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In this paper a multigrid method for the solution of the steady semiconductor equations is 
presented. The discretization is made on an adaptive grid, by means of a mixed finite element 
method on rectangles, with the trapezoidal quadrature rule. In this way the resulting scheme 
reduces to the well-known Scharfetter-Gummel discretization. The grid transfer operators are 
selected in accordance with the discretization. The multigrid solution method is based on a col
lective, symmetric five-point Vanka relaxation, and-in order to admit very coarse grids-a local 
damping of the coarse grid correction is applied. It is shown that the convergence rate is independent 
of the grid size. Since nested iteration is combined with the multigrid iteration, the resulting 
solution method has optimal efficiency. © 1990 Academic Press. Inc. 

1. INTRODUCTION 

There has been a great deal of interest recently in the numerical simulation 
of the electric behavior of semiconductor devices. For a survey see [I-4 ]. 
Various programs that solve such problems for an industrial environment are 
now available. However, it has also become clear that there is still an increasing 
demand for faster and more flexible and robust programs. The model that 
describes the distribution of the electric field and the concentration of carriers 
in a semiconductor, the drift-diffusion model, is a system of three nonlinear 
elliptic partial differential equations: a nonlinear Poisson equation and two 
continuity equations. 

It has been known for some time now that multigrid (MG) methods are 
possibly the most efficient for such equations, because the computational 
effort for solving the large discrete systems can be proportional to the number 
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of unknowns. Therefore various attempts to apply MG to the simulation of 
semiconductor devices have already been made [ 5-7]. However, up to now 
for several reasons, the success was not up to the expectations. It appears that 
the coarsest level of discretization, used in the sequence of grids, still has to 
be rather fine, and therefore requires a significant computational effort. 

This is due to the fact that there are several difficulties associated with 
solving these equations. First, the equations are of a singular perturbation 
character and the dependent variables may vary rapidly over small regions 
of the device. Second, the system is strongly nonlinear and the equations are 
badly scaled. 

These difficulties require a careful discretization, for which the requirements 
will include conservation of charge (electrons and holes) and nonnegative 
solutions. The demands are well known now, but they ask for special attention 
in the case of a multigrid method, where one wants to construct a sequence 
of discretizations starting from very coarse meshes. Further, for a multigrid 
method one needs grid transfer operators between the coarser and finer grids. 
Such operators usually function best when they are chosen consistently with 
the discretization method,used. These considerations, and the knowledge that 
the fluxes of the solutions are usually smoother functions in space than the 
scalar-dependent variables, make it desirable for us to apply a mixed finite 
element method for the discretization of the equations. 

In order to avoid unnecessary computations, to handle irregular geometries, 
and to obtain the required accuracy in an efficient manner, it is also desirable 
to have a finer mesh in regions where the solution is varying rapidly, and a 
coarser one in regions where it is varying slowly. Therefore we introduce an 
adaptive mesh refinement method that fits with the multigrid method used. 
Surveys of adaptive procedures are found, e.g., in Babuska and Rheinholdt 
[ 8] and Oden [ 9]. Application in the context of multigrid is found, e.g., in 
Schmidt and Jacobs [ 10]. 

The multigrid method presented in this paper is a further development of 
earlier work that was done in one dimension [ 11-13] for the drift-diffusion 
model and in two dimensions for the nonlinear Poisson equation [ 14]. New 
aspects in the present results are the use of Yanka relaxation for this set of 
equations, the application of a special kind of damping for the coarse grid 
correction (in the MG method), and the use of appropriate minimizing func
tionals for the selection of initial estimates. 

An outline of the paper is as follows. In Section 2 we present the equations 
solved, and in Section 3 the grid and data structure used for the adaptive 
discretization. The discretization itself is explained in Section 4. In sections 
5, 6, and 7 we describe the multigrid method and give details about the Vanka 
relaxation and the adapted coarse grid correction. In Section 8 we describe 
the construction of the initial estimates, and finally, in Section 9 we report 
numerical results. First, the convergence of the multigrid iteration is dem-
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onstrated for uniform grids, and then an example is shown of a solution on 
a self-adapted grid. 

2. THE EQUATIONS 

A steady semiconductor device can be modeled by 

-\J · J>t- = q(p - n + D), 

-\J ·Jn = -qR, 

-\J. Jp = +qR, 

where J>t-, Jn, and Jp are defined by 

J.f- = E'Vt/;, 

Jn= qµn(± \Jn - n('Vt/; + ± \J log n;)), 
JP = -qµP(± \Jp + p('Vt/;-±'V log n;)). 

(2. la) 

( 2.1 b) 

(2.lc) 

(2.2a) 

(2.2b) 

(2.2c) 

Equation ( 2.1 a) is Poisson 's equation; n and pare the concentrations of elec
trons and holes, respectively, and the dope function D is a given function of 
the space variable. The relation between the electric displacement current Jy, 
and the electrostatic potential 1/; is given by (2.2a). Equations (2.lb) and 
( 2. lc) are continuity equations; Jn and J P represent the electron and hole 
current densities, respectively, and R is the recombination rate of electrons 
and holes. The quantities q, E, a, n;, µ 11 , and µPare the electron charge, the 
permittivity, the inverse of the thermal voltage, the intrinsic concentration 
of free charge carriers, and the electron and hole mobilities, respectively. For 
simplicity, in the present paper we only consider constant E, a, n;, µn, µP and 
R = 0. The problem, simplified this way, corresponds to the example problem 
used, e.g., in [2]. It preserves many of the characteristic difficulties found in 
practical problems, where-based on physical models-different nonlinear 
functions are used, e.g., for µn, µP, and R. For details we refer to [2]. 

In our calculations we use the quasi-Fermi potentials <1>11 and <:/>p, which are 
related to n and p by 

(2.3a) 

(2.3b) 
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Expressed in (if;,</!,,, </!p) the equations are strongly nonlinear, but the range 
of the values assumed by(if;, </!,,, </Jp) is of the same order as the voltages 
applied to the device. This makes them better suited for numerical compu
tations than, e.g., (if;, n, p) for which the range of values is much wider 
( cf. [ 2]). 

Using (2.3) we write (2.2) in terms of(if;, </!,,, </Jp), 

with 

J,, = -ji,,e"(>f-<Pn)\l(a<Pn), 

JP = -jipe"(<t>p-if;)\J(a</!p), 

(2.4a) 

(2.4b) 

( 2.4c) 

(2.5) 

For the discretization of the equations (2.1 )-(2.2) we use the Slotboom vari
ables (if;, <I>,,, <Pp), which are defined by 

Expressed in these variables ( 2.2) becomes 

(2.6a) 

( 2.6b) 

(2.7a) 

( 2. 7b) 

( 2. 7c) 

The numerical range of the set of variables (if;, <J?,,, <I>p) renders them unsuitable 
for practical calculations, but they are attractive from a theoretical point of 
view because it makes the individual continuity equations symmetric (without 
first-order derivatives) and linear in <I>,, and <l>w 

For an elaborate discussion of the choice of variables, see [ 2] . 

3. GRID AND DATA STRUCTURE 

It is well known that the semiconductor equations show sharp layers in 
their solution, so it is attractive to use adaptive grids. In this section we present 
a method of grid generation that is very suitable for local refinement ( cf. [ 10, 
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15]) and that can handle a fairly wide range of geometries encountered in 
device simulation. 

It is assumed that the domain QC ~ 2, on which the equations (2.1 )-(2.2) 
have been defined, can be covered by a regular mesh of rectangular blocks. 
A subset of these blocks should exactly cover n and these blocks form the 
coarsest grid G0 in a sequence of nested grids for the discretization of 
(2.1 )-(2.2). 

On a set of blocks a refinement operator u is defined as the set-valued 
mapping, which splits one block n) of the grid into four smaller ones (see 
Fig. 3.1) 

The class Q of admissible grids is specified recursively by two rules: 

i. G0 E Q, 

ii. GE Q = u( G) E Q. ( 3.1) 

The level I of a block Q) is defined as the minimum number of refinement 
steps between n) and a block of G 0• Using this definition we can classify the 
grids: a grid G1 of level I is the set of all blocks n). If a locally refined grid is 
used, there are interfaces between grids of a different level (see Fig. 3.1 ) . 
Following Schmidt and Jacobs [ 10] such interfaces are called "green" in
terfaces. 

In this way a nested sequence ofpartitionings of the domain Q is obtained. 
Finer meshes may cover parts of n, but as soon as a fine level mesh exists in 
some area, also all coarser levels are available. The data structure used for 
the implementation, a quad tree, reflects this structure of the grids. In every 
node of the tree (a block or "cell") there are four pointers to possible offspring. 
The leaves of the tree correspond to unsplit blocks. In addition, every node 
contains four pointers to interfaces, representing the sides on the block. 
Neighboring blocks on the same level are connected by their common inter
face. These interfaces are also used to distinguish between green interfaces 
and physical boundaries. 

To accommodate general geometries, the root of the tree does not need to 
represent G0• So the first (negative) levels in the quad tree may contain entries, 
which are not necessarily related to a part of the domain. However, there 

FIG. 3.1. Refining the mesh by a refinement operator (1. 
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must be a level in the tree which corresponds to G0 exactly. The different 
numerical operations on data in the data structure are made by procedures 
that scan all cells, or all cells that satisfy a specific condition (e.g., all cells on 
a specified level), and which operate on each cell that is visited. 

4. DISCRETIZA TION 

To discretize ( 2.1) and ( 2.4) we use the mixed finite element method, 
based on lowest order Raviart-Thomas elements for rectangles [ 16]. By the 
use of a suitable quadrature rule the discretization is equivalent to the well
known Scharfetter-Gummel scheme. 

Boundary conditions are either Dirichlet or Neumann; the corresponding 
parts of the boundary are denoted by M1D and oO.N, respectively. 

Before we describe the discretization, we note that all three equations, ex
pressed in Slotboom variables, can be written as 

Y'·u= R(</>,x), (4.la) 

a- 1u = '"ii'</>, ( 4.1 b) 

U•D = 0, at OQN, ( 4. lc) 

</> = <f>D, at {jQD, ( 4.1 d) 

where </>is a scalar and u a vector variable; n is the outward unit vector normal 
to oO.. 

Let L2(Q) be the space of square integrable functions on Q, with inner
product 

and let H(div, Q) be defined by 

H(div, Q) = {ulu E (L2 (Q)) 2, div u E L2(Q), u·n = 0, at oO.N}, 

with norm 

llu II h(div,n) = llu II ZL2(ll))2 + lldiv u II L<n)-

By introduction of the product space 

A(Q) = L2(0.) X H(div, Q), 
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the weak formulation of ( 4.1 ) is the following: find ( </J, u) E A such that for 
all(r,t)EA 

where 

(r, div u) = (r, R), 

(a- 1u, t) + (</J, div t) = (</Jv, t), 

(</J, t) = r <Pt·ndr. 
Jo!ln 

( 4.2a) 

(4.2b) 

( 4.3) 

The Neumann boundary conditions are automatically satisfied by all u 
E H(div, Q). 

On each grid G1, ( 4.2) is discretized by the lowest order Raviart-Thomas 
elements. For every block Q~ of grid G1 we define the indicator function d 
E L2(Q), 

{
O, 

t)(x) = 
1, 

x $. n;, 
x E O). 

( 4.4) 

In addition, according to [ 16], a vector function e j is introduced for every 
edge Ej, not part of the Neumann boundary, such that ej(x) is linear on 
blocks Q l and 

( 4.5) 

where o1k denotes the Kronecker delta, and n~ denotes the outward unit vector 
normal to EL this choice ensures e) E H(div, Q). 

The discrete spaces spanned by { tl} and { ej} are called L 1( Q1) and H 1( div, 
Q1), respectively. Their Cartesian product space is 

The discrete approximation ( cp1, u1) of the solution (</J, u) ofEq. ( 4.1) on grid 
G1 is 

(4.6a) 

( 4.6b) 
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The summation in ( 4.6a) is over all blocks al in grid G1, and in ( 4.6b) over 
all edges Ej, not part of the Neumann boundary. 

To discretize ( 4.2 )-( 4.3) we replace A by its discrete analogue A1• To form 
the discrete equations we user= E) for the test functions r in ( 4.2a), and for 
t in ( 4.2b) we take t = e). Thus we obtain an algebraic system for ( </>1, u1), 
i.e., the vector of coefficients { <t>i. uj}: 

( 4.7) 

The matrix coefficients in this system are obtained by evaluation of the different 
integrals; however, we change the discretization by replacing the exact eval
uation of the integrals, appearing in the elements of W, by a quadrature based 
on the four corners of each cell, 

where the cell al, with vertices x., is subdivided into four equal pieces 
(a))", as shown in Fig. 4.1. Because of ( 4. 5), repeated use of this quadrature 
rule approximates W by a diagonal matrix, with elements 

( 4.9) 

The summation in ( 4.9) is over the four small pieces (a~ )s adjacent to edge 
E'M (see Fig. 4.1 ). 

For Poisson's equation the coefficient a- 1 appearing in ( 4.1 b) is the constant 
E -i; so the relation between the displacement current ( J"') ~ at edge E~ (with 
length hM) and the potentials I/It and!/;~ in the neighboring blocks a'i_ and 

2 

3 4 

L M R 

FIG. 4.1. Division of cells for approximation of elements of W. 
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Q ~ ( cf. Fig. 4. 1 ) is 

where aL =area (QD and aR =area (Q~). 
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( 4.10) 

For the continuity equations a- 1 is an exponentially varying function. Al
though l/;1 approximates if; as a piecewise constant function, we assume for 
the evaluation of ( 4.9) that l/;1 can be linearly interpolated between f~ and 
f~. This leads to the Scharfetter-Gummel discretization of the continuity 
equations(cf. [2]): 

(4.lla) 

( 4.11 b) 

Dirichlet boundary conditions can be treated consistently by introducing cells 
with zero area at the boundary. 

To treat green interfaces we use the Lagrangian multipliers ( Aq,)), which 
are defined on edges Ej ( cf. [ 17]). The Lagrangian multipliers are calculated 
by using discontinuous, piecewise linear test functions t ff:. H 1 ( div, Q1) in the 
weak formulation of( 4.1 b).If quadrature rule ( 4.8) is used, and the integrals 
in ( 4. 9) are approximated as before, we obtain (see Fig. 4.1 ) 

I I I I I I 
I e-a(</!n)L(e-a>i-R _ e-aV-M) + e-a(</>n)R(e-""'M - e-a>/-L) 

e-a(A<1>n)M == I I , ( 4.12b) 
e-aif,R _ e-a>/-L 

I I I I I I 
1 e"(<l>plL(e"fR _ e""'M) + e"(<Pp>R(e""'M _ e"h) 

e'«>-.p)M == I I ' ( 4.12c) 
e"fR _ e"fL 

with 

These Lagrangian multipliers are an approximation of the solution at the 
edges ( cf. [ 17]). So, at a green interface we calculate the Lagrangian multiplier 
on the finest grid on which the interface is not green and use this value as a 
Dirichlet boundary condition on the finer grids. 
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This concludes our discussion of the discretization of ( 4.2). By the use of 
our quadrature rule and the Slotboom variables we finally arrive at a discre
tization that is equivalent with the Scharfetter-Gummel scheme. The mixed 
finite element method is useful for the consistent construction of a nested set 
of discretizations on the different levels. In fact, the interpolation defined by 
( 4.12) corresponds with the nonlinear interpolation introduced for the semi
conductor equations in [ 11]. The sequence of discretizations is used to solve 
the discretized nonlinear system of equations by a multigrid algorithm. 

5. MULTIGRID 

The full approximation scheme (18] or nonlinear multigrid (NMG) scheme 
(21] is a multigrid iterative approach for solving sets of nonlinear equations 
obtained by discretization. For some classes of elliptic equations it is optimally 
efficient in the sense that the rate of convergence is independent of the mesh 
size. Another advantage is that large linear systems need to be neither solved 
nor stored. Generally, we write the discrete equations on grid G 1 as 

'!lc'U/) = J', ( 5.1 ) 

where~' is the discretized nonlinear operator. Let q' be an iterative approx
imation to i/ Better approximations can be obtained by classical relaxation 
methods (Jacobi, Gauss-Seidel, etc.), which reduce the residuals d1, 

d' = J' - '!lc 1(q1), ( 5.2) 

and, in particular, they efficiently damp the high-frequency components of 
the residuals. The low-frequency components are better reduced by solving 
the residual equation on a coarser grid a1-1. Let q1- 1 be some coarse grid 
approximation Of q1, then Solve On grid at-I 

( 5.3) 

with R.)- 1 : A1( Q1)-+ A'- 1 ( n1- 1 ), a restriction operator. A better approximation 
q1 to fj' is then obtained by 

( 5.4) 

with P)- 1: A1-1(n1- 1)-+ A1(Q1), a prolongation operator. Instead of solving 
(5.3) exactly, we approximate its solution either by a few iteration steps of a 
relaxation procedure or by a few cycles of the NMG procedure that makes 
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use of an even coarser grid. In this way the NMG algorithm is recursivelv 
defined. -

If adaptive grids are used, the residual d1 is not necessarily computed ev
erywhere on Q; if a grid G1 does not exist in some area. the residual d1 is 
locally defined to be equal to zero. 

As initial approximation qH in the iterative process for the solution of 
( 5.3) we do not use a restriction of a solution on a finer grid, as described in 
[ 18], but we take the last available iterand on the coarse grid. Such iterands 
are always available, because initial approximations for a finer grid are pro
duced by interpolation from some approximation earlier computed on a 
coarser grid. Details and modifications of the coarse grid correction will be 
described in Section 7, whereas in Section 8 the construction of initial estimates 
on coarse grids is treated. 

6. RELAXATION 

Previous experience with the nonlinear Poisson equation ( cf. [ 14]) indicated 
that an adapted five-point Vanka-type relaxation ( cf. [ 19]) is a good candidate 
for a relaxation method. By this method, all cells are successively scanned, 
first in forward, later in backward lexicographical order, and for each cell 
Q) the three nonlinear equations ( 4.7) are solved for the potentials <ti) and the 
fluxes uj corresponding with the four edges Ej of the cell n) (see Fig. 6. l ) . 

From this 15 X 15 system the fluxes uj are eliminated by ( 4.10 )-( 4.11 ) . 
The resulting nonlinear 3 X 3 system could be solved by Newton's method, 
but it is possibly ill conditioned. ifthe initial guess is too far from the solution. 
Gummel's iteration (where the three nonlinear equations are solved sequen
tially) appears to be a more robust method for solving the nonlinear systems, 
and robustness is enhanced by solving Poisson 's equation exactly in each 
Gummel step. The continuity equations to be solved in Gummel's iteration 
are linear if expressed in <I>n and <I>P. However, to avoid calculations in Slot
boom variables, we calculate corrections de/> ;,nl and de/> ~nl to the quasi-Fermi 
potentials cJ> ~n> and cJ> ~n> as for Newton's method for each continuity equation, 

u~ 

u{v <ill u~ 

u} 

FIG. 6.1. Relaxation subdomain for five-point Vanka relaxation. 
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and then apply the correction transformation (see [ 2]): 

(6.la) 

( 6. lb) 

Without rounding errors, this would solve the continuity equations in a single 
step; in practice a small number of iterations may be necessary. Large cor
rections may yield negative arguments for the logarithmic function. If this 
happens, we damp the correction by replacing the function log(x) in ( 6.1) 
by a C 1 (-oo, oo) function identical to log(x), for x > Xo. In practice, where 
the machine accuracy is 15 digits, we use (see [ 11]) 

modlog(x) = log(xo) + sgn(x)llog(lx- xol + Xo) - log(xo)I, (6.2) 

with Xo = 0.5 X 10-1• 

In the following we describe how the local Poisson equation is efficiently 
solved by a modified Newton method. To simplify notation and without loss 
of generality, we write the Poisson equation, appearing in Gummel's iteration, 
as 

a sinh ~ + b~ = 1, ( 6.3) 

with a > 0. In principle Eq. ( 6.3) is solved by Newton's method; however, if 
the Jacobian is dominated by the sinh function, it is better to linearize the 
equation with sinh if; as a new variable. A suitable correction transformation 
strategy for the iterands if; <n> in Newton's method, which switches between 
the two linearizations, is 

{ 
arcsinh(sinh if;<nJ + dlf; cosh if;<n>), lf;(n+l) = 

if; (n) + dlf; <n>, 

if I a cosh lf;I 
b > 1, 

otherwise. 

( 6.4) 

The iteration is stopped if I dif;<n>\ is sufficiently small (less than 10-12 ). 

If the last available iterand is taken as the initial guess for Newton's method, 
we observe that large, untransformed corrections dlf; <n> may cause overflow. 
To avoid this situation the process is restarted with a better initial estimate 
as soon as an untransformed correction is too large (I dlf; <n> I > 1.0 V). Two 
possible initial estimates for ( 6.3) are if; <0> = arcsinh(l /a) and if; <0 > = 1 /(a 
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+ b). To judge the feasibility of these initial estimates, we use the fact that 
the solution 1;.; of ( 6.3) minimizes the convex functional 

1/;2 
F(i/;) = acosh 1/; + b 2 - iJ;. ( 6.5) 

If the initial estimate 1/; (Ol, for which F attains a minimal value, is chosen as 
the new initial estimate, Newton's method converges rapidly (within four 
steps in the cases we studied). 

This concludes our description of the solution method for the small non
linear systems appearing in five-point Vanka-type relaxation. To illustrate 
the robustness of this method, we use a 20 diode test problem (see Section 
9 ), with either a forward biased (-1.0 V) or a reverse biased ( +5.0 V) applied 
voltage. The performance of the relaxation process is shown in Table 6.1. 
Starting from a 4 X 4 grid, we perform two symmetric relaxation sweeps on 
every grid, before we interpolate the solution to a next finer grid. (Here, no 
coarse grid corrections are applied.) The finest grid used is a 64 X 64 grid. In 
Table 6.1 we show results for the cases where either Poisson 's equation is 
solved exactly in each Gummel step or the solution of Poisson 's equation is 
approximated by a single step from a Newton iteration, using the last available 
iterand as initial estimate. In both cases the Gummel iteration is stopped if 

From Table 6.1 we see that the efficiency of Gummel 's iteration is good, 
even in the forward biased case, in which the equations are strongly coupled. 

TABLE 6.1 
SOLUTION OF SMALL NONLINEAR SYSTEMS BY GUMMEL'S ITERATION 

Reverse bias Forward bias 

1 Newton Solve I Newton Solve 
step exact step exact 

No. of processes 21.824 21.824 21.824 21.824 
Mean No. of Gummel its. 2.8 2.8 4.2 4.1 
Max No. of Gummel its. 9 8 9 9 
Mean No. of steps for (6.3) 1.0 1.4 1.0 2.0 
Max No. of steps for (6.3) 1 6 1 6 
Divergent process 27 0 0 0 

Note. A "process" is the solution of a 3 X 3 nonlinear system, by Gummel iteration. The 
"number of steps for (6.3)" is the number of Newton steps to solve Poisson's equation in Gummel's 
iteration. A process is divergent ifGummel's iteration does not converge within 25 steps. ' :1 
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Solving Poisson 's equation exactly during each step does not improve the 
efficiency of Gummel 's iteration, but robustness is enhanced indeed. 

7. THE COARSE GRID CORRECTION 

In this section the coarse grid correction, mentioned in Section 5, is discussed 
in more detail. The grid transfer operators P)_ 1 and R_)- 1 are introduced, and 
we explain why these simple transfer operators have to be adapted in regions 
where the solution exhibits sharp shifts. 

The prolongation P)_ 1 , which transfers solutions from coarse to fine grids, 
is induced by the nesting of the spaces A1- 1 ( 01- 1) C A1 ( 0 1). This implies that 
any function ( q/- 1, u1- 1) E A1- 1 (Q1- 1) can also be considered an element of 
A1( ~l), with a unique representation given by ( 4.6). The restriction operator 
R.)- 1, which transfers residuals from fine to coarse grids, is defined as the 
transpose of P)_ 1 • 

If the coarse grid problem is solved exactly in ( 5.3 ), the errors, before and 
after the coarse grid correction, are related by 

q1 - if' = [!) - P)_1 (Ji-I (qi-I ))- 1 R)-1 Ji( q1) ]( q1-if') + 0( llR)- 1 d'll 2 ), 

( 7 .1 ) 

where 

( 7.2) 

is the Jacobian matrix and I the identity matrix. 
As pointed out by De Zeeuw [ 13] for a one-dimensional case, the local 

value of the diagonal elements in the Jacobian matrix J'- 1 and J 1 can differ 
by orders of magnitude in the neighborhood of sharp layers, because q1- 1 is 
not a good representation of q1. From ( 7. l ) we see that in these regions prob
lems can be expected. If an element of J'- 1 is much smaller than the corre
sponding elements of f, the error is locally blown up by the coarse grid 
correction. De Zeeuw proposed to damp the restricted residual in order to 
avoid such problems. Here we apply a similar technique for the two-dimen
sional case. 

For every cell ri;-i, which is split into four cells n), we determine the 
damping factors e;7/ by locally comparing the diagonal elements of the Ja
cobian matrices 11 and ]'- 1: 

Ill-I ( /-1)1 
"{ji-1 = (i,k)(i,k) q 

1,k I J' I I , SUPJ~ 1,4 (j,k)(J,k)( q ) 
(7.3a) 
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81-1 - . (?0-1-1 l) 
i,k - m1n - ;,k , • 
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(7.3b) 

The second step ( 7 .3b) is added to avoid damping, if it is not necessary. If 
n~- 1 is not split, we set 0)7,/ = 1. 

By introduction of these damping factors the formulation of the coarse grid 
problem ( cf. ( 5.3)) becomes 

(7.4) 

where e1- 1 is a diagonal matrix, with elements 

c../-1 01-1 
"'(i,k)(i,k) = i,k , (7.5) 

If the mesh becomes fine enough, sharp layers are well resolved, the coarse 
and fine grid Jacobians gain in similarity, and the damping disappears, as we 
see from (7.3). 

However, only damping the restricted residual does not guarantee that 
there will locally be no spurious corrections to the fine grid solution, if the 
grids are relatively coarse. We also find it necessary to suppress the coarse 
grid correction locally, iflayers are not properly resolved. In fact, we suppress 
the coarse grid correction from a cell n;- 1, split into four cells Oj, if 

This means that the correction is suppressed if the ratios ( n / p) on the fine 
and the coarse grid are much different. In the context of the multigrid algo
rithm, the need for damping restricted residuals and suppressing coarse grid 
corrections can be understood as follows. 

Locally the coarse grid solution is a bad representation of the fine grid 
solution, because the grids are too coarse. However, it is known that even 
very coarse grids still may help to reduce low-frequency error components. 
By locally damping the interaction between the grids, we are still able to 
reduce these low-frequency error components in some parts of the solution, 
without exciting high-frequency error components in other parts. If necessary, 
additional local relaxation can reduce errors in regions where the interaction 
between the grids is affected by damping; in our numerical experiments, how
ever, this does not influence the observed convergence behavior. 

8. THE INITIAL ESTIMATE 

To start the multigrid algorithm, we first have to compute a solution on 
the coarsest grid. Initial estimates on finer grids are obtained by interpolation 
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from a coarser one. On the coarsest grid, we use a continuation strategy for 
the applied voltages at the contacts. 

Starting at a voltage that yields a simple problem (e.g., zero voltage at all 
contacts), we change the boundary condition stepwise to its final value. On 
the coarse grid moving from one applied voltage to the next, we take the 
following steps: ( i) change boundary conditions; (ii) find an initial approxi
mation for these new boundary conditions; and (iii) improve this approxi
mation iteratively. The iterative improvement of the coarsest grid approxi
mations is done by relaxation only (see Section 6), which is robust and easy 
to implement. 

The initial approximation for the new boundary conditions is obtained by 
a technique due to Mole and co-workers [ 20]. Starting from a solution ( i/; <OJ, 

<1>~0 >, <J>~0 l), we first assume that the carrier densities do not change during 
continuation, and solve the following equations for the corrections ( d</>,,, d</>p), 

-'iJ·(dJn) = 0, 

-'iJ. (dJp) = 0, 

with 

dJn = -ji,.e"(>J>C0>-<1>~0 »\l(ad<f>n), 

dJ = - - a(</>(0)_>/>(0))'\"7( d,i. ) 
P µPe P v a 'f'p , 

(8. la) 

( 8.1 b) 

( 8.1 c) 

(8.ld) 

where the change in the applied voltage is used for the boundary conditions. 
The linear equations ( 8.1 ) are discretized by the mixed finite element method 
as described in Section 4. The resulting system is solved iteratively by Vanka 
relaxation; this iteration is stopped if the largest correction is a factor 10-2 

less then the change in the applied voltage. 
Next, the initial approximation ( i/; < 1 l, <f> ~ 1 l, <f> ~ 1 l) is found by setting 

c/J~I) = <f>~O) + d<j>,., 

c/J~I) = <f>~O) + d</>p, 

and if; coJ is updated in such a way that the density of the majority charge 
carries does not change, i.e., 

i/;(I) = i/;(0) + d<f>n, 

1/;(1) = i/;(0) + d</>p, 

in a n region, 

in a p region. 

In exceptional cases, with a forward biased diode problem, we observed that 
the new minority level may temporarily become larger than the new majority 
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level. However, this caused no ·problems, because of the robustness of our 
relaxation procedure. 

9. NUMERICAL EXPERIMENTS 

We use a 20 diode problem as a test problem for our adaptive multigrid 
algorithm. The convergence behavior for uniform grids is shown in Section 
9.1, and the power of local refinement is demonstrated in Section 9.2. 

The problem is defined on a square [O, 10-31 X [O, 10-31. The doping 
profile D describes a quarter-circle n-region diode (see Fig. 9.1 ): 

{ 

+1018 

D(x) = o: 
_ 10 1s, 

!!xii < 0.5 X 10-3, 

llxll = 0.5 X 10-3, 

!!xii > 0.5 X 10-3 . 

(9.1) 

At the two contacts, indicated in Fig. 9.1 by double lines, the quasi-Fermi 
potentials <Pn and </Jp are given, depending on the applied voltage Va, 

y = 0, x < 0.25 x 10-3, 

y = 10-3, 

and i/; is derived from these values, by assuming charge neutrality, 

p- n + D = 0. 

(9.2) 

(9.3) 

At the remaining parts of the boundary homogeneous Neumann boundary 
conditions are assumed for all three equations. 

We consider two test problems: a reverse biased (Va = +5.0 V) and a 
forward biased problem (Va = -1.0 V). The numerical values for the constants 
appearingin(2.l)and(2.4)aret= l.036X 10-12,n;= l.22X 10 10,q= 1.60 
X 10-19, and a = 38.683. 

p 

N 

FIG. 9.1. Quarter-circle diode. 
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9.1. Un(((Jrm Grids 

In this subsection the convergence behavior of the multigrid algorithm is 
studied for the two problems on uniform grids. The coarsest grid used in the 
calculations was a 4 X 4 grid. The solution of this very small coarse grid 
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residual -9 

-11 ", 
\ . ..o·e 
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FIG. 9.2. Convergence behavior, reverse biased diode (V cycles). 
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problem is approximated by executing 50 relaxation sweeps, thus reducing 
the residual by a factor of 10-5• In all multigrid cycles a single symmetric 
relaxation sweep is made both before and after the coarse grid correction. 

For the reverse biased problem, the convergence behavior for different 
meshes is shown in Fig 9.2 ( V cycles) and Fig. 9.3 ( W cycles). The convergence 
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FIG. 9.3. Convergence behavior, reverse biased diode ( W cycles). 
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FIG. 9.4. Convergence behavior, forward biased diode (V cycles). 

is measured by the sup-norm of the residual, which is scaled by the corre
sponding diagonal element of the Jacobian. In both cases it appears that Pois
son 's equation is solved up to machine precision in only a few cycles. If W 
cycles are used we find a nearly grid-independent convergence behavior. 

Figures 9.4 and 9.5 show the convergence behavior for the forward biased 
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FIG. 9.5. Convergence behavior, forward biased diode (Wcycles). 

problem, using V and W cycles. The convergence behavior for Poisson 's 
equation looks irregular; it stalls until the continuity equations are solved 
sufficiently accurate. Again, we find a nearly grid-independent convergence 
behavior for W cycles. 
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TABLE 9.1 

DAMPING OF INTERACTION BETWEEN GRIDS FOR THE REVERSE BIASED DIODE 

Grid 

4X4 
8><8 

16 >< 16 
32 .X 32 

Cells with damping of 
the restricted residual 

6 (=38%) 
10 (=16%) 
16 (=6%) 
28(=2%) 

Cells with suppression 
of the correction 

l (=6%) 
4 (=6%) 
7 (=3%) 

15 (=1%) 

Finally, in Table 9.1 we see that the interaction between the grids is damped 
only in a small percentage of the cells. This number decreases if the mesh 
gets finer. Damping only occurs in the reverse biased problem. This concludes 
our discussion of results obtained for uniform grids. We find a good, nearly 
grid-independent, convergence behavior, by locally damping the interaction 
between the grids. 

9.2. :Vonuni{imn Grids 

Here we show results for calculations on a locally adapted grid. Because 
well-analyzed a posteriori error estimators are not yet available for the MFEM 
applied to semiconductor equations, we use an ad hoe refinement criterion, 
viz. equidistribution of the second derivative of the electrostatic potential if;. 
In fact, a cell rli (with area ail is split if 

ai(lfi.xxl +21fL.i·I + lifL.,.1)> 17, (9.4) 

for some a priori given constant 17. The second-order derivatives in ( 9.4) are 
approximated numerically on grid G 1 by means of standard three- or nine
point stencils. 

' 
I 

+fit 
19 ~ 

1 Fm 
I W9 

FIG. 9.6. Selt:adapted grid for reverse biased diode. 
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FIG. 9.7. Plot of solution components along diagonal. 

As test problem we use the reverse biased (Va= +5.0 V) diode, and take 
TJ = 2.5 X 10 - 2. Figure 9 .6 shows the final mesh; the finest level corresponds 
to a uniform 512 X 512 grid. Indeed, the cells are concentrated in the neigh
borhood of the junction, where all three solution components have a sharp 

TABLE 9.2 
NUMBER OF CELLS IN ADAPTIVE GRID 

Number of cells in Uniform 
Level adaptive grid grid 

0 16 4X4 
I 32 8 x 8 
2 64 16 x 16 
3 128 32 x 32 
4 256 64 x 64 
5 512 128 x 128 
6 1080 256 x 256 
7 2656 512 x 512 
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interior layer. In Fig. 9. 7 a cross section of the solution components along 
the diagonal x = y is shown. We obtain a good resolution of the interior layer 
by a limited number of cells, as can be seen from Table 9.2, which gives the 
number of cells on different levels. As long as the coarser meshes (mesh size 
h) are unable to resolve the sharp layer, we see that the number of cells is 
O(h- 1 ). Only for finer meshes are more cells introduced. So, by using local 
refinement, we are able to get a good resolution of the layer, with a restricted 
number of cells. Because the discrete equations are solved by a multigrid 
method, our algorithm is highly efficient. 
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