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ABSTRACT 

We give, in terms of totally unimodular matrices, a short and easy proof of Tutte’s 
characterization of regular matroids. 

1. INTRODUCTION 

We give a short and easy proof of the following well-known result of 
Tutte (1958, 1965, 1971): 

TU-ITE'S THEOREM. Let A be a {O,l}-matrix. Then the following are 
equivalent: 

(i) A has a totally u&nodular signing, 
(ii) A cannot be transfomted to 

by applying (repeatedly) the following operations: 

(1) 

deleting rows or columns, 
permuting rows or columns, 
taking the transposed matrix, 
pivoting over GF(2). 
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The notions used here are: Signing a (0, I}-matrix A means replacing 
some of the l’s in A by - 1’s. A matrix is called totally unimodular if each 
of its subdeterminants is 0, 1, or - 1. (In particular, all entries of a totally 
unimodular matrix are 0, 1, or - 1.) Piuot-ing a matrix A (on an entry E = +- 1 
of A) means replacing the matrix 

(2) 

We consider pivoting over GF(2) as well as over the field Iw. 
Our proof of Tutte’s theorem is in Section 3. Section 2 contains a few 

well-known and easy-teprove preliminary results on graphs, pivoting, and 
total unimodularity. 

REMAFUS. Tutte formulated his result in terms of regular matroids 
( = regular chain groups): A binary matroid is regular if and only if it has 
neither the Fano matroid nor its dual as a minor. It is not hard to establish 
the equivalence of both formulations [e.g. see Bixby (1982), Schrijver (1986, 
Sections 21.1, 21.2), Tutte (1958, 1965, 1971), or Welsh (1976)]. 

Tutte’s original proof is very complicated. Shorter and more transparent 
proofs are given by Seymour (1979) and Truemper (1978, 1982). In fact they 
prove a generalization of Tutte’s theorem: Reid’s characterization of GF(3> 
representable matroids. Lovasz and Schrijver observed that Reid’s theorem 
can be proved also along the lines of the proof we present in Section 3. 

Reid never published his result. The first proofs that appeared in print are 
due to Seymour (1979) and to Bixby (1979). Bixby’s proof goes along the lines 
of Tutte’s original proof of his theorem stated above. Other proofs of Reid’s 
theorem are given by Kahn (1984) and Kahn and Seymour (1986). 

An extension of Tutte’s theorem is given by Bixby (1976). 

2. PRELIMINARIES 

2.1. The Bipartite Graph 
The proof of Tutte’s 

graph-theoretic result. 

of a Matrix 
theorem in Section 3 uses the following easy 

LEMMA 1. Let G be a connected bipartite graph, with no parallel edges. 
If deleting any two nodes in the same color class yields a disconnected graph, 
then G is a path or a circuit. 
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Proof. Suppose G is neither a path nor a circuit. Then G has a spanning 
tree T that is not a path. Hence T has least three end nodes. At least two of 
them are in the same color class of G. Deleting these two nodes from G 
results in a connected graph. n 

Let A be a matrix. Denote the index set of the rows (columns) of A by R 
(C respectively). The &pa&e graph, G(A), associated with A has color 
classes R and C. There is an edge from i E R to j E C in G(A) if the entry 
in row i and column j of A is nonzero. 

2.2. Total Unimodulurity 

We recall two well-known facts on totally unimodular matrices. 

LEMMA 2. Let A be an n X n matrix with entries from {O,l, - 1). lf 
G(A) a circuit, then A is totally unimodulur if and only if the number of 

- l’s in A is congruent to n module 2. 

Proof. Directly from the fact that det(A) E {O,l, - 1). n 

LEMMA 3 (Camion 1963). Let M, and M, be two totally uninwdular 

matrices. lf M, and M, are congruent module 2, then M, can be obtained 

j&m M, by multiplying some rows and columns by - 1. 

Proof (Paul Seymour). Call an edge in G( M,) [ = G( M,)] even if the 
corresponding entries in M, and ,M, are the same. Call the other edges odd. 

By Lemma 2, each chordless circuit, and hence each circuit, in G( M,) has an 
even number of odd edges. Therefore, the nodes of G( M,) can be partitioned 
into two classes, say Vi and Vs, such that any edge e is odd if and only if e 
connects Vi and Vs. Now multiply by - 1 all rows and all columns of M, 

corresponding to the nodes in Vi. The resulting matrix is M,. n 

2.3. Pivoting 

The following properties of the pivoting operation (2) are easy to prove: 

(3) (i) Pivoting B on - E yields A. 
(ii) If A is square, then det( A) = k det( D - &zyT ). 
(iii) If A is totally unimodular, then J3 is totally unimodular. 
(iv) If G(A) is connected, then G(B) is connected [since if G(B) is 

disconnected, then (i) implies that G(A) is disconnected too]. 
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3. PROOF OF TUTTE’S THEOREM 

The existence of a totally unimodular signing is invariant under the 
operations (1) [by (3) (iii)]. Moreover M( F,) has no totally unimodular 
signing. Hence (i) implies (ii). So it remains to prove the reverse implication. 

Suppose A is a {O,l}-matrix, satisfying (ii), with no totally unimodular 
signing. We may assume that each proper submatrix of A has a totally 
unimodular signing. So the bipartite graph G(A) is connected. [If not, 

for certain matrices B and C (up to permutation of rows and columns), 
implying that at least one of B and C has no totally unimodular signing.] 
G(A) is not a path or circuit (as otherwise A has trivially a totally unimodu- 
lar signing). Hence, by Lemma 1, A or AT is equal to [x/y/ N ] (up to 
permutation of columns), where x and y are two column vectors and where 
G(N) is connected. By assumption, both [XI N ] and [ y( N ] have a totally 
unimodular signing. Moreover, by Lemma 3, these two signings can be 
chosen such that N is signed in the same way in both cases. Hence A or A’ 
has a signing A’ = [x’ly’( N’ ] satisfying 

(4) (i) G(N’) is connected. 
(ii) Both [r’] N’ ] and [y’] N ] are totally unimodular. 

CLAIM. We may assume that the matrix [x’jy’] has a submutrix of the form 

(: -3 
Proof. By (3) (iii) and (3) (iv) of Section 2.3, pivoting A’ on an entry in 

N’ does not influence the property (4). Now, pivot A’ on an entry in N’ such 
that the smallest submatrix M with determinant not equal to 0, 1, or - 1 is 
as small as possible. Then M is a 2 X 2 matrix. [If not, pivot on an entry lying 
both in M and N’; cf. (3) (ii).] So M is of the form in the claim (if necessary 
multiply x’, y’, or a row by - 1). Moreover, by (4) M has to be a submatrix 
of [x’ly’]. n 

Denote the row indices of the two rows of A’ in which the submatrix of 
the claim occurs by (Y and j3. Since G(N) is connected, there exists a path in 
G(N’) from a to j3. This path cannot have length 2 (as such a path would 
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correspond with a column of N’ with two + l’s in the rows a and fi, 
contradicting the fact that both [x’l N’ ] and [y’( N’ ] are totally unimodu- 
lar). From this it follows that A’ has a submatrix of the form depicted below: 

‘< \ 

I i 0 . . 1 

I 1 II 

(If necessary permute rows of A’ and columns of N’, multiply them by - 1, 
or exchange X’ and y’.) By pivoting on the underlined entries, deleting the 
rows and columns containing these pivoting elements, and multiplying some 
rows and columns by - 1 (and if necessary exchanging x’ and y’), we get a 
submatrix of the form 

It is still the case that deleting either column x’ or column y’ yields a totally 
unimodular matrix. This implies that a = 1 and b = 0. Hence A can be 
transformed to M( F,), contradicting our assumption. n 

1 thank Alexander Schrijuer. Our discussions on the first version of the 
proof presented here stimulated me to find some shortcuts. 
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