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A two-dimensional cylindrically symmetric model is developed to study the streamer-less spark formation in a short gap on the timescale of ion
motion. It incorporates the coupling between the electric discharge and the gas through the heat generated by the discharge and the consecutive
gas expansion. The model is employed to study electrical breakdown in supercritical N,. We present the simulation results of gas heating by the
electrical discharge and the effect of gas expansion on the electrical discharge. © 2016 The Japan Society of Applied Physics

1. Introduction

Electrical breakdown and dielectric recovery are important
issues in high-voltage switch gear. A common medium in
gaseous insulation and high-voltage switching is SFg which
is known to have excellent switching properties.!™ But
the downside is that SFg is an extreme green house gas with
a global warming potential of 23900 times that of CO,.
Supercritical liquids might be a replacement due to their high
density, dielectric strength etc.>® The electric breakdown
in supercritical N, —at 80 bar and 300 K— has recenty been
studied experimentally and theoretically by Zhang et al.”
However, in their simulation studies of the breakdown of
supercritical nitrogen between two planar electrodes only
the transversal structure of the breakdown channel was
resolved in an extremely simplified model for the electric
discharge. We here study the breakdown process assuming
that the breakdown channel is cylindrically symmetric, i.e.,
that we can treat the evolution in a radial and a longitudinal
coordinate (r, 7).

Electric breakdown is typically assumed to evolve from
initial electron avalanches through the space charge domi-
nated streamer phase to a heat dominated leader or arc phase,
and many experimental and theoretical studies have been
performed.®” Space charge effects refer to the electric field
enhancement at streamer head which supports the ionization
reaction and thereby results in the subsequent breakdown of
the medium.'®!®) Here we demonstrate a different breakdown
mechanism in short gaps with secondary emission from the
cathode where a sequence of ionization waves and ion pulses
heats the gas up until it breaks down.

To study this dynamics, we here develop a simula-
tional code to study electrical breakdown where discharge
and gas dynamics are coupled: the discharge generates
ohmic heat that heats the gas. Consecutively the gas expands
which changes the transport and reaction properties in the
discharge.

Tholin et al.'V studied the hydrodynamic expansion of the
background gas after the voltage pulse. They assumed the
reduced electric field E/N to be not affected by the changes
in the background gas density, N, and hence do not solve
the gas flow equations along with the discharge equations.
This assumption is reasonable as the gas temperature does not
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rise rapidly during the short voltage pulse and hence the gas
density is not much changed.

Komuro et al.'? solve the discharge equations and back-
ground gas flow equations simultaneously during the voltage
pulse, but only on the electron timescale.

In this work, we solve the discharge equations and
background gas flow equations simultaneously but now on
the timescale of ion motion.

This paper is organized as follows: In Sect. 2 we introduce
the notation and describe our model for the coupled system.
Section 3 contains initial and boundary conditions and
numerical algorithms. Section 4 is devoted to simulation
results and discussion. Finally, we summarize our finding and
give an outlook in Sect. 5.

2. Description of the model

We develop a two-dimensional (2D) cylindrically symmetric
code to carry out the simulations. The code components
include a model for the electric discharge on the timescale of
ion motion and a model for the background gas. The two
models are coupled to study the interplay between the electric
discharge and the background gas.

2.1 Model for the electric discharge

To describe the discharge dynamics, we adopt the first-order
reaction-drift-diffusion model'® in local field approximation
for electrons and ions, coupled to Poisson’s equation to
calculate the electric field self-consistently. We focus on the
timescale of ion motion and assume that the electrons are
moving infinitely fast.!*!> This means that the electron
density adapts to the ion density infinitely fast and the
derivative dn. can be set to zero in an adiabatic decoupling
procedure. The range of validity of this approximation will be
discussed in a forthcoming paper. Hence, our reaction-drift-
diffusion equations become:

=V - (nepcE + D Vne) = Se, (1a)

atnp + V . (npﬂpE - Dpvnp) = Se, (lb)

—V2p =< (n, - o), (1¢)
€0

E=-V¢. (1d)

In the above equations, n, and n, denote the number density
of electrons and positive ions, respectively, where we assume

© 2016 The Japan Society of Applied Physics
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only one ion type Np* to be formed. E represents the electric
field, ¢ represents the electric potential and e is the
elementary charge. The mobilities (and diffusion coefficients)
of electrons and positive ions are denoted by p. (and D.) and
up (and D), respectively; they are assumed to be functions
of the reduced electric field E/N, where N is the gas num-
ber density. S, is the impact ionization term in local field
approximation.

The transport and reaction coefficients were taken from the
work of Montijn et al.'® and scaled to 80 bar.

At the cathode we implement secondary emission of
electrons on ion impact, i.e.,

Ne = ynp, (2)

where y is the secondary emission coefficient whose value is
taken to be 0.07 for simplicity.

2.2 Model for the background gas

To describe the gas dynamics, we adopt the compressible
Euler equations'” without viscosity, as in the studies by
Tholin et al.'"!® The source term for energy transfer from
the electric discharge to the gas is Joule heating.!!"1°2D The
system is closed with the ideal gas law. The relevant
equations in cylindrical coordinates are

0,
P Lv-(pv) =0,

3 (3a)
a(g;’z) + V- (puy) = — ‘;—’;, (3b)
a(g:,) +V - (puv) = — gi;, (o)
& .
5 TV V@ +p) =ne(-E) (3d)
where j. is the conductive current density given by
Je =Je +ip “4)
where
Je = ueneE + D Vne, (5a)
Jp = #pnpE — DV, (5b)

Here p is the gas mass density, v is the gas velocity, & =
pe + %pv2 is the total energy per unit volume, with ¢ being
the internal energy per unit mass for the gas, p is pressure,
and 7 is the fraction of discharge energy that contributes to
gas heating. We have adopted the value of 0.3 for 5 as
suggested by Tholin et al.'” based on physical arguments
and fitting with experiments.

2.3 Coupling between discharge and gas dynamics

The electric discharge generates the Joule heat 7e(j. - E) in
the model for the gas. When the temperature rises, the gas
expands, the gas number density N decreases and hence the
transport coefficients of the charged species and the reduced
electric fields E/N increase. There is a feedback in both
directions (from discharge to gas and back) at every time step
of the evolution.

3. Simulation conditions

In this work we adopt 3D-cylindrical geometry with
azimuthal symmetry around the discharge axis (» = 0). The
electrode configuration is plane-to-plane. The background
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Fig. 1. Simulation setup: In the above figure, the gas medium is
supercritical N, at temperature of 300 K and pressure of 80 bar. The boundary
conditions for charge densities (electronic/ionic) and for the electric potential
are indicated. The gap length, L, is 0.3 mm and a dc-voltage, ¢ of 54kV is
applied.

gas is taken to be supercritical N, at a temperature of 300 K
and a pressure of 80bar.” The applied electric field E =
—Eé, (where E is the magnitude of the electric field and €, is
the unit vector in the z-direction) drives the system. The
electrons therefore move in the positive z-direction and the
positive ions in the negative z-direction under the action of
the field. The system length is L = 0.3 mm in z-direction and
3L in r-direction.

3.1 Boundary conditions
We have cylindrical symmetry around the discharge axis
(r=0).

We set a homogeneous Neumann boundary condition for
electron/ion densities onto the boundary in the radial
direction. On the top boundary, the anode, we set positive
ion density equal to zero, as ions are only produced within
the gap and drift downward. Also, we set the perpendicular
component of diffusive flux of electrons on the top boundary
to zero.

Figure 1 shows the implemented boundary conditions. At
the bottom electrode, the cathode, the perpendicular compo-
nent of the ion-diffusive flux is set to zero. Also, since we
include secondary electrode emission, the Dirichlet boundary
condition (2) is imposed on the electron density at the
cathode.

The electric potential is fixed as ¢ =0 or 54kV on the
lower (z=0) or upper (z=L) electrode. The -electric
potential varies linearly with z on the right lateral boundary.
In mathematical terms, the b.c. are

P
% (r.Le.t) = 0, 1e(r,0,1) = yny(r,0, 1),
Z

e

(Ly,z,t) =0, (6)
or
P P
ny(r, Lo, 1) = 0, ai;(r, 0,1) =0, %(L,, “n=0, (7)
¢(r’ 07 t) = 07 47(}", sz t) = ¢0’ ¢(Lrv Z7 t) = % ’ (8)

where L, =3L, L, =L, and ¢y = 54kV.
For the Euler equations, extrapolated boundary condi-
tions?>?® were assumed on all boundaries.

3.2 Initial conditions
We start the simulation with a Gaussian distribution of ions
and electrons

© 2016 The Japan Society of Applied Physics
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(Color online) Evolution of electron number density ., ion number density n,, reduced electric field E/N, gas density p/po normalized to the density

po at T=300K and 80bar, and gas temperature 7. The initial seed of electrons and positive ions (16) is placed on the discharge axis (r = 0) at z = 0.09 mm.

The gas is nitrogen at 80 bar, and 54kV are applied to a gap of 0.3 mm.

r? (z-20)
o= eXp[_ T } ©
r z

where we choose ng=35x 10'""em™3, zy=0.09mm, o, =

6.9 um, and o, = 27.6 um. This seed amounts to about 3700
electrons and ions. The initial gas temperature and pressure
are chosen to be 300K and 80 bar, respectively. Also, the
gas velocity is chosen to be zero at the begining of the
simulation.

3.3 Numerical method

The continuity equations of the discharge model are dis-
cretized with the MUSCL scheme?*?> using the Koren limiter
function.?® Since we expect large gas density gradients in the
system, we implemented a high-resolution scheme which
although being computationally expensive is good at handling
large gradients. For time-integration, explicit second-order
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Runge—Kutta (midpoint rule)?” is used. To solve Poisson’s
equation we used the FISHPACK solver.”® Also, the Euler
equations are discretized with the same numerical scheme as
the discharge equations. A grid of 500 cells was taken along
the z-axis and of 3 X 500 in the r-direction.

4. Results and discussion

We simulated the evolution of a discharge in nitrogen at
80bar in a 0.3mm gap with 54kV applied, and with the
initial seed (9) of about 3700 electrons and ions. This seed
might have been created by cosmic radiation or radio-
activity,” but the possible formation process is beyond the
scope of the current simulations.

Figure 2 shows the evolution of electron density 7., ion
density ny, reduced electric field E/N, ratio of gas density
over initial gas density p/py and gas temperature 7. We now
discuss the rows of the figures sequentially.

© 2016 The Japan Society of Applied Physics
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ne: The electrons move much faster than the ions, and they
are created by secondary emission at the cathode below and
by impact ionization when they move upwards; therefore the
electron density near the cathode is proportional to the local
ion density and the growth of electron density in the z-
direction is determined by the impact ionization rate.

ny: An ion is generated together with every electron, but
the ions move down more slowly. The time for the ions to
cross the gap in the initial gas density and electric field is
172 ns. When an ion wave reaches the cathode, new electrons
are emitted and new ions and electrons are created in the gap.
This refreshes the ion density and starts a new ion wave
propagating downward.

E/N: An important observation is that the electric field
never changes much, i.e., the charge densities of electrons
and ions are not sufficient to seriously modify the background
electric field. The changes in the reduced electric field E/N
are due to the change of the gas density. In the last time
step plotted at ¢ =424 ns, the reduced electric field reaches
a maximum of about 200 Td, while the breakdown reduced
electric field in air is 120 Td.*® We expect that the electric
breakdown will continue after such high reduced fields have
been reached.

In air, the breakdown field is defined as the value of the
electric field at which the generation rate of electrons equals
the attachment rate. In our case we have considered pure
nitrogen in which attachment is absent. As air consists of
80% nitrogen, in practice the breakdown field in air provides
a reasonable scale.

p/po and T: The temperature increases from 300 up to
12000 K mainly in the lower part of the system. Since the
initial seed was located in the lower half, after the first time
step the ions have drifted a little from their position but the
electron density in the channel has been calculated all along
the channel from Eq. (1a), starting from cathode. Electron
density is essentially very small since the ions have not
bombarded the cathode yet. Hence we see a concentration of
heating at the position of the ions. This high temperature
increases the pressure and creates an expansion shock front
that can be seen in the density plot. At = 159ns, the gas
temperature has dropped on the lower part of the axis. In
other words, the gas has cooled down. This happens due to
the radial movement of shock wave.

5. Summary and outlook

We have simulated the evolution of a coupled system on
electric discharge and background gas in a short plane-to-
plane electrode configuration in 2D-cylindrical symmetry.
We have shown that with a simple model consisting of
electron impact ionization and secondary electrode emission,
simple relationships between the transport coefficients and
gas density and heat transfer from the electric discharge to
the gas, one can understand the formation of a spark. More
specifically one can see how heat induced changes in the
background gas density can trigger ionization in the dis-
charge channel leading to breakdown. We see a pulsating
behavior in the ion number density: the ions reach the
cathode, liberate electrons from it and hence generate more
electrons and ions in the gap. These ions propagate down
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to the cathode. This pulsating cycle continues until either the
temperature induced density changes drive the reduced
electric field to values above breakdown, or until the
discharge activity stops.

We emphasize that this slow heat driven breakdown
mechanism of short gaps is basically different from the fast
streamer breakdown mechanism that is driven by space
charge effects at the streamer head.

The current model was developed with the motivation
to understand electrical breakdown with a simple physical
model. Of course, one can broaden the model by further
improvements, particularly by incorporating the complex
relationship between transport coefficients and the gas
density, and by further investigating the effects of temper-
ature on the electron—ion source terms. These improvements
will be part of future work.
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