |I|2|II0|2 + |I|2(II0II1∗ + c.c.) + . . . ,

where c.c. stands for ‘the complex conjugate of the preceding term’. The same expression

holds for |β̃kp|2 if we make the substitution Ω→ −Ω,

|β̃kp|2 = |α̃kp|2|Ω→−Ω.
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Inserting the last two equations into (9.9), we have

〈d̂†kd̂k〉 = 〈d̂†kd̂k〉
0 + 〈d̂†kd̂k〉

1,

with

〈d̂†kd̂k〉
1 =

1

N

∫
dp

1

2
csch(πΩ)|I|2

[
e−πΩ (II0II1∗ + c.c.

)
+ Ω→ −Ω

]
, (9.10)

where N = (g̃k, g̃k)(f̃p, f̃p). Here Ω → −Ω stands for ‘the preceding term where Ω is

replaced by −Ω’.

Let us first briefly comment on 〈d̂†kd̂k〉
0. In this order we are effectively looking at

an infinitely wide Rindler wavepacket (i.e. σ⊥ → ∞), which in essence should be a 1+1

dimensional Rindler wavepacket. Indeed, after performing all integrals, the expectation

value of a pair of 1+1 dimensional Rindler wavepackets is reobtained (9.4), without any

dependence on D. The same holds for the other relevant expectation values.

The expectation value 〈d̂†kd̂k〉
1 requires considerably more work. To keep an overview,

we divide the calculation into six steps. (1) Use symmetry of the integrand to redefine

the limits of integration. Isolate and solve the integral over p⊥. (2) Isolate and solve the

integral over ξ and ξ′. (3) Rewrite to get a manageable form for the integral over Ω, and

extend Ω to the complex plane. Deform the contour so that the integral can be split into

two parts. Write the integral as a sum of two separate contour integrals. (4) Calculate the

first integral by using residues. (5) Calculate the second integral by using the saddle point

method and residues. (6) Summarize all contributions to 〈d̂†kd̂k〉
1.

1. Observe that the integral (9.10) is of the form
∫∞

0 dΩ
∫
dp⊥[f(Ω,p⊥) + f(−Ω,p⊥)],

which is equal to
∫∞
−∞ dΩ

∫
dp⊥f(Ω,p⊥). Now after some rearranging, this reads

〈d̂†kd̂k〉
1 =

(√
2πσ⊥

)2n
∫ ∞
−∞

dΩ
csch(πΩ)

2N

∫
dξdξ′e−(ξ2+ξ′2)/(2σ2)

×
∑
δ

e−πΩgδ(ξ)gδ(−ξ′)
[∫

dp⊥e
−σ2
⊥|p⊥|

2

K0
ξK1

ξ′

]
,

with gδ(ξ) = eδikξ
[
(aΩ + k) + δiξ/σ2

]
. The index δ ∈ {−1, 1} turns on and off the

complex conjugate from equation (9.10). The solution of the integral over p⊥ is

1

(2σ⊥)2

nπn/2

2σn⊥

∑
δ′,δ′′

Aδ
′
ξ A

δ′′
ξ′ B

δ′′
ξ′ f

δ′δ′′ ,

with A and B as in equation (9.8) and

f δ
′δ′′ = (2σ⊥)−(δ′+δ′′)iΩ Γ

[
1 + n

2 + 1
2(δ′ + δ′′)iΩ

]
Γ
(
1 + n

2

) .

The indices δ′, δ′′ ∈ {−1, 1} originate from the complex conjugates in K0 and K1.
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2. Integral over ξ and ξ′. After rearranging,

〈d̂†kd̂k〉
1 =

(√
2πσ⊥

)2n 1

(2σ⊥)2

nπn/2

2σn⊥

∫ ∞
−∞

dΩ
csch(πΩ)

2N
∑
δ,δ′,δ′′

f δ
′δ′′e−πΩ

×
∫

dξ′e−ξ
′2/(2σ2)Aδ

′′
ξ′ B

δ′′
ξ′ g

δ(−ξ′)

×
∫

dξ e−ξ
2/(2σ2)Aδ

′
ξ g

δ(ξ).

The result of the integral over ξ is

1

2
Γ[−δ′iΩ]

√
2πσeσ

2b2/2 [(aΩ + k) + δib] ,

with

b = δ′iaΩ + δik. (9.11)

The result of the integral over ξ′ is

1

2

Γ(−δ′′iΩ)

1 + δ′′iΩ

√
2πeσ

2b′2/2σ[(aΩ + k)− δib′],

with

b′ = δ′′iaΩ− iδk + 2a. (9.12)

3. Integral over Ω. After computing the normalization N and some rearranging, we have

〈d̂†kd̂k〉
1 =

σn

64kπ3/2σ2
⊥
× I, (9.13)

where

I =

∫ ∞
−∞

dΩ
∑
δ,δ′,δ′′

eσ
2(b2+b′2)/2Gδδ

′δ′′
Ω , (9.14)

with

Gδδ
′δ′′

Ω = e−πΩ Γ
(
1 + n

2 + 1
2(δ′ + δ′′)iΩ

)
Γ
(
1 + n

2

) Γ (−δ′iΩ) Γ(−δ′′iΩ)

1 + δ′′iΩ
(2σ⊥)−(δ′+δ′′)iΩ

× [(aΩ + k) + δib]
[
(aΩ + k)− δib′

]
.

The polynomial on the second line vanishes whenever δ = δ′. This allows us to

substitute δ′ → −δ and drop the sum over δ′.

After doing so, consider performing the sum in equation (9.14) that now only runs

over δ and δ′′. There are four terms. Let z be the term where δ = δ′′ = 1. The term

where δ = δ′′ = −1 is its complex conjugate. Thus we can write the sum of these two
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terms more concisely as 2 Re(z). Similarly, we can write the sum of the terms where

δ = −δ′′ = 1 and δ = −δ′′ = −1 as 2 Re(y). Thus we have after rewriting

I = 2

∫ ∞
−∞

dΩ [Re(z) + Re(y)],

where

z = − exp
{
−σ2Ω2 + 2σ2(i+ k)Ω + c

} 8πi

e2πΩ − 1
,

y = exp
{
−σ2Ω2 + [2i log(2σ⊥)− 2iσ2 − π]Ω + c

} 4 Ω

i+ Ω

Γ
(
1 + n

2 − iΩ
)

Γ
(
1 + n

2

) Γ2(iΩ),

c = σ2(2− k2 − 2ik).

Note that x and y diverge separately as Ω→ 0 but their sum does not. To separate

the integrals of z and y, we extend Ω to the complex plane and move the contour C
up so that it runs just above the pole at Ω = 0 instead of over the real line. Thus

we have

I = Iz + Iy,

with

Iz = 2 Re[

∫
C

dΩ z(Ω)], Iy = 2 Re[

∫
C

dΩ y(Ω)].

4. Iz. Let us make the variable substitution Ω→ Ω + i. In this variable,

z = − exp
{
−σ2[Ω2 − 2kΩ + k2 − 1]

} 8πi

e2πΩ − 1
.

In the new variable, C runs just below the pole at Ω = 0. Note that z now satisfies

z(Ω∗) = −z∗(Ω).

Consider the contour C′ that is obtained by reflecting C about the real axis. We have∫
C′ dΩ z(Ω) = −(

∫
C dΩ z(Ω))∗. By the residue theorem,∫

C
dΩ z(Ω)−

∫
C′

dΩ z(Ω) = 2πiRes(z,Ω = 0) = 8π eσ
2(1−k2).

But the left hand side also equals∫
C

dΩ z(Ω) +

(∫
C

dΩ z(Ω)

)∗
= 2 Re

[∫
C

dΩ z(Ω)

]
= Iz.

Therefore,

Iz = 8π eσ
2(1−k2).

The total contribution to 〈d̂†kd̂k〉
1 that is caused by z, including the prefactors

in (9.13), is thus

〈d̂†kd̂k〉
1
z ≡ O

[
σeσ

2(1−k2−2ω)
]
,
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where we made the definition

ω ≡ log(2σ⊥)

σ2
.

Note that we now have two independent parameters, σ > 0 and ω > 0. The reason

for the use of ω is that it turns out to be the natural parameter in Iy, as we will

now see.

5. Iy. Here we use the saddle point method (see, for example, [18]). The saddle point

of y is at Ωsp = −i + iω + O(σ−2). If we deform the contour of Iy so that it runs

over the saddle point, the contribution to 〈d̂†kd̂k〉
1 due to this saddle point is

〈d̂†kd̂k〉
1
y,sp ≡ O

[
eσ

2(1−k2−ω2)
]
. (9.15)

In deforming the contour, we pick up contributions from poles that end up on

the other side of the contour. The function y has poles at Ω = mi, with m ∈
{−1, 0, 1, . . .}. For 1 < ω < 2 we do not need to cross any pole, since the contour

initially runs between the pole at Ω = 0 and Ω = i.

If 0 < ω < 1 however, we need to cross the pole at Ω = 0 to get to the saddle point.

Likewise, for 2 < ω we need to cross the pole at Ω = i, and depending on ω possibly

also some subsequent poles. It turns out that if ω > 1, the pole at Ω = i is always

leading.

The above results in

〈d̂†kd̂k〉
1
y,pole ≡ eσ

2(1−k2) ×


O[σeσ

2(1−2ω)] : 0 < ω < 1

0 : 1 < ω < 2

O[σe4σ2(1−ω)] : 2 < ω

.

6. Summarize. We are now ready to compare all contributions to 〈d̂†kd̂k〉
1. The overall

result is

〈d̂†kd̂k〉
1 = 〈d̂†kd̂k〉

1
z + 〈d̂†kd̂k〉

1
y,sp + 〈d̂†kd̂k〉

1
y,pole

= eσ
2(1−k2) ×


O[σeσ

2(1−2ω)] : 0 < ω < 1

O[e−σ
2ω2

] : 1 < ω < 2

O[σe−σ
22ω] : 2 < ω

,

where the first line in the piecewise definition originates from the pole of y at Ω = 0,

the second from the saddle point of y, and the third from the pole of z. Note that

once a case has been chosen, ω should be considered as a constant for the ‘O’ notation

to make sense.

Remarkably, there are two regimes, and for large σ the transition between these two

regimes is practically instantaneous: 〈d̂†kd̂k〉
1 is exponentially large for ω < 1− k2/2,

but exponentially small for ω > 1− k2/2.

Calculations similar to the above yield the other expectation values, the results of which

are listed below.
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Summary of expectation values. Here we will give an extensive list of all relevant

expectation values of a pair of D-dimensional Rindler wavepackets in the Minkowski vac-

uum. We drop the superscripts L and R for one-sided expectation values, since e.g.

〈d̂R†k d̂
R
k 〉 = 〈d̂L†k d̂

L
k〉. To give an idea where the different pieces come from, we will write e.g.

(y pole) to denote that a term originates from a pole of the integrand y.

Define

ω =
log 2σ⊥
σ2

,

and let ωcrit be the value of ω that separates the regime of exponential large corrections

from the regime of exponentially small corrections. Also, let

ϕk =
π

2
[1 + cothπk] [π cothπ k − 1/k] , ϑk =

π

2

[
π coth2 πk − cothπk

k
− π

2

]
.

Then

〈d̂†kd̂k〉 = 〈d̂†kd̂k〉
0 + 〈d̂†kd̂k〉

1 + . . .

=
1

e2πk−1

[
1+

ϕk
σ2

+O
(

1

σ4

)]
+eσ

2(1−k2)×


O[σeσ

2(1−2ω)] : 0 < ω < 1 (y pole)

O[e−σ
2ω2

] : 1 < ω < 2 (y saddle)

O[σe−σ
22ω] : 2 < ω (z pole)

,

which has ωcrit = 1− k2/2,

〈d̂Rk d̂Lk〉 =
1

2 sinhπk

[
1+

ϑk
σ2

+O
(

1

σ4

)]
+eσ

2(1−k2)×


O[σeσ

2(1−2ω)] : 0<ω<1 (y pole)

O[e−σ
2ω2

] : 1<ω<2 (y saddle)

O[σe−σ
22ω] : 2<ω (z pole)

,

which also has ωcrit = 1− k2/2,

〈d̂kd̂k〉=


O[σ3eσ

2(2−k2−2ω)] : 0 < ω ≤ 1− k (y pole)

O[eσ
2(1−ω2)] : 1− k < ω ≤

√
1 + k2, ω 6= 1 (y saddle)

O[e−σ
2k2

] :
√

1 + k2 < ω (〈d̂kd̂k〉0)

,

which has ωcrit ≤ 1, and finally,

〈d̂R†k d̂
L

k 〉=


O[σeσ

2(1−ω2−4ω)] : 0 < ω ≤
√

1 + k − 1 (y saddle)

O[σeσ
2(1−k2−2ω)] :

√
1 + k − 1 < ω ≤ 1/2 (z pole)

O[e−σ
2k2

] : 1/2 < ω
(
〈d̂R†k d̂Lk 〉

0
) ,

where ωcrit = 1
2(1− k2).

To be able to define all the functions piecewise, we had to assume k to be small. From the

expectation values above we have that, if ω > 1 and k is small, then all corrections that

are due to σ⊥ are exponentially small.
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